Цифровой сигнал
Сигналы представляют собой дискретные электрические или световые импульсы. При таком способе вся емкость коммуникационного канала используется для передачи одного сигнала. Цифровой сигнал использует всю полосу пропускания кабеля. Полоса пропускания — это разница между максимальной и минимальной частотой, которая может быть передана по кабелю. Каждое устройство в таких сетях посылает данные в обоих направлениях, а некоторые могут одновременно принимать и передавать. Узкополосные системы (baseband) передают данные в виде цифрового сигнала одной частоты.
Дискретный цифровой сигнал сложнее передавать на большие расстояния, чем аналоговый сигнал, поэтому его предварительно модулируют на стороне передатчика, и демодулируют на стороне приёмника информации. Использование в цифровых системах алгоритмов проверки и восстановления цифровой информации позволяет существенно увеличить надёжность передачи информации.
Замечание. Следует иметь в виду, что реальный цифровой сигнал по своей физической природе является аналоговым. Из-за шумов и изменения параметров линий передачи он имеет флуктуации по амплитуде, фазе/частоте (джиттер), поляризации. Но этот аналоговый сигнал (импульсный и дискретный) наделяется свойствами числа. В результате для его обработки становится возможным использование численных методов (компьютерная обработка).
Важным свойством цифрового сигнала, определившего его доминирование в современных системах связи, является его способность к полной регенерации вплоть до некоторого порогового отношения сигнал/шум, в то время как аналоговый сигнал удаётся лишь усилить вместе с наложившимися на него шумами. Здесь же кроется и недостаток цифрового сигнала: если цифровой сигнал утопает в шумах, восстановить его невозможно (эффект крутой скалы (англ.)), в то время как человек (не машина) может усвоить информацию из сильно зашумлённого сигнала на аналоговом радиоприёмнике, хотя и с трудом. Если сравнивать сотовую связь аналогового формата (AMPS, NMT) с цифровой связью (GSM, CDMA), то при помехах на цифровой линии из разговора выпадают порой целые слова, а на аналоговой можно вести разговор, хотя и с помехами. Выход из данной ситуации — почаще регенерировать цифровой сигнал, вставляя регенераторы в разрыв линии связи, или уменьшать длину линии связи (например, уменьшать расстояние от сотового телефона до базовой станции (БС), что достигается более частым расположением БС на местности).
Отличия аналогового звука от цифрового
Очень часто мы слышим такие определения, как «цифровой» или «дискретный» сигнал, в чем его отличие от «аналогового»?
Суть различия в том, что аналоговый сигнал непрерывный во времени (голубая линия), в то время как цифровой сигнал состоит из ограниченного набора координат (красные точки). Если все сводить к координатам, то любой отрезок аналогового сигнала состоит из бесконечного количества координат.
У цифрового сигнала координаты по горизонтальной оси расположены через равные промежутки времени, в соответствии с частотой дискретизации. В распространенном формате Audio-CD это 44100 точек в секунду. По вертикали точность высоты координаты соответствует разрядности цифрового сигнала, для 8 бит это 256 уровней, для 16 бит = 65536 и для 24 бит = 16777216 уровней. Чем выше разрядность (количество уровней), тем ближе координаты по вертикали к исходной волне.
Аналоговыми источниками являются: винил и аудиокассеты. Цифровыми источниками являются: CD-Audio, DVD-Audio, SA-CD (DSD) и файлы в WAVE и DSD форматах (включая производные APE, Flac, Mp3, Ogg и т.п.).
Преимущества и недостатки аналогового сигнала
Преимуществом аналогового сигнала является то, что именно в аналоговом виде мы воспринимаем звук своими ушами. И хотя наша слуховая система переводит воспринимаемый звуковой поток в цифровой вид и передает в таком виде в мозг, наука и техника пока не дошла до возможности именно в таком виде подключать плееры и другие источники звука напрямик. Подобные исследования сейчас активно ведутся для людей с ограниченными возможностями, а мы наслаждаемся исключительно аналоговым звуком.
Недостатком аналогового сигнала являются возможности по хранению, передаче и тиражированию сигнала. При записи на магнитную ленту или винил, качество сигнала будет зависеть от свойств ленты или винила. Со временем лента размагничивается и качество записанного сигнала ухудшается. Каждое считывание постепенно разрушает носитель, а перезапись вносит дополнительные искажения, где дополнительные отклонения добавляет следующий носитель (лента или винил), устройства считывания, записи и передачи сигнала.
Делать копию аналогового сигнала, это все равно, что для копирования фотографии ее еще раз сфотографировать.
Преимущества и недостатки цифрового сигнала
К преимуществам цифрового сигнала относится точность при копировании и передачи звукового потока, где оригинал ничем не отличается от копии.
Основным недостатком можно считать то, что сигнал в цифровом виде является промежуточной стадией и точность конечного аналогового сигнала будет зависеть от того, насколько подробно и точно будет описана координатами звуковая волна. Вполне логично, что чем больше будет точек и чем точнее будут координаты, тем более точной будет волна. Но до сих пор нет единого мнения, какое количество координат и точность данных является достаточным для того, что бы сказать, что цифровое представление сигнала достаточно для точного восстановления аналогового сигнала, неотличимого от оригинала нашими ушами.
Если оперировать объемами данных, то вместимость обычной аналоговой аудиокассеты составляет всего около 700-1,1 Мб, в то время как обычный компакт диск вмещает 700 Мб. Это дает представление о необходимости носителей большой емкости. И это рождает отдельную войну компромиссов с разными требованиями по количеству описывающих точек и по точности координат.
На сегодняшний день считается вполне достаточным представление звуковой волны с частотой дискретизации 44,1 кГц и разрядности 16 бит. При частоте дискретизации 44,1 кГц можно восстановить сигнал с частотой до 22 кГц. Как показывают психоакустические исследования, дальнейшее повышение частоты дискретизации мало заметно, а вот повышение разрядности дает субъективное улучшение.
Как ЦАП строят волну
ЦАП – это цифро-аналоговый преобразователь, элемент, переводящий цифровой звук в аналоговый. Мы рассмотрим поверхностно основные принципы. Если по комментариям будет виден интерес более подробно рассмотреть ряд моментов, то будет выпущен отдельный материал.
Мультибитные ЦАП
Очень часто волну представляют в виде ступенек, что обусловлено архитектурой первого поколения мультибитных ЦАП R-2R, работающих аналогично переключателю из реле.
На вход ЦАП поступает значение очередной координаты по вертикали и в каждый свой такт он переключает уровень тока (напряжения) на соответствующий уровень до следующего изменения.
Хотя считается, что ухо человека слышит не выше 20 кГц, и по теории Найквиста можно восстановить сигнал до 22 кГц, остается вопрос качества этого сигнала после восстановления. В области высоких частот форма полученной «ступенчатой» волны обычно далека от оригинальной. Самый простой выход из ситуации – это увеличивать частоту дискретизации при записи, но это приводит к существенному и нежелательному росту объема файла.
Альтернативный вариант – искусственно увеличить частоту дискретизации при воспроизведении в ЦАП, добавляя промежуточные значения. Т.е. мы представляем путь непрерывной волны (серая пунктирная линия), плавно соединяющий исходные координаты (красные точки) и добавляем промежуточные точки на этой линии (темно фиолетовые).
При увеличении частоты дискретизации обычно необходимо повышать и разрядность, чтобы координаты были ближе к аппроксимированной волне.
Благодаря промежуточным координатам удается уменьшить «ступеньки» и построить волну ближе к оригиналу.
Когда вы видите функцию повышения частоты с 44.1 до 192 кГц в плеере или внешнем ЦАП, то это функция добавления промежуточных координат, а не восстановления или создание звука в области выше 20 кГц.
Изначально это были отдельные SRC микросхемы до ЦАП, которые потом перекочевали непосредственно в сами микросхемы ЦАП. Сегодня можно встретить решения, где к современным ЦАП добавляется такая микросхема, это сделано для того, чтобы обеспечить альтернативу встроенным алгоритмам в ЦАП и порой получить еще более лучший звук (как например это сделано в Hidizs AP100).
Основной отказ в индустрии от мультибитных ЦАП произошел из-за невозможности дальнейшего технологического развития качественных показателей при текущих технологиях производства и более высокой стоимости против «импульсных» ЦАП-ов с сопоставимыми характеристиками. Тем не менее, в Hi-End продуктах предпочтение отдают зачастую старым мультибитным ЦАП-ам, нежели новым решениям с технически более хорошими характеристиками.
Импульсные ЦАП
В конце 70-тых широкое распространение получил альтернативный вариант ЦАП-ов, основанный на «импульсной» архитектуре – «дельта-сигма». Технология импульсных ЦАП-ов стала возможной появлению сверх-быстрых ключей и позволила использовать высокую несущую частоту.
Амплитуда сигнала является средним значением амплитуд импульсов (зеленым показаны импульсы равной амплитуды, а белым итоговая звуковая волна).
Например последовательность в восемь тактов пяти импульсов даст усредненную амплитуду (1+1+1+0+0+1+1+0)/8=0,625. Чем выше несущая частота, тем больше импульсов попадает под сглаживание и получается более точное значение амплитуды. Это позволило представить звуковой поток в однобитном виде с широким динамическим диапазоном.
Усреднение возможно делать обычным аналоговым фильтром и если такой набор импульсов подать напрямую на динамик, то на выходе мы получим звук, а ультра высокие частоты не будут воспроизведены из-за большой инертности излучателя. По этому принципу работают ШИМ усилители в классе D, где плотность энергии импульсов создается не их количеством, а длительностью каждого импульса (что проще в реализации, но невозможно описать простым двоичным кодом).
Мультибитный ЦАП можно представить как принтер, способный наносить цвет пантоновыми красками. Дельта-Сигма – это струйный принтер с ограниченным набором цветов, но благодаря возможности нанесению очень мелких точек (в сравнении с пантовым принтером), за счет разной плотности точек на единицу поверхности дает больше оттенков.
На изображении мы обычно не видим отдельных точек из-за низкой разрешающей способности глаза, а только средний тон. Аналогично и ухо не слышит импульсов по отдельности.
В конечном итоге при текущих технологиях в импульсных ЦАП можно получить волну, близкую к той, что теоретически должна получится при аппроксимации промежуточных координат.
Надо отметить, что после появления дельта-сигма ЦАП исчезла актуальность рисовать «цифровую волну» ступеньками, т.к. так ступеньками волну современные ЦАП не строят. Правильно дискретный сигнал строить точками соединенной плавной линией.
Являются ли идеальными импульсные ЦАП?
Но на практике не все безоблачно, и существует ряд проблем и ограничений.
Т.к. подавляющее количество записей сохранено в многоразрядном сигнале, то перевод в импульсный сигнал по принципу «бит в бит» требует излишне высокую несущую частоту, которую современные ЦАП не поддерживают.
Основной функцией современных импульсных ЦАП является перевод многоразрядного сигнала в однобитный с относительно невысокой несущей частотой с прореживанием данных. В основном именно эти алгоритмы и определяют конечное качество звучания импульсных ЦАП-ов.
Чтобы уменьшить проблему высокой несущей частоты, звуковой поток разбивается на несколько однобитных потоков, где каждый поток отвечает за свою группу разряда, что эквивалентно кратному увеличению несущей частоты от числа потоков. Такие ЦАП называются мультибитными дельта-сигма.
Сегодня импульсные ЦАП-ы получили второе дыхание в быстродействующих микросхемах общего назначения в продуктах компаний NAD и Chord за счет возможности гибко программировать алгоритмы преобразования.
Формат DSD
После широкого распространения дельта-сигма ЦАП-ов вполне логичным было и появления формата записи двоичного кода напрямую дельта-сигма кодировке. Этот формат получил название DSD (Direct Stream Digital).
Широкого распространения формат не получил по нескольким причинам. Редактирование файлов в этом формате оказалось излишне ограниченным: нельзя микшировать потоки, регулировать громкость и применять эквализацию. А это значит, что без потери качества можно лишь архивировать аналоговые записи и производить двухмикрофонную запись живых выступлений без последующей обработки. Одним словом – денег толком не заработать.
В борьбе с пиратством диски формата SA-CD не поддерживались (и не поддерживаются до сих пор) компьютерами, что не позволяет делать их копии. Нет копий – нет широкой аудитории. Воспроизвести DSD аудиоконтент можно было только с отдельного SA-CD проигрывателя с фирменного диска. Если для PCM формата есть стандарт SPDIF для цифровой передачи данных от источника к отдельному ЦАП, то для DSD формата стандарта нет и первые пиратские копии SA-CD дисков были оцифровками с аналоговых выходов SA-CD проигрывателей (хоть ситуация и кажется глупой, но на деле некоторые записи выходили только на SA-CD, либо та же запись на Audio-CD специально была сделана некачественно для продвижения SA-CD).
Переломный момент произошел с выходом игровых приставок SONY, где SA-CD диск до воспроизведения автоматически копировался на жесткий диск приставки. Этим воспользовались поклонники формата DSD. Появление пиратских записей простимулировало рынок на выпуск отдельных ЦАП для воспроизведения DSD потока. Большинство внешних ЦАП с поддержкой DSD на сегодняшний день поддерживает передачу данных по USB используя формат DoP в виде отдельного кодирования цифрового сигнала через SPDIF.
Несущие частоты для DSD сравнительно небольшие, 2.8 и 5.6 МГц, но этот звуковой поток не требует никаких преобразований с прореживанием данных и вполне конкурентно-способен с форматами высокого разрешения, такими как DVD-Audio.
На вопрос что лучше, DSP или PCM однозначного ответа нет. Все упирается в качество реализации конкретного ЦАП и таланта звукорежиссера при записи конечного файла.
Общий вывод
Аналоговый звук – это то, что мы слышим и воспринимаем, как окружающий мир глазами. Цифровой звук, это набор координат, описывающих звуковую волну, и который мы напрямую услышать не можем без преобразования в аналоговый сигнал.
Аналоговый сигнал, записанный напрямую на аудиокассету или винил нельзя без потери качества перезаписать, в то время как волну в цифровом представлении можно копировать бит в бит.
Цифровые форматы записи являются постоянным компромиссом между количеством точностью координат против объема файла и любой цифровой сигнал является лишь приближением к исходному аналоговому сигналу. Однако при этом разный уровень технологий записи и воспроизведения цифрового сигнала и хранения на носителях для аналогового сигнала дают больше преимуществ цифровому представлению сигнала, аналогично цифровой фотокамере против пленочного фотоаппарата.
Глава 3. Цифровые сигналы
Во всем мире сейчас активно развивается цифровая телефония, i i юство цифровой телефонной связи значительно выше, чем обыч-II’Hi, поскольку цифровые сигналы меньше боятся всякого рода помех. Цифровой телефон позволяет предоставить нам массу дополни-ини.ных услуг. Появляется возможность к одной и той же телефонной мпмии подключить, казалось бы, внешне совершенно различные устройства — телефонный аппарат и персональный компьютер. Через цифровую телефонную сеть владельцам персональных компьютеров открывается доступ к банкам данных с широким ассортиментом информации.
В наши дома приходит цифровое кабельное телевидение, дающее необыкновенную четкость изображения и сочность красок; на прилавках магазинов мы можем увидеть аппаратуру цифровой зву-и видеозаписи, обеспечивающую уникальное качество звука и и шбражения.
Что же такое цифровой сигнал? Впервые мы столкнулись с ним, ми да обсуждали факсимильный сигнал, полученный с черно-белого изображения, не содержащего полутонов. Такой цифровой сигнал п.ц.1зан на рис. 1.12. Однако реальный факсимильный сигнал чаще бывает не цифровым, а аналоговым. Цифровыми сигналами являются телеграфные сигналы и сигналы ипродачи данных, вырабатываемые компьютерами (см. рис. 1.14).
Таким образом, можно сказать, что цифровой сигнал — это по—i пидовательность импульсов. Если принять условно факт наличия нмпульра за 1, а факт его отсутствия за 0, то импульсную последовательность можно представить как чередование двух цифр: 0 и 1.
Отсюда и появилось название «цифровой сигнал». Число, которое принимает только два значения: 0 и 1, называется «двоичной цифрой». В переводе на английский это звучит как «binary digit». В практике широко вошло сокращение, составленное из начальных и конечных английского словосочетания, т.е. слово «bit», что на английском читается как бит. Итак, одна позиция в цифровом сигнале есть 1 бит; это может быть либо 0, либо 1. Восемь позиций в цифровом сигнале объединяется понятием байт.
При передаче цифровых сигналов естественным образом вводится понятие скорости передачи — это количество бит, передаваемых в единицу времени, чаще всего — в секунду.
3.2. Дискретизация аналоговых сигналов
По своей природе многие сигналы (телефонные, факсимильные, телевизионные) не являются цифровыми. Это аналоговые, или непрерывные, сигналы.
Можно ли «переложить» живую человеческую речь на язык нулей и единиц, сохранив при этом все богатое разнообразие красок человеческого голоса, всю гамму человеческих эмоций? Другими словами, речь идет о том, как заменить непрерывный процесс последовательностью цифр, не потеряв при этом информации о непрерывном процессе.
С подобной проблемой мы сталкиваемся в жизни довольно часто. Если через очень короткие промежутки времени (скажем, через 1 с) наносить значения температуры воздуха на график, то получим множество точек, отражающих изменение температуры (рис. 3.1).
Таким образом, имеем дело не с непрерывной кривой изменения температуры, а лишь с ее значениями, отсчитанными через определенные промежутки времени. По сути говоря, мы описали некоторый непрерывный процесс последовательностью десятичных цифр. Подобный процесс называется дискретизацией непрерывного сигнала. Невыясненным остался вопрос, как часто следует брать отсчетные значения непрерывной кривой, чтобы отследить все ее изменения. Так, при более длительных промежутках времени между наблюдениями за температурой воздуха не удается отследить все ее быстрые изменения.
Рис. 3.1. Дискретное измерение температуры
Рис. 3.2. Дискретизация телефонного сигнала
Аналогичный подход лежит в процессе дискретизации телефонного сигнала. Если в цепь микрофона (рис. 3.2), где ток является непрерывной функцией времени, встроить электронный ключ и периодиче-на короткие мгновения замыкать его, то ток в цепи будет иметь вид узких импульсов с амплитудами, повторяющими форму непрерывнoro сигнала, и представлять собой ничто иное, как дискретный сигнал (см. рис. 3.2).
Интервал времени tД через который отсчитываются значения непрерывного сигнала, называется интервалом дискретизации. Обратная величина 1/tД (обозначим ее fД) называется частотой взятия отсчетов, или частотой дискретизации.
Отсчеты непрерывного сигнала, так же, как и отсчеты температуры, следует брать с такой частотой (или через такой интервал времени), чтобы успевать отследить все, даже самые быстрые, изменения сигнала. Иначе при восстановлении этого сигнала по дискретным от-счетам часть информации будет потеряна и форма восстановленного сигнала будет отличаться от формы исходного (рис. 3.3). Это означает, что звук на приеме будет восприниматься с искажениями.
Рис. 3.3. Искажение формы восстановленного сигнала
Чтобы разобраться с этим вопросом, начнем с колебания струны. Вы тронули струну, она стала вибрировать и своим движением то сжимать, то разряжать окружающий воздух или, другими словами, то повышать, то понижать его давление. Слои воздуха повышенного и пониженного давления начали разбегаться во все стороны от колеблющегося тела. Образовалась звуковая волна. Нечто похожее наблюдаем, когда бросаем камни в воду и смотрим на расходящиеся кругами волны. Гребни этих волн можно сравнить с областью сжатого воздуха, впадины — с областью разреженного воздуха.
Давление звуковой волны, распространяющейся от струны, изменяется во времени по закону синусоиды. Чтобы отследить все ее изменения, очевидно, достаточно брать отсчетные значения в моменты, соответствующие максимумам и минимумам синусоиды, т.е. с частотой, превышающей по крайней мере вдвое частоту звукового колебания. Например, если струна совершает 20 колебаний/с (частота 20 Гц), то максимальное звуковое давление будет наблюдаться через каждый 1/20 с, т.е. через 50 мс. Максимумы и минимумы кривой звукового давления разделены интервалами в 25 мс. Значит, отсчетные значения по кривой должны следовать не реже, чем через 25 мс, или с частотой 40 отсчетов/с (40 Гц). Обычно отсчетные значения на кривой берут «с запасом»: не в 2 раза чаще, чем колеблется звук, а, скажем, в 10 раз. В этом случае они очень хорошо передают форму кривой.
Интересен случай, когда звуковые волны излучают две одновременно колеблющиеся струны. На рис. 3.4 показаны три варианта: вторая струна колеблется в 2, 3 и 10 раз чаще, чем первая. Давления двух звуковых волн на пластину, помещенную на их пути, складываются. График результирующего давления уже не является синусоидой. Мы видим, что быстрые изменения в этой кривой обусловлены более высокочастотным колебанием (в данном случае колебанием второй струны). Для того чтобы отследить все быстрые изменения результирующего звукового давления, отсчетные значения следует брать с частотой, по крайней мере, вдвое превышающей частоту колебания второй струны. В последнем варианте частота взятия отсчетных значений должна превышать 400 Гц. Это означает, что отсчетные значения должны следовать не реже, чем через 1/400 = 0,0025 с = 2,5 мс, а лучше — еще чаще, например через 0,5 мс.
При изучении речи (см. п.1.3) мы выяснили, что голосовые связки у человека играют роль струн. Самое высокочастотное колебание этих «струн», которое по рекомендации МСЭ необходимо еще учитывать, имеет частоту 3400 Гц. При переходе от аналогового речевого сигнала к цифровому это значение обычно округляют до 4000 Гц. Это значит, что при замене непрерывной кривой электрического тока на выходе микрофона телефонного аппарата отсчетными значениями по-следние необходимо брать с частотой 8000 Гц или, другими словами, не реже, чем через 1/8000 = 0,000125 с = 125 мкс.
Рис. 3.4. Дискретизация кривых звукового давления при различных частотах колебания струн
Сравнение рис. 3.2 и рис. 2.9, б показывает, что при дискретизации сигнала узкими прямоугольными импульсами получается АИМ-сигнал, спектр которого изображен на рис. 2.10.
Спектр дискретного сигнала содержит спектр исходного сигнала (в диапазоне частот от 0 до F). Чтобы восстановить исходный сигнал из дискретного, достаточно пропустить дискретный сигнал через Фильтр нижних частот с граничной частотой полосы пропускания F и подавить все «боковые» спектры. На выходе такого фильтра появится исходный непрерывный сигнал.
При слишком редкой дискретизации (низкая частота дискретизации fД и большой интервал дискретизации tД) будет иметь место наложение на спектр исходного сигнала «бокового» спектра. Это приведет к искажению формы исходного спектра, и значит, к отличию восстановленного сигнала от исходного. Наоборот, более частая дискретизация позволит легко восстановить непрерывный сигнал из дискретного с помощью несложного фильтра нижних частот. Таким образом, для безыскаженного восстановления непрерывного сигнала из дискретного необходимо частоту дискретизации fД выбирать не ниже удвоенной ширины его спектра. Для телефонного сигнала, как мы это видим, fД = 8 кГц.
В 1933 г. в работе «О пропускной способности «эфира» и проволоки в электросвязи» В.А. Котельников доказал теорему, ставшую основополагающей в теории и технике цифровой связи. Суть этой теоремы состоит в том, что непрерывный сигнал, у которого спектр ограничен частотой F, может быть полностью и однозначно восстановлен по его дискретным отсчетам, взятым с частотой fд = 2F, т.е. через интервалы времени tД = 1/2F.
Мы не приводим полную математическую формулировку теоремы, а также ее доказательство, а лишь ограничиваемся указанием сути теоремы. Однако справедливость ее только что была обсуждена и легко усматривается из рис. 2.10.
Цифровой сигнал — Digital signal
А цифровой сигнал это сигнал который используется для представления данных в виде последовательности дискретный значения; в любой момент времени он может принимать не более одного из конечного числа значений. [1] [2] [3] Это контрастирует с аналоговый сигнал, который представляет непрерывный значения; в любой момент времени он представляет собой настоящий номер в непрерывном диапазоне значений.
Простые цифровые сигналы представляют информацию в дискретных полосах аналоговых уровней. Все уровни в пределах диапазона значений представляют одно и то же информационное состояние. В большинстве цифровые схемы, сигнал может иметь два возможных действительных значения; это называется двоичный сигнал или же логический сигнал. [4] Они представлены двумя полосами напряжения: одна около эталонного значения (обычно обозначается как земля или ноль вольт), а другой — значение, близкое к напряжению питания. Они соответствуют двум значениям «ноль» и «один» (или «ложь» и «истина») Логический домен, поэтому в любой момент времени двоичный сигнал представляет один двоичный символ (кусочек). Из-за этого дискретизация относительно небольшие изменения уровней аналогового сигнала не выходят за пределы дискретной огибающей и, как результат, игнорируются схемой определения состояния сигнала. В результате цифровые сигналы помехозащищенность; электронный шум, если он не слишком велик, не повлияет на цифровые схемы, тогда как шум всегда в некоторой степени ухудшает работу аналоговых сигналов. [5]
Иногда используются цифровые сигналы, имеющие более двух состояний; схема, использующая такие сигналы, называется многозначная логика. Например, сигналы, которые могут принимать три возможных состояния, называются трехзначная логика.
В цифровом сигнале физической величиной, представляющей информацию, может быть переменный электрический ток или напряжение, интенсивность, фаза или поляризация из оптический или другой электромагнитное поле, акустическое давление, намагничивание из магнитное хранилище СМИ и т. д. Цифровые сигналы используются во всех цифровая электроника, в частности, вычислительное оборудование и передача данных.
Содержание
Определения
Период, термин цифровой сигнал имеет связанные определения в разных контекстах.
В цифровой электронике
В цифровая электроника цифровой сигнал — это последовательность импульсов (а амплитудно-импульсная модуляция сигнал), то есть последовательность фиксированной ширины прямоугольная волна электрические импульсы или световые импульсы, каждый из которых занимает один из дискретного числа уровней амплитуды. [6] [7] Особый случай — это логический сигнал или двоичный сигнал, который варьируется от низкого до высокого уровня сигнала.
Пульс тренируется в цифровые схемы обычно генерируются полевой транзистор металл – оксид – полупроводник (MOSFET) из-за их быстрого включения-выключения электронное переключение скорость и крупномасштабная интеграция (LSI) возможность. [8] [9] В отличие, BJT транзисторы медленнее генерировать аналоговые сигналы, напоминающие синусоидальные волны. [8]
В обработке сигналов
В цифровая обработка сигналов, цифровой сигнал представляет собой дискретизированный и квантованный физический сигнал. Цифровой сигнал — это абстракция, дискретная по времени и амплитуде. Значение сигнала существует только через регулярные интервалы времени, поскольку только значения соответствующего физического сигнала в эти дискретизированные моменты важны для дальнейшей цифровой обработки. Цифровой сигнал — это последовательность кодов, составленная из конечного набора значений. [10] Цифровой сигнал может храниться, обрабатываться или передаваться физически как импульсно-кодовая модуляция (PCM) сигнал.
В коммуникациях
В цифровые коммуникации, цифровой сигнал — это непрерывный физический сигнал, чередующийся между дискретным числом форм волны, [3] представляющий битовый поток. Форма сигнала зависит от схемы передачи, которая может быть линейное кодирование схема, позволяющая основная полоса коробка передач; или цифровая модуляция схема, позволяющая полоса пропускания передача по длинным проводам или в ограниченном диапазоне радиочастот. Такая синусоидальная волна с модуляцией несущей считается цифровым сигналом в литературе по цифровой связи и передаче данных. [11] но рассматривается как поток битов, преобразованный в аналоговый сигнал в электронике и компьютерных сетях. [12]
В системах связи обычно присутствуют источники помех, и шум часто является серьезной проблемой. Эффекты помех обычно сводятся к минимуму за счет максимально возможной фильтрации мешающих сигналов и использования избыточность данных. Основными преимуществами цифровых сигналов для связи часто считаются их устойчивость к помехам и способность во многих случаях, например, с аудио- и видеоданными, использовать Сжатие данных для значительного уменьшения пропускной способности, необходимой для средств связи.
Уровни логического напряжения
А форма волны это переключатели, представляющие два состояния Булево значение (0 и 1, или низкое и высокое, или ложное и истинное) называется цифровой сигнал или же логический сигнал или же двоичный сигнал когда он интерпретируется в терминах только двух возможных цифр.
Эти два состояния обычно представлены некоторым измерением электрического свойства: Напряжение самый распространенный, но Текущий используется в некоторых логических семействах. Для каждого логического семейства обычно определяются два диапазона напряжений, которые часто не являются непосредственно смежными. Сигнал низкий в нижнем диапазоне и высокий в верхнем диапазоне, а между двумя диапазонами поведение может варьироваться между разными типами ворот.
В тактовый сигнал это специальный цифровой сигнал, который используется для синхронизировать много цифровых схем. Показанное изображение можно рассматривать как форму тактового сигнала. Логические изменения запускаются либо нарастающим, либо спадающим фронтом. Нарастающий фронт — это переход от низкого напряжения (уровень 1 на диаграмме) к высокому напряжению (уровень 2). Спад — это переход от высокого напряжения к низкому.
Хотя в сильно упрощенной и идеализированной модели цифровой схемы мы можем пожелать, чтобы эти переходы происходили мгновенно, ни одна из реальных схем не является чисто резистивной, и поэтому никакая схема не может мгновенно изменять уровни напряжения. Это означает, что в течение короткого конечного время перехода выходной сигнал может неправильно отражать входной сигнал и не будет соответствовать ни логически высокому, ни низкому напряжению.
Модуляция
Чтобы создать цифровой сигнал, аналоговый сигнал должен быть промодулирован управляющим сигналом для его создания. Простейшая модуляция, разновидность униполярное кодирование, просто включать и выключать сигнал постоянного тока, чтобы высокое напряжение представляло «1», а низкое напряжение — «0».
В цифровое радио схемы одна или несколько несущих волн амплитуда, частота или же фазовая модуляция управляющим сигналом для создания цифрового сигнала, пригодного для передачи.
Асимметричная цифровая абонентская линия (ADSL) через телефонные провода, не использует в первую очередь двоичную логику; цифровые сигналы для отдельных несущих модулируются с различной логикой, в зависимости от Емкость Шеннона индивидуального канала.
Синхронизация
Цифровые сигналы могут быть отобранный с помощью тактового сигнала через равные промежутки времени, пропуская сигнал через резкий поворот. Когда это сделано, вход измеряется по фронту тактового сигнала и сигнал с этого момента. Затем сигнал остается устойчивым до следующих часов. Этот процесс лежит в основе синхронная логика.
Асинхронная логика также существует, который не использует единственные часы, обычно работает быстрее и может потреблять меньше энергии, но его значительно сложнее спроектировать.