Где больше всего на земле аккумулируется энергии
Перейти к содержимому

Где больше всего на земле аккумулируется энергии

  • автор:

Накопители энергии: очевидные и невероятные ⁠ ⁠

Штангисты знают, что поднять вес мало — важно его удержать. Сколько бы мы ни произвели чистой — или любой другой — энергии, от нее будет мало толка, если мы не умеем ее хранить. Но что способно накапливать гигаватт- и тераватт-часы, а в нужный момент за секунды отдать их в сеть? Только что-нибудь по‑настоящему серьезное. Водохранилища и поезда, бетонные поплавки и даже лифты-многотонники, разработанные в Новосибирске. О них мы и поговорим, вспомнив по пути школьную физику.

Накопители энергии: очевидные и невероятные Роман Фишман, Популярная механика, Научпоп, Накопитель, Промышленность, Наука, Длиннопост

Профессор из Беркли Дэвид Каммен считает электросети самой сложной машиной, которую когда-либо создавало человечество: «Она самая большая, самая дорогая, включает больше всего компонентов и при этом элегантно проста. В ее основе лежит единственный принцип — приток энергии должен постоянно равняться оттоку». Система работает как ресторан быстрого питания: сколько заказано блюд, столько и приготовлено, лишнее приходится выбрасывать. Между тем потребление электроэнергии меняется постоянно и довольно ощутимо.

Взглянув на графики, легко заметить, что нагрузка на сеть следует суточным и недельным циклам и повышена во время зимних холодов. Работа солнечных электростанций с этими периодами согласуется плохо: излучение есть именно тогда, когда его энергия меньше всего нужна, — днем. А ярче всего солнце светит летом. Производство электроэнергии ветряными станциями тоже подчиняется погодным условиям. Реакторы АЭС нельзя подстраивать под нужды потребителей: они выдают постоянное количество энергии, так как должны функционировать в стабильном режиме. Регулировать подачу тока в сеть приходится, меняя объемы сжигаемого топлива на газовых и угольных ТЭС. Энергосеть постоянно балансирует между выработкой электростанций и нуждами потребителей.

Накопители энергии: очевидные и невероятные Роман Фишман, Популярная механика, Научпоп, Накопитель, Промышленность, Наука, Длиннопост

Cравнение потребления и генерации электроэнергии различными источниками на примере декабря 2012 года (по данным BM Reports).

Если бы тепловые электростанции не приходилось регулировать и они могли работать всегда в оптимальном режиме, их ресурс был бы выше, а стоимость и потребление топлива — ниже. Но для этого сеть должна иметь запас энергии, который накапливался бы в периоды избыточного производства и отдавался на пиках потребления. Ну а если уж мы хотим вовсе отказаться от углеводородов и использовать только чистое электричество возобновляемых источников, то без средств для накопления энергии и стабилизации ее подачи в сеть никак не обойтись… Есть идеи?

Электросети начали проектировать больше века назад с учетом технологий того времени, и сегодня даже в самых развитых странах они нуждаются в модернизации, в том числе во введении «амортизирующего» компонента, накопителей соответствующей мощности. Пока что такими проектами не могут похвастаться даже США: по данным за 2017 год, все имевшиеся в стране промышленные накопители имели мощность лишь около 24,2 ГВт, тогда как генерирующие мощности составили 1081 ГВт. Текущие возможности России в области накопления — чуть больше 2 ГВт, а всего мира — 175,8 ГВт.

Накопители энергии: очевидные и невероятные Роман Фишман, Популярная механика, Научпоп, Накопитель, Промышленность, Наука, Длиннопост

Почасовое потребление в Великобритании в течение одного зимнего и одного летнего месяцев 2009 года. Максимум потребления пришелся на шесть часов январского утра (58,9 ГВт), минимум — на теплый субботний вечер в июле (22,3 ГВт), разница более чем вдвое.

Почти весь этот объем приходится на гидроаккумулирующие электростанции (ГАЭС). Самая большая в России Загорская ГАЭС имеет мощность 1,2 ГВт, а самая мощная в мире работает в Вирджинии. Станция Bath County мощностью 3 ГВт и высотой 380 м способна накачивать воду в верхний резервуар и спускать в нижний со скоростью около 50 тыс. т в минуту. Такие накопители превращают электричество в потенциальную энергию воды и вырабатывают его обратно с потерями лишь 30%. Однако их недостатки вполне очевидны: водохранилища требуют сложного рельефа, обширной и часто нужной площади и связаны с неизбежными потерями на испарение.

Сегодня больше 98% мировых мощностей накопителей приходится на ГАЭС, а из оставшегося количества около трети используется в химических аккумуляторах. Прежде всего, это обычные литий-ионные батареи: крошечные размеры ионов лития делают их отличными носителями заряда, позволяя добиться высокой плотности энергии. По оценке Джорджа Крабтри из Аргоннской национальной лаборатории министерства энергетики США, литий-ионным аккумуляторам для широкого применения необходимо стать как минимум впятеро более емкими и на столько же более дешевыми. Но даже в этом случае они останутся токсичными и взрывоопасными.

Некоторых их недостатков лишены альтернативные проекты: сегодня создан целый «зоопарк» электрохимических элементов. Например, аккумуляторы профессора Дональда Садоуэя на основе жидких металлических электродов и расплава соли требуют для работы высоких температур, зато они безопасны и намного дешевле литий-ионных. Однако любые батареи со временем неизбежно деградируют и уже лет через десять потребуют серьезных и регулярных вложений в обновление… Что нам остается, помимо этого?

Накопители энергии: очевидные и невероятные Роман Фишман, Популярная механика, Научпоп, Накопитель, Промышленность, Наука, Длиннопост

Инженеры любят простые и остроумные решения, и многие проекты накопителей основаны на довольно простой физике. Базовые формулы, позволяющие оценить энергию таких систем, проходят еще в средней школе. Скажем, вращательная кинетическая энергия пропорциональна массе и квадрату скорости, что позволяет сохранять электрическую энергию во вращении тяжелого маховика. Такие накопители отличаются великолепной управляемостью и надежностью, они используются на транспорте и даже в космосе. Однако самые мощные из них способны обеспечить разве что небольшую электростанцию, стабилизируя выдачу тока, и эффективны лишь на небольших промежутках времени — не больше четверти часа.

Из той же школьной физики мы помним, что энергия идеального газа пропорциональна его давлению, что дает возможность накопить ее в виде сжатого воздуха. Емкостью для него могут служить герметичные цистерны, как у 9-мегаваттного накопителя Next Gen CAES на одной из электростанций в Нью-Йорке, штольни заброшенных шахт или естественные пещеры-каверны. На том же принципе разницы давлений работает предложенный немецкими инженерами концепт ORES. Полые бетонные емкости погружаются на дно и подключаются к офшорной электростанции: избыток энергии они накапливают, закачивая внутрь воду, а при необходимости она под давлением сжатого внутри воздуха выбрасывается наружу, запуская генератор.

Накопители энергии: очевидные и невероятные Роман Фишман, Популярная механика, Научпоп, Накопитель, Промышленность, Наука, Длиннопост

Баланс на масштабах от секунд до недель

Накопители энергии, работающие на разных принципах, имеют свои преимущества и недостатки, и могут подходить для различных задач. Одни оптимальны в поддержке электростанций, другие — на этапе передачи и распределения энергии, третьи — для крупных потребителей, четвертые — для конечных пользователей, в их домах и мобильных гаджетах.

Пригодится нам и энергия тепловая: например, концерн Siemens уже сооружает для одной из ветряных электростанций под Гамбургом накопитель, запасающий энергию в тепле 100 тонн камня. Избыток выработки будет направляться на их нагрев, чтобы затем груз, остывая, превращал воду в пар, вращающий турбину генератора. Впрочем, чаще энергию градиента температуры используют для накопителей энергии на солнечных электростанциях. Зеркала концентраторов фокусируют свет, раскаляя теплоноситель (обычно расплавленный солевой раствор), который продолжает отдавать тепло и днем, и ночью, когда солнце уже не светит, — в полном согласии с изученными в школе началами термодинамики.

Еще ближе нам элементарная формула потенциальной энергии тела в поле тяжести Земли: E = mgh (где m — масса груза, h — высота его подъема, g — ускорение свободного падения). Именно в таком виде запасают ее мощные и надежные ГАЭС или проект немецкой компании Heindl Energy, поднимающий водным столбом внутри цилиндра цельный гранитный поршень диаметром до 250 м. Потенциальную энергию накапливают и тяжелые железнодорожные составы проекта ARES, которые буксируют бетонные грузы вверх и вырабатывают ток, когда спускаются с ними. Но для всего этого нужно иметь наготове холм высотой в несколько сотен метров и — как в случае с ГАЭС — большую площадь под строительство… Есть ли другие возможности?

Накопители энергии: очевидные и невероятные Роман Фишман, Популярная механика, Научпоп, Накопитель, Промышленность, Наука, Длиннопост

Проект профессора Эдварда Хейндля обещает мощность до 8 ГВт — этого достаточно для того, чтобы обеспечивать энергией 2 млн потребителей в течение суток.

Вариант почти невероятный

Накопитель в новосибирском Академгородке много места не занимает. За самым обыкновенным забором стоит новенькое здание размером с пятиэтажку — шоу-рум, в котором размещен действующий прототип твердотельной аккумулирующей электростанции (ТАЭС) высотой 20 м и мощностью 10 кВт. Внутри здания вдоль стен расположены две узкие ячейки ТАЭС шириной около 2 м и длиной около 12.

Принцип работы их основан на накоплении потенциальной энергии: двигатель потребляет электроэнергию из сети и с помощью каната поднимает наполненные грунтом полимерные мешки. Они крепятся наверху и в любой момент готовы начать спуск, вращая вал генератора. По словам основателя проекта «Энергозапас» Андрея Брызгалова, инженеры изучили почти сотню идей для промышленных накопителей энергии, но не нашли подходящего варианта и создали собственный.

Накопители энергии: очевидные и невероятные Роман Фишман, Популярная механика, Научпоп, Накопитель, Промышленность, Наука, Длиннопост

Полномасштабная ТАЭС будет достигать 300 м в высоту и сможет накапливать до 10 ГВт·ч. При грузообороте до 14 млн т в сутки она будет производить на грунт давление до 4 кг/см2 — меньше, чем обычная пятиэтажка. Расчетный срок службы: 50 лет.

В самом деле, Россия — страна богатая, но не рельефом. «Это практически ровный стол, — рассказывает Андрей Брызгалов, — возводить ГАЭС можно лишь в отдельных районах, остальное — равнинная плоскость». В отличие от водохранилища, ТАЭС можно установить где угодно: для строительства не требуется водохранилищ и естественного перепада высот. Мешки заполняются местным грунтом, который добывают при строительстве фундамента, а строить можно в чистом поле, которого в России достаточно.

Оптимальная мощность ТАЭС при высоте 300 м будет порядка 1 ГВт, а емкость определяется площадью накопителя и при застройке 1 км² составит 10 ГВт·ч, то есть станция займет примерно в пять раз меньше места, чем аналогичная ГАЭС. Тысячи специальных многошахтных лифтов, снабженных системой рекуперации, будут перемещать за сутки около 15 млн т груза. «Ежедневный грузооборот одной такой ТАЭС будет всемеро больше, чем у крупнейшего мирового порта, Шанхайского, — объясняет Андрей Брызгалов. — Вы представляете себе уровень задачи?» Неудивительно, что дальше начинается физика уже отнюдь не школьного уровня.

«Мы не можем позволить себе строить сразу 300-метровую башню, — говорит Андрей Брызгалов, — это по меньшей мере легкомысленно. Поэтому мы делаем конструкцию минимальных размеров, при которых она обладает свойствами полноразмерной ТАЭС». Как только проект получит господдержку в рамках Национальной технологической инициативы, в «Энергозапасе» приступят к работе. Возведение 80-метровой башни мощностью более 3 МВт позволит испытать строительные решения, которые на данный момент прошли только модельные испытания на многоядерных компьютерных кластерах.

В самом деле, какой бы простой ни была высотная конструкция, ей предстоит столкнуться с опасностью землетрясений и нагрузкой ветра. Но вместо обычных решений с применением все более мощных и тяжелых несущих элементов из стали и бетона ТАЭС использует массу инженерных находок. Для борьбы с ветром ее окружат защитной «юбкой», которая раскинется на ширину примерно в четверть радиуса самой станции. Она будет превращать горизонтальное давление ветра в вертикальную нагрузку, на которую рассчитана конструкция. «Это позволяет значительно сократить расходы на металл, который применяют для компенсации изгибных нагрузок, снизить себестоимость ТАЭС и тем самым поднять ее конкурентоспособность», — объясняют разработчики.

Сейсмические колебания демпфирует сама конструкция — матрица вертикальных колонн, к каждой четверке которых подвешено до девяти 40-тонных грузов. «В любой конкретный момент перемещается лишь небольшое количество груза, остальное действует как отвес, подавляя раскачивание. Несмотря на огромную массу, даже благодаря ей мы получили самое сейсмостойкое здание в мире, — уверяет Андрей Брызгалов, — причем практически без дополнительных расходов». Легкая, простая, лишенная перекрытий, такая башня будет в несколько раз дешевле обычного здания тех же размеров.

Накопители энергии: очевидные и невероятные Роман Фишман, Популярная механика, Научпоп, Накопитель, Промышленность, Наука, Длиннопост

Несмотря на внешнюю простоту, разработка накопителя потребовала не только знаний сложной физики и материаловедения, но даже аэродинамики и программирования. «Возьмите, например, провод, — объясняет Андрей Брызгалов. — Ни один не выдержит десятки миллионов циклов сгибания-разгибания, а мы рассчитываем на полвека бесперебойной работы. Поэтому передача энергии между подвижными частями ТАЭС будет реализована без проводов». Накопитель ТАЭС буквально нашпигован новыми технологиями, и десятки инженерных находок уже запатентованы.

Матричные преобразователи частоты тока позволяют мягко и точно управлять работой моторов и сглаживать выдачу энергии. Сложный алгоритм автоматически координирует параллельную работу нескольких тележек-подъемников и требует лишь удаленного присмотра со стороны оператора. «У нас есть специалисты десятков направлений, — говорит Андрей Брызгалов, — и все они работают, не ожидая моментального результата и окупаемости проекта в ближайшие 2−3 года. При этом создано решение, равного которому нет нигде в мире. Теперь его можно лишь повторить, но сделать такое с нуля было возможно только в России, только в Сибири, где есть такие люди».

Впрочем, без уверенности в том, что проект рано или поздно станет прибыльным, ничего бы не состоялось. «Проблема российской энергосистемы — избыток мощностей, — продолжает Андрей Брызгалов. — Исторически сложилось так, что мы генерируем больше, чем надо, и это позволяет немало экспортировать, но и создает серьезный запрос на аккумулирующие мощности». По оценкам Navigant Research, к 2025 году этот рынок будет расти средними темпами в 60% ежегодно и достигнет 80 млрд долларов. Возможно, эти деньги преобразуют типичный российский пейзаж, и где-то у горизонта обычной бесконечной плоскости появятся и станут привычными гигантские гравитационные накопители.

Статья «Накопители: очевидные и невероятные» опубликована в журнале «Популярная механика» (№4, Апрель 2018).

Энергетика от мха до плазмы

Мы часто слышим, что за последние годы использование энергии человечеством увеличилось настолько, что ископаемые ресурсы закончатся через пару десятков лет. Но то же самое говорили и в 70-х годах прошлого века. Откуда мы тогда сегодня берем энергию для существования и что нам делать дальше? Для развития технологий необходимо понимать, как эффективно преобразовывать ее в работу, ведь энергия — ресурс даже в астрономических масштабах не бесконечный. Практически вся энергия, которая существует на Земле и которую люди могут извлечь из солнечной системы — энергия Солнца, у которого конечное время жизни, а вся энергия во Вселенной ограничена тем, что дал нам Большой Взрыв. Но что такое энергия?

Никто не может дать четкого определения, так как нет более общего класса понятий, которым мы можем описать энергию. Все, что мы можем — изучать ее свойства и характеристики. Ричард Фейнман в своих знаменитых “лекциях по физике” говорил: ”Важно понимать, что в сегодняшней физике мы не имеем представления об энергии. Мы не можем сказать, что энергия поступает в маленьких сгустках определенного количества”. Мы точно знаем: вся материя в конечном счете является энергией, сумма которой во Вселенной никогда не изменится, поэтому рассуждать мы будем о способах изменения ее формы.

Откуда вообще взялась энергия во Вселенной и что она значит для нас?

История энергии началась в момент Большого Взрыва. Возможно, в один момент появилось два связанных между собой понятия: энергия и пространство-время. Возможно, энергия являлась первопричиной всего в нашем мире, с этим ещё предстоит разобраться, но сейчас уже точно ясно одно: энергия является сутью физической формы материи, всё во Вселенной является сосредоточением той или иной формы энергии. Теория расширения ранней Вселенной намекает нам на то, что изначально все вещество являлось однородной изотропной средой, в процессе расширения которого произошло остывание и “конденсация” всех известных науке элементарных частиц. Появилось 4 фундаментальных взаимодействия: сильное, слабое, электромагнитное и гравитационное.

Через много-много лет после Большого Взрыва, когда люди только начали применять энергию, никто не знал про 4 фундаментальных взаимодействия. Изначально люди грели себя и готовили пищу с помощью химических реакций горения. Так продолжается и по сей день, основным источником энергии для нас сегодня является электричество, вырабатываемое на всевозможных ТЭС(тепловая электростанция) и ТЭЦ(теплоэлектроцентраль).

По сути вся жизнь человека — постоянный поиск энергии. Это может быть громким заявлением, но вы только подумайте: мы ведь кушаем только чтобы получать энергию для функционирования мозга и движения. Жизнь человечества строится на способах добычи энергии. Поэтому энергетика является одним из важнейших аспектов жизни людей и всего во Вселенной.

Почему современная энергетика неэффективна?

Давайте отбросим понятие энергии на второй план и подумаем: какие способы добычи энергии сегодня известны?

Первый и самый популярный способ — что-нибудь сжечь: дерево, нефть, газ. В процессе образуется много лишнего, а все ископаемые ресурсы очень скоро закончатся. Второй — извлечь работу из гравитации: ГЭС, приливные станции, — но проблема тут в размерах и в расположении станций, к тому же не везде есть вода. Еще можно подумать о солнечной энергетике: тут вроде все хорошо, но роль играет расположение и низкая плотность энергетического потока.

Почти вся используемая энергия досталась нам благодаря Солнцу, просто в разных видах. Растения тысячелетиями накапливали энергию солнца, росли и погибали, образовывали нефть, природный газ и уголь. Сама Земля, ее вода и атмосфера существуют из-за Солнца. Необходимо более универсальное решение проблемы эффективности добычи энергии.

Достаточно посмотреть на эту диаграмму, чтобы понять, что человечество не очень то и далеко ушло от своих предков, которые просто жгли древесину, мох и уголь:

Рисунок 1. Изменение глобального потребления энергии по видам источников

Получается, что за 200 лет люди ничего толком не изменили в энергетике, лишь нарастили темпы преобразования и добычи энергии:

Рисунок 2. Потребление энергии по видам ее источников в 2019 году

Мало того, что добыча энергии таким способом не так эффективна по сравнению с энергией, которую мы научились извлекать альтернативными методами, так еще и большой вопрос в том, больше ли пользы мы получаем от такой энергии, чем вреда. Для количественной оценки этого заявления давайте посмотрим на статистику.

Энергия в человеческом эквиваленте

Что вы представляете, когда слышите слова «альтернативная энергетика»? Большинство людей сразу представляют себе солнечные панели и ветряные мельницы, но редко думают о ядерной и термоядерной энергии. Ядерная энергетика получает меньше внимания из-за громких аварий, которые страшны людям скорее не из-за катастрофических последствий, а из-за неправильной трактовки СМИ и всеобщего незнания базовых аспектов этой энергетики. Теоретическое обоснование эффективности добычи энергии таким способом известно уже как минимум полвека.

За 70 лет существования атомной энергетики зафиксировано только 33 серьезных происшествия. Несмотря на это, есть очень много скептически настроенных людей и даже организаций, которые выступают за отмену строительства АЭС. Давайте взглянем на цифры:

Из-за Чернобыльской аварии напрямую погиб 31 человек. Из-за последствий По самой пессимистичной статистике от «European green party» кол-во смертей к 2065 году приблизится к 60 тыс, но ученые склоняются к цифрам намного меньше этой.

WHO считает, что цифра вырастет только до 4 тыс. Это самая серьезная радиационная авария за всю историю энергетики, намного превосходящая по последствиям все остальные.

Авария на Фукусиме, которая является второй по масштабу радиационной аварией в мире, привела к 573 смертям, но эта цифра отличается от количества смертей в Чернобыле тем, что это не последствия радиации, а смерти напрямую не связанные с инцидентом, а связанные, например, со стрессом эвакуации, из-за которого в основном пострадало пожилое население. От радиационного загрязнения по самым пессимистичным подсчетам погибнет до 1000 человек.

Конечно, нельзя делать вывод о серьезности аварии только на основании количества погибших, ведь здесь не учтены экономические последствия и число онкозаболеваний и всевозможных вредных мутаций. Эти заболевания, даже если не приводят к смерти, также являются последствиями ядерных аварий. Сейчас проводится исследований по воздействию малых доз радиации на организм. Если раньше склонялись к безвредности малых доз радиации (типа организм может до определенного уровня облучения самовосстанавливаться без последствий), то сейчас есть больше доказательств «беспорогового» воздействия радиации, т.е. даже самая малая доза наносит вред. Но однозначного ответа здесь пока нет.

А теперь, сравним эти происшествия с авариями на других типах электростанций.

Аварии на ГЭС или на солнечной станции не выбросят в атмосферу гигантское количество радиационных частиц, на избавление от которых уйдет очень много денег и сил, но вспомним наводнение Баньцяо. Крушение дамбы вызвало затопление ближайших поселений, количество смертей от инцидента + от вызванного голода и нищеты составило 80-240 тысяч смертей.

Но даже такие большие цифры меркнут по сравнению со смертями от «ископаемого топлива». Газы, выделяющиеся при его сгорании, попадают в атмосферу и в наши легкие, а это, в свою очередь, вызывает многие распространенные заболевания: рак легких, сердечные заболевания, острая инфекция нижних дыхательных путей, инсульт и подобное.

Рисунок 3. Подсчет количества смертей и парниковых газов в год на каждый тераватт в час выработанной энергии от разных видов энергетики

Так какой же способ самый лучший на сегодняшний день? Судя по графику, атомная энергетика — самый чистый источник энергии. Плюс АЭС построить можно где угодно, даже на подводной лодке, а выделенной энергии топлива из одного реактора хватит, чтобы заменить 3 миллиона солнечных панелей.

Атомная энергетика и ее проблемы

Что это такое? Основа энергетики — распад атомного ядра (в основном тяжелых ядер урана). Все изотопы урана радиоактивные, но чуть-чуть, из-за их огромного периода полураспада: у урана-235 и урана-238 0.7 млрд лет и 4.4 млрд лет соответственно. Почему используют именно уран? Все дело в его уникальной способности делиться при взаимодействии с нейтронами с небольшой кинетической энергии. Такие элементы называют делящимися. К этой группе относятся ядра с нечетным числом нейтронов (присоединяемый нейтрон — чётный): 233U, 235U, 239Pu. Реакция деления ядер экзотермическая. Это значит, что при ее протекании выделяется некоторое количество теплоты. В реакторе эта теплота служит источником энергии для нагрева воды.

Топливо для реактора изготавливается в виде таблеток, высотой и диаметром около сантиметра, из которых в дальнейшем собирают тепловыделяющий элемент (ТВЭЛ). В одном ТВЭЛе может помещаться несколько сотен топливных таблеток, длина его как правило 3.5-4 метра. Затем их собирают в тепловыделяющие сборки (ТВС). Это основной функциональный элемент АЭС: из них формируется активная зона реактора.

Рисунок 4. Схема и принцип работы реактора на примере реактора на быстрых нейтронах.

В одной ТВС в зависимости от типа реактора (об этом мы поговорим позже) находится от нескольких десятков до нескольких сотен (около 300 для современных реакторов типа ВВЭР) ТВЭЛов, а в активную зону обычно помещается от нескольких сотен до полутора тысяч ТВС. Получается, что весь реактор имеет несколько миллионов таблеток с топливом внутри, и это при том, что один грамм урана содержит в себе столько же энергии, сколько 3-4 тонны угля.

Для работы реактора его необходимо сначала запустить. Этот процесс немного отличается от работы реактора, когда он уже запущен. Изначально, когда ТВЭЛы погружаются в реактор, он подкритичен. Для количественной оценки того, как эффективно делятся ядра в реакторе, придумали понятие коэффициента размножения нейтронов — критичность. Физически это просто отношение количества выделенных нейтронов в момент деления ядер к количеству нейтронов, которые выделились в предыдущий момент распада ядер. Все просто: если коэффициент больше одного – идет цепная ядерная реакция с увеличением мощности реактора (ректор надкритичен), если равен 1 – количество делящихся ядер в каждый момент времени одинаково (реактор критичен), а если меньше 1 – идет уменьшение мощности реактора (реактор подкритичен). Для начала цепной реакции необходима пороговая масса урана, то есть достаточное количество спонтанно делящегося вещества. При выполнении этого условия реактор переходит в надкритическое состояние.

В ТВЭЛах происходит цепная реакция деления топлива. Один из ее видов: уран распадается на осколки деления (уран-235 распадается на барий-139 и криптон-95, например) плюс один или несколько нейтронов (и гамма излучение), которые в дальнейшем сталкиваются с другими атомами урана-235. Изначально уран находится в состоянии с некоторой энергией покоя, и для перехода в возбужденное состояние с последующим радиоактивным распадом требуется дополнительная энергия, с помощью которой возможно преодолеть энергетический барьер и разделиться. В нашем случае этой энергией является нейтрон (тепловой нейтрон), который, сталкиваясь с ядром, передает ему свою кинетическую энергию. Ядро делится и выделяет еще несколько нейтронов (в среднем одно ядро урана-235 при распаде выделяет 2,5 нейтрона, именно это и позволяет происходить лавинообразному увеличению количества делящихся атомов в реакторе), которые сталкиваются с другими ядрами и так далее.

Рисунок 5. Цепное деление ядра

Для протекания реакции из реактора вынимаются регулирующие стержни, которые изготовлены из поглотителя нейтронов. Поглощающие стержни изготовлены из материалов, которые имеют очень большую площадь захвата нейтронов. Это сплав, который способен “захватывать” и поглощать нейтроны на большом расстоянии от атома. Чаще всего изготовлен из бора, так как сплав бора со сталью не взаимодействует с топливом реактора и имеет большую площадь захвата нейтронов.

Рисунок 6. Захват нейтронов ураном. Барн — единица поперечного сечения площади захвата нейтронов атомом. Чем больше площадь захвата нейтронов элементом — тем больше нейтронов он поглощает.

Самое важное в работе АЭС — поддержание скорости цепной реакции. При ее выходе из-под контроля (отключения системы охлаждения, например) может произойти то же самое, что происходит внутри атомной бомбы при взрыве в самом его начале — неконтролируемая цепная реакция. Но волноваться из-за этого не стоит, все реакторы сейчас оборудованы настолько большим количеством защитных механизмов, что катастрофа очень маловероятна.

К сожалению, ядерное топливо — ресурс исчерпаемый, его на Земле намного меньше, чем угля или нефти, а создавать его мы не научились (тяжелые элементы появляются в экстремальных условиях в результате взрывов сверхновых). Да и отходы куда-то девать надо — их сейчас либо обогащают, либо, как маленькие дети прячут игрушки под кровать (закапывают под землю). Еще существуют “быстрые” реакторы (сейчас есть БН-600 и БН-800 в России) и так называемые реакторы-размножители. Они позволяют вовлечь в использование уран 238 и отходы АЭС, использующих уран 235. Таким образом ресурсная база атомной энергетики увеличивается с сотен и тысяч лет, до миллионов лет. С экономикой быстрых реакторов пока есть вопросы, но технически они уже давно реализуемы.

Атомную энергетику стоит рассматривать как временный и довольно неплохой вариант. Есть ли сейчас вариант лучше этого?

Да, оказывается вариант есть, и он намного лучше всего, что человечество научилось делать до этого. Имя ему — ядерный синтез.

Атомная энергетика наоборот

В 50-х годах советские и британские ученые придумали использовать не распад ядер (как на АЭС), а синтез. Распад ядер — тяжелые элементы делятся с выделением энергии, а синтез — легкие элементы “слипаются” с образованием более тяжелых, выделяя энергию.

При слиянии дейтерия (изотоп водорода, отличающийся наличием нейтрона) и трития (тоже изотоп водорода, у которого 2 нейтрона) получается гелий и нейтрон. Такая реакция даёт значительный выход энергии(17.6 МэВ). Для сравнения, если взять смесь дейтерия-трития и урана одинаковой массы, при синтезе энергии выделится в 3 раза больше.

Есть правда и незначительные недостатки: тритий в природе не встречается, нежелательная “наведенная” радиация зачастую бывает опасной.

Можно подумать, что в термоядерной энергетике все отлично: отходов не так много, расположить можно где угодно, выдает огромную энергию на единицу массы, но ведь что-то мешает пользоваться ей.

Для того, чтобы произвести слияние ядер, нужно чтобы положительно заряженные ядра атомов преодолели кулоновский барьер — силу электростатического отталкивания между ними. То есть расстояние между ядрами должно быть такое, чтобы сильное взаимодействие начало преобладать над кулоновскими силами (порядка одной стомиллиардной доли сантиметра).

Рисунок 7. Зависимость сил притяжения/отталкивания от расстояние между ядрами. На расстоянии порядка размеров ядра силы сильного ядерного взаимодействия начинают преобладать над кулоновскими и ядра сливаются.

Для этого нужно затратить огромную энергию. Есть 2 варианта как это реализовать: либо сильно сжать, либо сильно нагреть.

Внутри Солнца работает первый вариант: температура внутри ядра 15-16 млн Кельвинов, что, вообще говоря, не так много, но из-за массы, которая в 300 тыс раз больше массы Земли, плазма под высоким давлением удерживается гравитацией.

К сожалению, на Земле такую конструкцию реализовать затруднительно. Такого большого давления мы не создадим, поэтому остается только сильно нагреть.

Термоядерный синтез возможен при одновременном выполнении двух условий:

соблюдение критерия Лоусона. Критерий Лоусона показывает, будет ли реакция давать больше энергии, чем тратится.

скорость соударения ядер соответствует температуре плазмы, к этому мы и стремимся. В этом случае энергии хватит для преодоления электростатического отталкивания. Поэтому для управляемого термоядерного синтеза необходима высокотемпературная водородная плазма.

Следует пояснить, что понятие температуры здесь не то, что мы привыкли видеть. Температура — это мера средней кинетической энергии частиц. Из-за столкновений с большим импульсом возможно их слияние.

На самом деле, чтобы пошла самая простая реакция синтеза с изотопами водорода, нужна температура порядка миллиарда Кельвинов (водород — самый легкий элемент, а чем тяжелее элемент — тем большая нужна температура). Решение этой проблемы было найдено самой природой. Существует так называемый максвелловский хвост. Из-за максвелловского распределения, какие-то частицы будут двигаться быстрее, а какие-то медленнее, поэтому уже в районе 100 млн Кельвинов найдутся частицы, которые будут слипаться. Также есть еще туннельный эффект. Если кратко, то благодаря квантовым эффектам, даже если ядра имеют энергию немного меньше барьера, они смогут с большой вероятностью туннелировать сквозь него.

Рисунок 8. Распределение энергии частиц.

Вот мы и подошли к вопросу о том, почему же вокруг нет термоядерных реакторов. Просто потому что это очень горячо. Нужно все эти разлетающиеся изотопы как-то удержать, чтобы они ничего не касались, потому что такую температуру ни одно вещество не выдержит. Проблема не столько в том, чтобы разогреть до нужной температуры, сколько в том, чтобы эту температуру как-то удержать.

Варианты удержания плазмы

Начнем с самого простого способа удержания плазмы: не удерживать, а просто “выстрелить”. Такие системы называются импульсными. В них управляемый термоядерный синтез осуществляется путем кратковременного нагрева небольших мишеней, содержащих дейтерий и тритий сверхмощными лазерными лучами или пучками высокоэнергичных частиц .Такое облучение вызывает последовательность термоядерных микровзрывов.

Но этот вариант довольно плохо изучен по сравнению со вторым — магнитным удержанием.

Советские физики Тамм и Сахаров придумали магнитное удержание плазмы еще в 50-х годах. Они руководствовались тем, что плазма — ионизированное вещество, поэтому магнитным полем мы можем создать ловушку. Желательно, чтобы она была замкнутой, чтобы ионы могли бесконечно кружиться. Тут на помощь прикатился бублик(тор). Эту конструкцию обматывают электромагнитными катушками, получается тор с пружинкой поверх него — это не дает плазме ударяться о стенки. Также сверху и снизу устанавливают обкладки, которые позволяют сжимать/разжимать плазму и передвигать ее. Такое устройство принято называть токамак: ТОроидальная КАмера с МАгнитными Катушками. Для выработки электроэнергии вода циркулирует в стенах бублика, поглощает тепло и производит пар. Паровая турбина вырабатывает электричество. К сожалению, ничего эффективнее человечество еще не придумало.

В 50-м году в Курчатовском институте показали такой вариант. Так начался международный проект по созданию термоядерного реактора.

Стоит заметить, что токамак — не единственный способ удержания плазмы, есть вариант еще с закрученным тором — стелларатор. С такой конструкцией даже пытались проводить эксперименты: W7-X. Wendelstein 7-X — сложнейшая экспериментальная система. Цель экспериментов с такими установками — доказать, что управляемый термоядерный синтез способен давать энергию. Пока что некоторые ученые ставят это под сомнение. Но проблема в том, что форма для таких электромагнитных катушек очень сложная, а в 60-х годах, когда это придумали, не хватало мощности для расчетов.

Рисунок 9. Слева токамак, справа стелларатор. Серые кольца — магниты, желтым показана термоядерная камера.

Что такое ITER. Какие цели у проекта

ITER(International experimental Thermonuclear Reactor) — Экспериментальный международный термоядерный реактор . ITER относится к термоядерным реакторам типа «токамак».

История ITER берет начало в 80-х годах прошлого столетия. Многие страны объединились, так как решили, что ни одна страна не потянет постройку на своих плечах. Это самая дорогая экспериментальная установка в мире, в ITER до 2025 года планировали вложить почти 20 млрд евро, но учитывая постоянные переносы и новые проблемы, вполне вероятно, что сумма вырастет. Только в 2010 году разобрались со всеми бумажками и начали рыть котлован.

В токамаках возможно осуществить несколько типов реакций слияния. Тип реакции зависит от вида применяемого топлива.Токамак ITER с самого начала проектировался под DT-топливо (дейтерий — тритиевое). Два ядра дейтерия и трития сливаются с образованием ядра гелия и высокоэнергетического нейтрона.

Рисунок 10. ITER Токамак.

Грубо говоря, задача установки — продемонстрировать возможность коммерческого использования термояда, а для этого нужно, чтобы отношение выработанной энергии к затраченной составило хотя бы 10:1. Также целью является отработка разных решений по управлению и т.д., а дальнейшим шагом должно стать строительство установки — DEMO — следующая итерация ИТЕРа.

У ИТЕРа нет задачи построить станцию по выработке электричества для использования людьми. Это экспериментальная установка, которая покажет, что в принципе это возможно в реальности, а не на бумаге, ведь у физиков уже давно все сошлось, а сейчас это очень сложная инженерная задача.

На декабрь 2025-го запланирован пуск первой плазмы в реакторе, который продемонстрирует работоспособность. Планируется, что работать на термоядерном топливе установка начнет в июне 2035 года. До этого предстоит завершить еще несколько крупных этапов, которые приведут станцию в полностью рабочее состояние. На сайте ИТЕР есть рум тур по стройке.

Давайте представим, что все идет по плану и в 2025 году мы получаем первую плазму, ITER показывает, что коммерческое использование термояда выгодно, но что происходит дальше?

Все побегут строить токамаки и мы будем купаться в электричестве? Но ведь все не так просто, даже сам ITER будет очень сложно повторить.

Как говорится, термоядерная энергетика is a new black в мире энергии, но ей предстоит еще долгий путь, прежде чем мы начнем ее повсеместно использовать.

Энергетика будущего

Человечество проделало несколько больших шагов по освоению энергии. Сначала мы научились разводить костер, потом использовать уголь и нефть. Сегодня мы умеем разделять атомы и, возможно, в скором времени научимся их синтезировать. Каждый такой шаг связан с индустриальной революцией, которая характеризуется масштабом добычи энергии, доселе никому невиданным.

Если пофантазировать, логичным шагом дальнейшего развития человечества будет освоение новых территорий и ресурсов, только уже не на нашей планете, а в космосе(если человечество не уничтожит себя раньше). Для этого потребуется невообразимое количество энергии. К счастью, ответ на вопрос “где взять столько энергии?” находится прямо над головой (Солнце). Как мы уже говорили выше, человечество пока только на пути к созданию собственного солнца на Земле.

Если мы хотим освоить метод добычи солнечной энергии, нам нужно будет построить очень большую конструкцию. Например, хорошим вариантом будет сфера Дайсона. Она охватывает звезду, чтобы «захватить» ее энергию.

Существует много способов ее постройки, один из них — “рой сфер”, которые будут крутиться вокруг Солнца, собирать энергию и передавать ее в другое место. Такой способ дал бы людям неограниченный доступ к энергии. Но построить ее не так просто, есть 3 основные проблемы: материал, конструкция и энергозатраты. Кратко пройдем по каждой проблеме.

Для постройки сферы Дайсона потребуется столько материала, что придется разобрать целую планету или даже больше. Лучший кандидат на эту роль — Меркурий, так как он ближе всего расположен к Солнцу, а еще и богат металлом.

Чем проще и надежнее будет конструкция — тем лучше. Солнечные батареи не совсем то, что нужно(маленькое время жизни, дорого, и требуют починки). Проще и надежнее всего — гигантские зеркала, которые будут отражать солнечный свет на центральную станцию.

Однако даже если максимально эффективно использовать все земные ресурсы, нам не хватит энергии, чтобы организовать такую масштабную стройку. Это может быть возможно только в далеком будущем, когда люди смогут успешно осваивать хотя бы планеты солнечной системы. По мнению известного популяризатора науки Карла Сагана, наш уровень по шкале Кардашева равен примерно 0,72. Мы потребляем всего 0,17% от общего энергетического потенциала планеты. Шкала Кардашева — один из способов оценки уровня развития цивилизации по количеству используемой энергии. По ней у цивилизации есть 7 ступеней развития, а человечеству далеко даже до первого типа (цивилизация, которая использует всю энергию своей планеты). Однако это не значит, что нам нужно уничтожать планету для своих нужд. Есть множество способов извлечь энергию из всего, что есть во Вселенной.

Во всех аспектах ископаемое топливо является самым грязным, опасным и неэффективным, в то время как ядерные и современные возобновляемые источники энергии значительно безопаснее и чище, они могут помочь людям сделать шаг вперед и совершить следующую индустриальную революцию.

В заключение отметим: мы рассмотрели только самую верхушку айсберга термоядерной и ядерной энергетики, которые по многим параметрам являются самыми перспективными, однако, на данный момент не так важно перейти на них, как научиться эффективно использовать возобновляемые источники энергии и полностью отказаться от ископаемого топлива. Ведь Земля для нас — единственный дом, который не может бесконечно удовлетворять потребности людей. Даже сейчас постройка термоядерной станции несет за собой огромные потери ископаемых ресурсов, так как практически вся энергия на ее постройку будет добыта с помощью них. Нужно лишь научиться использовать ту энергию, которую Земля сможет восстановить по мере ее использования.

Самые большие на свете батарейки Как запасти действительно много энергии

Самые большие на свете батарейки

У альтернативной энергетики много преимуществ – относительная экологичность, условная бесплатность источников, стимулирование развития технологий. Однако есть у нее и врожденные слабые места, не преодолев которые нельзя рассчитывать на замещение энергетики традиционной. И одно из самых заметных – неравномерность генерации.

Тепловая электростанция выдает энергию ровно, прогнозируемо и управляемо. Зима или лето, ночь или день – знай кидай себе уголь в топку. Нужно побольше – кидай интенсивнее, спрос снизился – кидай реже. Ну да, дымит. Но работает же! Это, конечно, серьезное упрощение, но в общем и целом дела обстоят именно так – стабильная генерация ТЭС позволяет им балансировать электросети в том числе и для других источников. Когда солнце не освещает фотопанели, когда ветер не дует на ветряки, когда штилевое море не качает поплавки приливных станций, только старая добрая тепловая генерация позволяет людям дождаться дня/лета/ветра.

При этом когда с солнцем, ветром и волнами все хорошо – проблема обратная, альтернативная энергетика генерит много и дешево, но все это пропадает впустую, потому что пики генерации никак не хотят совпадать с пиками потребления. Просто как назло – солнце светит днем, а свет дома нужен ночью. И, разумеется, возникает логичный вопрос – а что, если лишнюю энергию запасти на пике генерации, а потратить – на пике потребления?

Это было бы идеально, но вот беда – запасать сколько-нибудь приличные объемы энергии очень сложно. Настенная батарейка PowerWall от Илона Маска пыталась решить эту проблему в масштабах одного домохозяйства – с большими или меньшим успехом, тут мнения экспертов расходятся. Но, к сожалению, это решение очень плохо масштабируется. Когда речь идет не о киловаттах, а о мегаваттах, найти подходящую батарейку не выходит.

Но это не значит, что люди ничего не придумали!

Бытовая химия

Аккумуляторы, с которыми мы сталкиваемся в быту, в подавляющем большинстве запасают энергию химически. Это вторичный химический источник тока многоразового действия. При заряде происходит одна реакция, при разряде – обратная. Это удобно, но много так не запасешь. Скажем, одни из наиболее емких бытовых аккумуляторов, на кобальте лития, имеют удельную плотность энергии 150–190 Втч/кг. Чтобы запасти дневную выработку довольно средненькой ТЭЦ (200 МВт) понадобится целая гора лития.

Рабочие эксперименты с химическим накоплением больших объемов проводились. Компания Tesla миллиардера Илона Маска установила в штате Южная Австралия системы сверхъемких аккумуляторов Powerpack на 100 МВтч, в начале 2016 года в Японии компания Митсубиси запустила в строй аккумуляторную станцию на 50 МВт/300 МВтч и так далее. Однако это осталось единичными решениями для узкого круга задач. В основном химическое накопление энергии для таких объемов не используется.

Химические аккумуляторные накопители твердого типа либо используются для балансировки сети, либо предназначены для работы в удаленных районах с небольшим числом потребителей.

Жидкая химия

Поскольку для промышленных объемных накопителей энергии размер не важен, то вместо дорогих и малоемких твердых батарей можно использовать огромные баки с жидкими электролитами. Это так называемые «проточные редокс-батареи» – тип гальванического элемента, в котором химическая энергия обеспечивается за счет двух химических компонентов, растворенных в жидкости, содержащейся в системе и разделенной мембраной.

Аккумуляторы приводятся в действие мощными насосами. Когда электролит прокачивается в одном направлении — на электродах аккумулятора вырабатывается электричество, а когда аккумулятор необходимо зарядить, – направление прокачки изменяется на противоположное

Преимущество проточных батарей – линейное масштабирование мощности и емкости (определяется объемом электролита), длительный срок службы (они не подвержены деградации, как твердые), более низкая общая стоимость владения. Недостатки – низкая энергоэффективность цикла (50–80%) по сравнению с литий-ионными батареями, а также высокая техническая сложность. Помимо этого, для электролита нужен ванадий — металл не самый дешевый.

Вода и гравитация

Самая старая, проверенная и надежная система накопления действительно больших объемов энергии – водно-гравитационная. Она старше «альтернативной энергетики» и использовалась для балансировки потребления в энергосистемах с классической генерацией – потому что та, хотя и более стабильная, чем «экологическая», тоже имеет свою инерционность и не любит пиков.

Устроена система просто – нужно два водоема с перепадом высот. Часто для этого использовали природные озера в горах или строили разновысотные водохранилища. Цикл аккумуляция/генерация осуществляется за счет пары насос-турбина. Когда энергии избыток, насосы качают воду из нижнего водоема в верхний. Когда дефицит – вода течет обратно, раскручивая гидротурбину, приводящую генератор, как в обычной ГЭС. Этот метод используется в энергетике больше ста лет и в силу своей простоты никогда не подводил.

Но не лишен он и недостатков. Строительство водяных накопителей требует много времени и стоит дорого, особенно при необходимости изменять высоту и создавать искусственные резервуары, а КПД процесса далек от 100% – теряется иногда до трети запасенного.

Тем не менее, в этом году в швейцарских Альпах была запущена гидроаккумулирующая электростанция Nant de Drance емкостью 20 ГВт/ч. (Сравните с тесловской!) Строители выкопали туннель длиной более 16 км, чтобы соединить водохранилища Emosson и Vieux Emosson, что заняло 14 лет и обошлось в $2,1 млрд.

Большая грелка

Если перекачивать воду хлопотно, то вместо гравитации можно задействовать температуру. Технология эта используется даже на бытовом уровне, для обогрева индивидуальных домов – обычно это большой бак с водой, который греют электричеством на ночном тарифе, а днем из него отбирают тепло для отопления помещений. Конструкция вполне масштабируемая до промышленных масштабов, вот только используют в этом случае не воду, с которой куча проблем: коррозия, утечки, замерзание, закипание, – а обычный песок.

Песка вокруг полно, он не портится и нагреть его можно почти до тысячи градусов. Поэтому песочные теплоаккумуляторы выходят гораздо компактнее водяных – больше тепловой энергии в том же объеме.

Первая в мире песчаная батарея промышленного масштаба уже функционирует в Финляндии. Башня-термос, в которой 100 т песка с температурой 500 °C. Емкость крошечная – 8 МВтч, зато никакого лития, срок хранения тепла – несколько месяцев и энергоэффективность составляет 99%.

Электролиз

Еще один интересный метод – в моменты избытка энергии пускаем ее на процесс электролиза воды, в результате которого выделяется водород. Водород легко запасать, а потом он может дать тепло, механическую энергию или напрямую электричество при окислении в топливной ячейке.

Минус технологии – сложность, небезопасность и небольшая мощность на существующем уровне технологий. В пилотном проекте такая установка работает, например, на железнодорожной станции в городе Кавасаки (Япония).

Механические накопители

Схема несложная – электроэнергия в период пика выработки запасается с помощью накачки газа или воды в специальные резервуары, поднятия на высоту грузов или сжатия пружины. В период нехватки электричества энергия высвобождается механическим путем за счет обратной подачи вещества, груза или ослабления пружины. Принцип простой, экологически чистый, промышленно масштабируемый и очень долговечный.

Наиболее перспективными сейчас выглядят системы сжатия газа – Compressed Air Energy Storage, CAES. Воздух сжимается и удерживается под давлением в специальной емкости большого объема. Действительно большого – обычно используются пещеры в скальном грунте, соляные пещеры, пористые породы, водоносные слои или нефте/газоносные слои.

Системы CAES становятся все более популярными, потому что по сравнению с обычными батареями они могут хранить энергию в течение более длительного периода времени и требуют меньше обслуживания.

Крупнейший и наиболее эффективный проект такого типа сейчас подготовили к коммерческой эксплуатации в Чжанцзякоу, городе в провинции Хэбэй на севере Китая. Он имеет емкость 132 Гвтч, что обеспечит 40 000 – 60 000 домохозяйств электроэнергией в периоды пикового потребления.

Роторные накопители энергии (Flywheel Energy Storage) – раскручиваем лишней энергией супермаховик и оставляем его крутиться. Понадобилось – подключили к нему генератор и забрали кинетическую энергию обратно в электрическую.

Технически накопление энергии производится с помощью тщательно отбалансированных дисков. Они могут вращаться со скоростью до 50 000 оборотов в минуту почти без трения титановой оси на магнитном подшипнике. Система соединяется с моторгенератором, конвертирующем энергию вращающейся массы в электрическую и обратно.

Плюсы – высокая реактивность, можно запасти и отдать быстро много энергии. Минусы – очень сложно и небольшая емкость.

В июле 2011 года компания Beacon Power провела презентацию первого роторного накопителя мощностью 20 МВт в Стефентауне (Stephentown), штат Нью Йорк.

Сверхпроводники

Сверхпроводимость? Нет, это не фантастика. Сверхпроводниковые магнитные накопители (Superconducting Magnetic Energy Storage, SMES) запасают энергию в магнитном поле, создаваемом постоянным током, протекающим по катушке из сверхпроводящего материала, помещенного в криогенную среду. SMES являются накопителями с очень высоким КПД (более 95%) и поставляют в сеть как активную, так и реактивную мощность, которые доступны практически мгновенно.

Это не мейнстримная технология – первый SMES был построен в США в энергосистеме Bonneville Power Authority в еще 1980-х годах. Накопитель имел мощность 20 МВт и емкость 2,4 МВт/ч.

Выводы

Само количество существующих технологий говорит о том, что все они несовершенны, и человечество все еще находится в поиске универсального промышленного аккумулятора, который был бы недорогим, надежным, масштабируемым, управляемым, легко интегрируемым в энергосети.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *