Энкодер что это такое
Перейти к содержимому

Энкодер что это такое

  • автор:

Энкодер

Датчик угла или преобразователь угол-код, также называемый энкодер — устройство, предназначенное для преобразования угла поворота вращающегося объекта (вала) в электрические сигналы, позволяющие определить угол его поворота.

Широко применяются в промышленности.

Энкодеры подразделяются на инкрементальные и абсолютные, которые могут достигать очень высокого разрешения. Энкодеры могут быть как оптические, резисторные, так и магнитные и могут работать через шинные интерфейсы.

Преобразователи угол-код практически полностью вытеснили применение сельсинов.

Содержание

Инкрементальные энкодеры

Инкрементальные энкодеры предназначены для определения угла поворота вращающихся объектов. Они генерируют последовательный импульсный цифровой код, содержащий информацию относительно угла поворота объекта. Если вал останавливается, то останавливается и передача импульсов. Основным рабочим параметром датчика является количество импульсов за один оборот. Мгновенную величину угла поворота объекта определяют посредством подсчёта импульсов от старта. Для вычисления угловой скорости объекта процессор в тахометре выполняет дифференцирование количества импульсов во времени, таким образом показывая сразу величину скорости, то есть число оборотов в минуту. Выходной сигнал имеет два канала, в которых идентичные последовательности импульсов сдвинуты на 90° относительно друг друга (парафазные импульсы), что позволяет определять направление вращения. Имеется также цифровой выход нулевой метки, который позволяет всегда рассчитать абсолютное положение вала.

Абсолютные энкодеры

Абсолютные энкодеры, как оптические, так и магнитные имеют своей основной рабочей характеристикой число шагов, то есть уникальных кодов на оборот и количество таких оборотов, при этом не требуется первичной установки и инициализации датчика. Поэтому абсолютные энкодеры не теряют свою позицию при исчезновении напряжения.

Наиболее распространённые типы выходов сигнала — это код Грея, параллельный код, интерфейсы Profibus-DP, DeviceNet,

Оптические энкодеры

Оптические энкодеры имеют жёстко и закреплённый соосно валу стеклянный диск с прецизионной оптической шкалой. При вращении объекта оптопара считывает информацию, а электроника преобразовывает её в последовательность дискретных электрических импульсов. Абсолютные оптические энкодеры — это датчики угла поворота, где каждому положению вала соответствует уникальный цифровой выходной код, который наряду с числом оборотов является основным рабочим параметром датчика. Абсолютные оптические энкодеры, так же как и инкрементальные энкодеры, считывают и фиксируют параметры вращения оптического диска.

Магнитные энкодеры

Магнитные энкодеры с высокой точностью регистрируют прохождение магнитных полюсов вращающегося магнитного элемента непосредственно вблизи чувствительного элемента, преобразуя эти данные в соответствующий цифровой код.

Механические и оптические энкодеры с последовательным выходом

Содержат диск из диэлектрика или стекла с нанесёнными выпуклыми, проводящими или непрозрачными участками. Считывание абсолютного угла поворота диска производится линейкой переключателей или контактов в случае механической схемы и линейкой оптронов в случае оптической. Выходные сигналы представляют собой код Грея, позволяющий избавиться от неоднозначности интерпретации сигнала.

Крепление

Представленные датчики соединяются с вращающимся объектом посредством нормального или полого вала, последний может быть как сквозным, так и несквозным (тупиковым). Вал вращающегося объекта и вал энкодера соединяют механически при помощи гибкой или жёсткой соединительной муфты. В качестве альтернативы энкодер монтируют непосредственно на вал объекта, если энкодер имеет полый вал. В первом случае вероятная несоосность и допустимые биения компенсируются деформацией гибкой втулки. Во втором возможна фиксация энкодера посредством штифта.

Подключение энкодера к Arduino. GyverEncoder v4.9

Энкодер (от англ. encode – преобразовывать) – это устройство для преобразования угловых положений или линейных перемещений в цифровой сигнал, т.е. энкодер – это датчик угла или линейного перемещения, соответственно есть крутильные и линейные энкодеры. Принцип работы энкодера заключается в преобразовании механического перемещения в электрические сигналы, у обычного инкрементального энкодера, который мы будем рассматривать, этот сигнал представляет собой два квадратных сигнала (при равномерном вращении), сдвинутых по фазе на 90 градусов.

Самым хорошим модулем с энкодером на Aliexpress является вот такой, на круглой плате:

ПОДКЛЮЧЕНИЕ

Подключается модуль энкодера очень просто: питание на питание (GND и VCC), логические пины CLK, DT (тактовые выводы энкодера) и SW (вывод кнопки) на любые пины Arduino (D или A). У круглых модулей выводы энкодера подписаны как S1 и S2, а вывод кнопки как Key, подключаются точно так же. От порядка подключения тактовых выводов энкодера зависит “направление” его работы, но это можно поправить в программе.

У модулей энкодера тактовые выводы подтянуты к питанию и дают низкий сигнал при срабатывании, также на них стоят RC цепи для гашения дребезга. Вывод кнопки никуда не подтянут! Промышленный энкодер подключается точно так же, чёрный и красный провода у него питание, остальные – тактовые выходы.

У модулей энкодеров тактовые выходы и кнопка подтянуты к питанию, у круглого модуля также стоят RC цепи для аппаратного подавления дребезга контактов, у KY-40 (прямоугольный) распаяна только подтяжка. Если нужно подключить “голый” энкодер к плате – в целом можно подключить напрямую без обвязки, как на схеме ниже, моя библиотека отработает и подтяжку средствами микроконтроллера (INPUT_PULLUP), и программный антидребезг. Но рекомендуется всё-таки делать RC цепи для кнопки и для тактовых выходов энкодера.

Сравнение различных типов энкодеров

Энкодеры широко используются в промышленности для управления движением, контроля положения и скорости электродвигателей. Полученная информация может использоваться электроникой управления движением для определения скорости вращения электродвигателя и рабочего органа, их местоположения, а также для выполнения корректировок в случае отклонения от заданных параметров.

Вот сравнение шести наиболее часто используемых типов энкодеров.

Оптические энкодеры

Оптические энкодеры используют наличие или отсутствие света для определения положения вала. Говоря простым языком — есть диск с прорезями в нем, который вращается вместе с валом. Когда диск проходит между источником света и фотоэлектрическим датчиком, отверстия регулярно пропускают свет к датчику или блокируют свет. Самые точные оптические энкодеры используют диски из стекла с черными линиями, чтобы блокировать свет, созданный точными методами фотолитографии. В датчиках положения с низким разрешением используются металлические диски со штампованными или протравленными отверстиями.

Оптический энкодер принцип работы картинка

Стандартные оптические энкодеры имеют два или более фотодатчиков, смещенных на шаг 1/2 слота, что увеличивает разрешение с помощью технологии, называемой «квадратурное декодирование», которая встроена в большинство микроконтроллеров. Квадратура также позволяет устройству определять направление вращения вала. Квадратурное декодирование не добавляет задержки и обычно включает цифровой фильтр от электрических помех.

Разрешение энкодера обычно указывается изготовителем в строках на оборот или в ppr (импульсов на оборот). Это разрешение необработанных сигналов A и B, которые подаются в квадратурный декодер для определения количества импульсов / оборотов, а количество импульсов / оборотов такое же, как 4X линий / оборот.

На этом графике показана ошибка позиционирования обычного оптического энкодера

Оптические энкодеры обычно имеют разрешение от 128 до 20000 импульсов / оборот. Некоторые улучшенные модели имеют более высокое разрешение. Средняя точность составляет ± 0,1 градуса.

Когда энкодеры любого типа используются в качестве устройств обратной связи в электроприводах на основе шагового двигателя, разрешение является важным, поскольку большое число полюсов шагового двигателя приводит к короткому электрическому циклу. Например, шаговый двигатель на 1,8 град. имеет 50 электрических циклов на один механический оборот, а разница между полным крутящим моментом и отсутствием крутящего момента составляет 1,8 градуса. 4 000 импульсов / оборот обеспечивает 20 дискретных отсчетов свыше 1,8 град., которого достаточно, чтобы сделать возможным обнаружение сваливания, предотвращение сваливания и поддержания текущего положения. Для сервопривода в режиме реального времени 20 000 импульсов на оборот — гораздо лучший выбор.

При применении к трехфазным бесколлекторным (бесщеточным) двигателям датчики часто включают в себя три дополнительных коммутационных сигнала (названных U, V и W), которые сообщают драйверу, когда следует переключать ток в обмотках статора.

На этой временной диаграмме для энкодера с сервомеханическими дорожками показаны сигналы энкодера ABZ и UVW для управления и коммутации 4-полюсного 3-фазного серводвигателя

Оптические энкодеры выдают мгновенный сигнал без задержки, поэтому вал электрической машины реально находится там, где сигнализирует датчик положения. Время задержки важно при использовании датчика для измерения скорости и для сервоуправления в реальном времени.

Магнитные энкодеры

Элементы магнитного энкодера включают 2-полюсный магнит и ИС, содержащую устройства на эффекте Холла и схемы обработки

Магнитные энкодеры стоят намного дешевле оптических и более компактны. Большинство из них используют аналоговые устройства на основе эффекта Холла, установленные на печатной плате. Датчики Холла приводятся в действие двухполюсным магнитом, установленным на конце вала. Датчики Холла выдают два сигнала переменного тока в противофазе с одним циклом на оборот вала. Эти сигналы интерполируются для создания 65 536 отсчетов на оборот. Однако эта интерполяция подвержена множеству ошибок, таких как электрические шумы в схемах, несовершенное намагничивание, биение вала, а также радиальное и осевое смещение магнита. Большинство магнитных энкодеров включают различные способы калибровки для компенсации как можно большего количества ошибок.

Разрешение и точность магнитных энкодеров сравнительная таблица

Поскольку магнитные энкодеры имеют один цикл на оборот вала, они, по сути, измеряют абсолютное положение в пределах одного оборота вала.

Магнитным энкодерам всегда нужно время для интерполяции сигналов. Ранние магнитные энкодеры имели переменную (недетерминированную) задержку преобразования, что делало их непригодными для отслеживания скорости и положения в реальном времени на машинах с большим числом полюсов, таких как шаговые двигатели. Новые, более современные модели, имеют предсказуемые задержки преобразования. Зная это, центральный процессор может автоматически корректировать показания положения и скорости для компенсации задержки.

Сравнение оптических и магнитных энкодеров

Этот график показывает точность позиционирования магнитного энкодера на эффекте Холла

Первый энкодер — это широко используемая ранняя 12-битная модель, которая зарекомендовала себя как надежная, недорогая и достаточно точная. Он включает квадратурный интерфейс ABZ, обеспечивающий 4096 импульсов на оборот, что упрощает работу с модулями интерфейса квадратурного энкодера (QEI), которые используются в микроконтроллерах и процессорах цифровых сигналов.

12-битный энкодер был сочтен неподходящим для некоторых приложений, потому что его низкое разрешение не дает достаточно информации для правильного регулирования скорости на низких скоростях.

Этот график показывает точность позиционирования 16-битного магниторезистивного энкодера

Второй — 16-битный магнитный энкодер, использующий датчики Холла. Разрешение намного выше, чем у 12-битной модели (65 536 импульсов на оборот против 4096), но ее точность заметно хуже. Это связано с несколькими факторами. Во-первых, методика калибровки производителя не дает достаточно малой погрешности. Во-вторых, его интерполяция сигналов эффекта Холла по своей природе неточна. И в-третьих, отношение сигнал / шум заставляет счетчик изменяться по крайней мере на два бита, даже когда он не движется, что может создавать дизеринг и производный шум в сервоконтуре. При оценке такого типа датчика важно учитывать разрешение и точность. Никогда не основывайтесь на гипотезе — чем выше разрешение, тем выше точность.

Этот график показывает точность позиционирования магниторезистивного энкодера

В третьем магнитном энкодере используется магниторезистивная технология, которая по своей природе более точна и менее чувствительна к внешним воздействиям, чем модели с эффектом Холла. Внешние магнитные поля, в том числе поля самого двигателя, могут влиять на работу магнитных энкодеров.

Данный тип датчика предлагает выбор интерфейса ABZ или SPI (высокоскоростной синхронный последовательный). Интерфейс SPI является обычным для DSP и микроконтроллеров и предпочтительнее ABZ. Но использование SPI предотвращает отправку квадратурного сигнала ABZ на другое устройство (например, контроллер движения), поскольку два интерфейса используют одни и те же выводы интегральной микросхемы.

Емкостные энкодеры

Емкостной энкодер

Емкостные энкодеры измеряют положение, отслеживая изменение емкости в цепи при вращении вала двигателя. Они невосприимчивы к внешним магнитным полям, а также к пыли и мусору. Емкостные энкодеры имеют разрешение до 16 384 импульсов / оборот (14 бит) и точность ±0,2 градуса.

Емкостные энкодеры выдают стандартный квадратурный сигнал AB, подходящий для использования в реальном времени с большинством микроконтроллеров и большинством стандартных драйверов, которые включают опцию обратной связи энкодера.

Точность позиционирования емкостного энкодера

Емкостные энкодеры более устойчивы к электромагнитным помехам, чем магнитные энкодеры, и допускают большее загрязнение, чем оптические.

Многооборотные энкодеры

Многооборотные энкодеры полезны для отслеживания положения вала при выключенном контроллере или электроприводе. Например, если предприятие или технические специалисты не хотят возвращать систему в исходное состояние при каждом включении, необходимы абсолютные многооборотные энкодеры. (Если необходимо отслеживать положение только при включенном драйвере, драйвер отслеживает положение, и абсолютный многооборотный энкодер не нужен.)

Есть три распространенных типа:

Многооборотные энкодеры с питанием от батареи используют батарею, чтобы поддерживать в рабочем состоянии необходимые электрические схемы во время отключения питания для отслеживания положение энкодера через несколько оборотов. Обратной стороной является то, что информация о местоположении будет потеряна, когда батарея разрядится. Резервный аккумулятор может значительно увеличить габариты датчика положения.

Многооборотный абсолютный энкодер с редуктором

Энкодеры с редуктором используют вторичный энкодер, который перемещается на один или несколько отсчетов каждый раз, когда первичный энкодер совершает один оборот. Энкодеры с редуктором не требуют батареи, но являются сложными и дорогостоящими, а шестерни могут со временем изнашиваться.

Энкодеры с накоплением энергии Wiegand используют эффект Виганда, чтобы генерировать электрический импульс каждый раз, когда датчик завершает оборот. Эта энергия постоянна независимо от того, насколько медленно вал вращается, когда он проходит магнитный переход, поэтому этот импульс можно надежно использовать для питания небольшой цепи и подсчета оборотов.

Многооборотный абсолютный энкодер с эффектом Виганда внутри двигателя

В датчиках положения на основе эффекта Виганда используется первичный магнитный энкодер, обеспечивающий 131072 отсчета на оборот (также называемый 17-битным, потому что 217 = 131 072). Счетчик оборотов — 16 бит, поэтому он может отслеживать 216 = 65 536 оборотов вала. Точность ± 0,1 град.

На этом графике показана точность позиционирования многооборотного абсолютного энкодера Wiegand внутри встроенного двигателя

Интерфейс для энкодеров Weigand часто BISS-C. Некоторые микроконтроллеры имеют собственный интерфейс BISS-C, поэтому для преобразования сигнала используется внешнее устройство FPGA.

Энкодеры широко используются в приложениях управления движением с обратной связью. Выбор лучшего датчика положения для вашего приложения требует опыта, который часто можно найти у поставщиков.

Сравнительная таблица энкодеров

Эффект Виганда

Эффект Виганда — это нелинейный магнитный эффект, названный в честь его первооткрывателя Джона Р. Виганда. Данное явление происходит в специально отожженной и закаленной проволоке, называемой проволокой Виганда.

Проволока Виганда изготавливается из низкоуглеродистого викаллоя, ферромагнитного сплава кобальта, железа и ванадия. Вначале проволока отжигается. Она притягивается к магнитам, и силовые линии магнитного поля «втягиваются» в провод. Но проволока сохраняет лишь очень небольшое остаточное магнитное поле, когда внешнее поле снимается.

Затем проволоку скручивают и раскручивают для холодной обработки внешней оболочки, пока сердечник остается мягким. Затем проволока выдерживается. Это делает магнитную коэрцитивную силу внешней оболочки намного выше, чем у внутреннего сердечника. Высокая коэрцитивность оболочки позволяет ей сохранять внешнее магнитное поле, даже когда первоначальный источник поля удален.

Теперь на проводе будет наблюдаться большой магнитный гистерезис: если к проводу поднести магнит, внешняя оболочка с высокой коэрцитивной силой удерживает магнитное поле от внутреннего мягкого сердечника. Но если магнитное поле превышает заданный порог, весь провод — как внешняя оболочка, так и внутренний сердечник — быстро меняет полярность намагничивания. Это переключение (эффект Виганда) происходит за несколько микросекунд.

Инкрементальный угловой энкодер: принцип работы, области применения

В номенклатуру энкодеров, выпускаемых компанией Bourns, входят изделия, изготовленные по трем существующим технологиям: контактные механические (для бытовых применений, а также для неответственных лабораторных и промышленных приложений), бесконтактные оптические (для аудиотехники, прецизионной измерительной, авиационной и медицинской техники, ответственных промышленных применений), бесконтактные магнитные (для сервоприводов, робототехники и точных станков).

Энкодеры – электромеханические устройства, позволяющие преобразовывать характеристики механического движения в удобную для обработки форму электрических сигналов. Они используются для определения таких параметров как угловое положение, направление, скорость и частота вращения.

Рис. 1. Номенклатура энкодеров Bourns

Области применения энкодеров обширны: от промышленных систем до медицинских приборов. Каждое конкретное приложение выдвигает вполне определенные требования к используемым энкодерам. Компания Bourns выпускает широкий спектр энкодеров с различными характеристиками, которые отвечают самым взыскательным запросам (рисунок 1):

  • контактные механические, бесконтактные оптические, бесконтактные магнитные;
  • квадратурные, с выходами типа «направление/шаг», абсолютные цифровые, абсолютные с ШИМ-выходом;
  • со сроком службы до сотен миллионов оборотов;
  • с разрешением до 1024 состояний на оборот;
  • с максимальной частотой до 10 000 оборотов в секунду;
  • с уровнем пыле- и влагозащищенности до IP65;
  • для создания взаимодействия «пользователь-машина» (HM Interface) и «машина-машина» (MMI);
  • для монтажа в отверстия, для поверхностного монтажа, монтажа на блок с дополнительным гибким кабелем.

Наиболее популярными сериями поворотных энкодеров производства компании Bourns являются PEC11, PEC12, PEC16, PEL12, ECW, EAW, EPS, EMS22, EM14, EN (рисунок 2).

Рис. 2. Внешний вид наиболее популярных серий энкодеров Bourns

Достоинства и недостатки энкодеров в значительной степени зависят от принципа их действия. В общем случае энкодеры делят на два типа: механические контактные и бесконтактные. Бесконтактные бывают двух видов: оптические и магнитные.

Компания Bourns производит энкодеры всех трех типов:

  • механические контактные: PEC11, PEC12, PEC16, PEL12, ECW, EAW, EPS;
  • бесконтактные оптические: EM14, ;
  • бесконтактные магнитные: EMS22.

Рассмотрим коротко принцип действия каждого из них.

Механические контактные энкодеры по принципу функционирования напоминают галетные переключатели. Основными составными частями таких энкодеров являются кодирующий элемент и скользящие контакты.

Кодирующий элемент представляет собой общий контакт сложной формы. При повороте вала энкодера скользящие контакты перемещаются, периодически замыкаясь на кодирующий элемент (общий контакт).

Контактные квадратурные энкодеры имеют пару скользящих контактов (A и B). Они выполнены таким образом, что диаграммы их замыкания на кодирующий элемент оказываются сдвинутыми на 90° (рисунок 3). По порядку следования сигналов определяется направление вращения. По числу импульсов можно судить о частоте оборотов.

Рис. 3. Диаграммы сигналов квадратурного энкодера

Квадратурный энкодер может быть достаточно просто реализован с помощью оптических схем.

Бесконтактные оптические энкодеры. Конструкция приборов данного типа подразумевает использование нескольких основных элементов (рисунок 4): источников света, кодирующего диска, фотоприемников.

Рис. 4. Структура оптического энкодера

Кодовый диск имеет просветы (окна), через которые может проникать световой поток, создаваемый источниками света (ИК-светодиодами). Если свет прошел через окно на диске, то он фиксируется фотоприемником. Если свет не попадает в окно – то он отражается от диска и не фиксируется приемником.

При вращении вала световой поток периодически прерывается диском и формирует переменный выходной сигнал приемника. Частота сигнала пропорциональна частоте вращения вала.

В оптических энкодерах производства Bourns фотоприемники входят в состав специальной интегральной схемы ASIC (Application-specific integrated circuit). Эта ИС преобразует сигнал приемников в электрические выходные сигналы (рисунок 4).

В случае квадратурного энкодера формируются два сигнала, сдвинутых на 90°.

Бесконтактные магнитные энкодеры. Приборы этого типа используют эффект Холла, который заключается в образовании разности потенциалов на поверхности проводящего материала при протекании через него тока при наличии внешнего магнитного поля. Этот эффект был открыт Эдвином Холлом в 1879 году. Рассмотрим его более подробно.

Как известно, на электрический заряд, движущийся в магнитном поле, действует сила Лоренца, смещающая заряд в направлении, перпендикулярном направлению тока (рисунок 5).

Рис. 5. Принцип действия магнитных энкодеров

Если поместить в магнитное поле проводящую или полупроводниковую пластину и пропустить через нее ток, то под действием силы Лоренца электроны начнут смещаться и скапливаться на одной из поверхностей пластины. Дырки будут скапливаться на противоположной поверхности. Возникнет разность потенциалов.

В энкодерах вращение вала приводит к изменению магнитного поля и соответствующему изменению напряжения датчика Холла. При постоянном вращении возникает синусоидальное напряжение. Электронная схема усиливает и преобразует этот сигнал в удобную для обработки форму. На базе датчиков Холла строят инкрементальные абсолютные ШИМ-энкодеры.

Использование того или иного принципа функционирования во многом определяет значения эксплуатационных характеристик энкодеров.

Что такое энкодер?

Энкодер – это электронный датчик, который механически крепится на какой-либо вращающейся детали. Обычно корпус энкодера остается неподвижным, а вращается только его вал. Это позволяет с необходимой точностью измерять разные параметры :

  • скорость вращения,
  • расстояние (длину),
  • направление вращения,
  • угловое положение по отношению к нулевой метке.

Энкодер является самым распространенным «измерительным инструментом» в современном промышленном оборудовании. Фактически энкодер является датчиком обратной связи, на выходе которого цифровой сигнал меняется в зависимости от его вращения или от угла его поворота. Этот сигнал обрабатывается в счетчике или контроллере, который выдает команды на устройство индикации или привод.

Этикетка инкрементного энкодера Sick, установленного на валу двигателя постоянного тока. Основной параметр – 1024 импульса на оборот

Энкодеру найдено множество применений, учитывая возможности последующей обработки его сигнала. Например – измерение погонной длины какого-либо материала, измерение угла открытия/закрытия задвижки, точное позиционирование деталей при перемещении и обработке. Конкретные примеры будут ниже.

Энкодеры, о которых идёт речь в статье, в некоторых источниках называются датчиками углового перемещения, датчиками угла поворота, и даже “N-кодером”.

А вообще энкодер – это любое устройство, которое преобразовывает или декодирует какой-то сигнал или информацию.

Основные параметры

Главный параметр любого энкодера – разрешение, то есть количество импульсов (для абсолютного преобразователя – разрядность, или количество бит) на один оборот. Довольно часто используются преобразователи с разрешением 1024 импульса на оборот.

  • напряжение питания – от 5 до 24 В
  • тип вала – сплошной, полый, без вала (сквозное отверстие)
  • диаметр вала или отверстия
  • тип выхода – как правило, транзисторный выход с открытым коллектором
  • также учитываются размер корпуса, тип крепления и степень защиты

Также учитываются размер корпуса, тип крепления и степень защиты.

Принципы работы и устройство энкодеров

Существует два вида энкодеров по конструкции и виду выходного сигнала – инкрементальный (инкрементный) и абсолютный.

Инкрементальный энкодер устроен проще сравнению с абсолютным, и используется в большинстве случаев. Такой энкодер можно представить как диск с прорезями, который просвечивается оптическим датчиком. При вращении этого диска датчик будет активироваться или деактивироваться зависимости от своего положения над прорезью. В результате на выходе энкодера формируется последовательность дискретных импульсов, частота которых зависит от разрешения энкодера и его частоты вращения.

Типичный пример в цифрах – одному полному обороту энкодера соответствует 1000 дискретных изменений уровня сигнала, которые говорят об его угловом положении. В инструкции к такому энкодеру будет написано: “Разрешение – 1000 импульсов на оборот”. В более совершенных моделях на один оборот приходится 2000, 4000 и более импульсов. Бывают и программируемые энкодеры, разрешение которых пользователь может менять в очень широких пределах – например, от 1 до 65536 импульсов на оборот.

Например, если энкодер закреплен на валу асинхронного двигателя, который вращается с частотой 1500 оборотов в минуту, то при разрешении энкодера 1000 импульсов на оборот частота выходных импульсов будет равна 25 кГц.

Разрешение и максимальная частота вращения обратнозависимы – ведь не может же частота выходных импульсов исчисляться гигагерцами. Обычно выходная частота ограничена значением около 500 кГц. Да и не всякий контроллер “скушает” такую частоту. Делаем вывод: энкодер с разрешением 1000 имп/оборот (наиболее распространенный) не может крутиться с частотой выше 500 Гц или 30000 об/мин. Но такие скорости в механике я лично не встречал. Делаем второй вывод: высокое разрешение не всегда хорошо.

Пример, поясняющий работу энкодера:

Конструкция, поясняющая работу оптического энкодера

На фото – не энкодер, но данная конструкция в первом приближении прекрасно иллюстрирует работу и устройство инкрементального оптического энкодера. Про щелевой оптический датчик я писал в статье про оптические датчики, там подробнее.

Бич подобных конструкций – при механической поломке, связанной со смещением диска (или другого активатора), датчик легко ломается… В энкодере такого не может быть – там всё надёжно закреплено и защищено.

Основной минус инкрементального энкодера – необходимость непрерывной обработки его выходного сигнала. Кроме того, чтобы узнать положение инкрементального энкодера после подачи на него питания, необходимо провести инициализацию для поиска нуль-метки (что это такое – расскажу позже) либо для поиска нулевого положения механизма.

Абсолютный энкодер имеет более сложное устройство, но он позволяет определить угол поворота в любой момент времени, даже в неподвижном состоянии механизма сразу после включения питания. Говоря простыми словами, выходной сигнал у него – это параллельный код (например, 8-разрядный, имеющий 256 значений), который соответствует углу поворота. Соответствующую конфигурацию имеют и прорези в диске энкодера.

Абсолютные энкодеры работают в сложном оборудовании – там, где в любой момент времени (в том числе, в момент подачи питания) нужно знать точное положение объекта. Но сейчас, с появлением дешевых контроллеров с энергонезависимой памятью, в 99% используются инкрементальные энкодеры. Тем более учитывая, что их цена в несколько раз ниже, чем у абсолютных. Да и обрабатывать последовательные импульсы гораздо проще, чем параллельный код.

Использовать абсолютный энкодер для определения скорости вращения – всё равно, что использовать мощный настольный компьютер только для прослушивания музыки в ВК.

Бывают энкодеры не оптического принципа работы. Но я про них ничего рассказывать не буду, поскольку не имел с ними дела..

Типы приборов

Устройства бывают нескольких типов. Типы энкодеров: инкрементальные и абсолютные, оптические и механические. Далее будет рассмотрено, что такое энкодер инкрементального типа, а затем обозрены другие типы.

Инкрементальные энкодеры

Они распространены больше всего. В инкрементальном варианте вращательное движение вала преобразовывается в электрические импульсы. Его конструкция состоит из диска с прорезями и оптических датчиков.

Конструкция датчиков поворота данного типа, не позволяет им сообщать свое абсолютное состояние, а только величину изменения положения. Простой образец инкрементального устройства — шайба регулировки громкости автомобильной магнитолы.

схема

Этот вид работает следующим образом. У него есть начальная нуль-метка, или выход Z, и два дополнительных выхода — A и B. Датчик создает две линии сигналов со смещенными на четверть фазы импульсами относительно друг друга. Разница импульсов указывает на направление вращения, а их количество — на угол поворота.

Инкрементальные энкодеры

Разновидность инкрементальных энкодеров — сдвоенные, или квадратурные. Они состоят из двух датчиков, которые срабатывают со смещением в полшага. Квадратурные считают количество импульсов и учитывают направление.

У инкрементальных два главных минуса. Во-первых, нужно постоянно обрабатывать и анализировать сигнал, для чего используют контроллер и специальную программу. Во-вторых, они требуют синхронизации с нулевой меткой после включения. Для этого требуется инициализация для поиска выхода Z.

Абсолютные энкодеры

Датчики такого типа устроены более сложно. Но они позволяют определить величину угла поворота сразу после включения, не требуя синхронизации с нулевой меткой.

В основе конструкции поворотный круг, разделенный на одинаковые по размеру пронумерованные секторы. После включения устройства определяется номер сектора, на котором оно находится. Такое решение позволяет сразу зафиксировать положение, угол и направление вращения.

схема

Принцип работы абсолютного энкодера основан на использовании кода Грея для определения текущего положения и других параметров. В них не требуется синхронизация с нулевым значением.

Единственный существенный недостаток этого типа угловых датчиков — необходимость все время переводить код Грея в двоичный код для регистрации положения датчика.

Многооборотные датчики поворота

Абсолютные энкодеры могут быть однооборотными и многооборотными.

Однооборотные показывают абсолютное значение после одного оборота. После этого код возвращается к начальному значению. Такие датчики используют в основном для измерения угла поворота.

Если нужно измерять обороты в системах с линейным перемещением, используют многооборотные энкодеры. В них есть дополнительный передаточный механизм, благодаря чему они регистрируют, помимо угла поворота, количество оборотов.

Оптические энкодеры

Диск оптического энкодера изготавливают из стекла. Отличие этого типа угловых датчиков, в наличии оптического растора, перемещающегося при вращении вала. При этом он создает поток света, который регистрирует фотодатчик.

схема

Каждому положению энкодера соответствует определенный цифровой код, который вместе с количеством оборотов составляет единицу измерения устройства.

Оптические угловые датчики бывают фотоэлектрическими и магнитными.

В основе работающих датчиков лежит магнитный эффект Холла. Их точность и разрешение ниже, однако, и конструкция проще. Они лучше переносят сложные условия работы и занимают меньше места.

Фотоэлектрические датчики основаны на том же принципе. В них свет преобразуется в электрические сигналы.

Механические энкодеры

Также называются аналоговыми. Их диск изготавливают из диэлектрика и наносят на него выпуклые или непрозрачные области. Набор контактов и переключателей, позволяет вычислить значение абсолютного угла. Механические энкодеры также используют код Грея.

Один из недостатков этих энкодеров в том, что со временем контакты разбалтываются. В результате сигнал искажается, и прибор выдает неточные значения. А это сказывается на общей работоспособности. Оптические и магнитные энкодеры не имеют такого недостатка.

Подключение энкодера

Энкодер никогда не работает сам по себе. Он всегда подключается к устройству обработки сигналов, с помощью которого можно переварить и проанализировать импульсы на его выходах. Подключить энкодер легко – ведь это фактически датчик с транзисторными выходами. В простейшем случае, выход энкодера можно подключить ко входу счетчика, и запрограммировать его на измерение скорости или длины.

Но чаще всего выходные сигналы энкодера обрабатываются в контроллере. А далее путем расчетов можно получить информацию о скорости, направлении вращения, ускорении, положении объекта.

Энкодеры подключают не только к контроллеру. Он также может подключаться к преобразователю частоты, питающему электродвигатель. Таким образом , появляется возможность точного позиционирования, а также поддержания нужной скорости и момента вращения двигателя без использования контроллера. Это называется векторным управлением.

Общие плюсы и минусы

Прежде, чем рассмотреть разные типы энкодеров, стоит сказать об общих преимуществах и недостатках этих датчиков.

  1. Доступная цена.
  2. Простой монтаж и использование.
  3. Высокая точность измерений.
  4. Универсальность — возможность применения на широком спектре приборов и оборудования.
  5. Возможность определить направление вращения объекта.
  1. Возможные ошибки в измерениях, если выбран прибор неправильного типа или нарушена технология установки.
  2. Схема подключения зависит от типа и сферы применения.
  3. В некоторых видах энкодеров нужно постоянно преобразовывать код Грея.
  4. Ограниченная разрешающая способность. Чтобы повысить точность измерений, нужно добавлять дополнительные каналы.

Сигналы и выходы инкрементального энкодера

В принципе, простейший энкодер, кроме проводов питания, может иметь один дискретный выход, импульсы на котором будут однозначно говорить о скорости вращения вала, на котором он закреплён:

Импульсы на выходе энкодера – один канал

Период Т – величина, обратная частоте, а про частоту мы говорили выше. Уровень “Н” – это напряжение, почти равное напряжению питания (обычно 5, 12, или 24 В). Уровень “L” – около нуля.

Само собой, реальные импульсы не столь идеальны – у них может гулять скважность и будут завалены фронты.

Что может рассказать нам такой энкодер? Только о скорости и погонных метрах. Например, его можно применять для определения частоты вращения двигателя, или длины материала после нажатия кнопки “Сброс”. Неплохо, но хочется большего!

Если будет два выхода, импульсы на которых (оптическим способом) сдвинуты на четверть периода, мы сможем узнать направление вращения:

Импульсы каналов А и В с фазовым сдвигом

Такие выходы со сдвигом фаз на четверть периода называются квадратурными каналами. Этот приём широко применяется в радиотехнике и электронике не только для определения направления вращения, но и для определения знака рассогласования частот (больше или меньше опорной частоты?).

Если сдвиг фаз положительный (фаза В отстает), можно условиться о прямом вращении. Если отрицательный (фаза В опережает фазу А на четверть), значит, вращение в обратном направлении. Два этих сигнала с одной частотой и фазой ±90° подаются на триггер, выход которого однозначно указывает о направлении вращения.

Ничего это не напоминает? В энкодере – двухфазная система, со сдвигом фаз 90°, в электрощите – трехфазная система, со сдвигом фаз 120°. Для смены направления вращения трехфазного двигателя достаточно поменять местами любые две фазы.

Со скоростью, расстоянием и направлением разобрались, а что делать, если нужно узнать угол поворота? Для этого вводится сигнал “Z” (Zero) – опорный импульс, который также называют нуль-меткой или референсной меткой:

Выходы энкодера А, В с нулевой меткой Z

Импульс “Z” имеет длительность Т (бывает и другая длительность – T/2, или 2Т) и проскакивает 1 раз за оборот вала энкодера. Иными словами, длительность нулевой метки может быть в тысячи раз короче периода вращения вала энкодера.

Как и у индуктивных датчиков, выходы энкодера транзисторные, и могут быть нескольких типов. Читайте статью про подключение транзисторных оптических и индуктивных датчиков.

В современных датчиках каждая фаза (канал) обычно имеет ещё один, противофазный выход.

С теорией заканчиваем, плавно переходим к практике.

Характеристики

Основная характеристика датчиков поворота — разрядность. Разрядность энкодера — это количество импульсов за один оборот. Ее также называют разрешением. Как правило, разрешение составляет 1024 за один оборот.

Другие конструктивные и функциональные особенности этих приборов:

  • тип вала — пустой или с прямой осью;
  • размеры отверстия и вала;
  • рабочее напряжение;
  • размеры корпуса прибора;
  • способы выхода;
  • разрядность (количество бит);
  • сигнал на выходе;
  • есть энкодер с кнопкой;
  • длина кабеля и тип разъема;
  • способ крепления.

Монтаж энкодеров

По монтажу сразу скажу главное – вал энкодера по отношению к валу механизма должен быть надежно зафиксирован! Обычно это делается при помощи шестигранных винтов.

Бывали случаи, когда из-за проскальзывания самодельных и даже штатных муфт глючили производственные линии, и мы долго не могли найти причину – ведь всё остается исправным!

Монтироваться энкодер может и на валу двигателя, и на валу любого другого механизма – это не принципиально, и зависит лишь от конструкции и требований к точности выполнения поставленной задачи.

Вал энкодера никогда не будет соосным с вращающимся валом (вспомните, для чего нужен карданный вал). Поэтому используются специальные заводские переходные муфты, нужно надежно их крепить и периодически проверять качество монтажа.

Энкодер механически соединен с приводом через соединительную муфту для компенсации несоосности

Корпус любого энкодера всегда неподвижен. Вращается только его внутренняя подвижная часть.

Существуют энкодеры с полым валом, которые надеваются непосредственно на измеряемый вал и там фиксируются. Там даже нет такого понятия, как несоосность. Их гораздо проще монтировать, и они надежнее в эксплуатации. Чтобы энкодер при этом не прокручивался, используется лишь металлический поводок. На фото ниже показан энкодер с полым валом (обозначен В21.1), надетый на вал редуктора:

Энкодер с полым валом, надет на вал редуктора

Обратите внимание – корпус энкодера целиком и полностью держится на валу редуктора. От проворачивания его держит металлический поводок. При работе энкодер обычно немного покачивается по овальной траектории, это нормально, поскольку идеал существует только на картинках в даташитах и учебниках.

Бывают сквозные полые валы, когда ось механизма проходит через энкодер насквозь.

Монтаж

Энкодер крепится на валу, параметры вращения которого измеряются. Для монтажа используется специальная переходная муфта, позволяющая компенсировать возможную несоосность с валом энкодера, при этом его корпус должен быть жестко зафиксирован.

Другой вариант крепежа подходит для преобразователей с полым валом. В этом случае вал, параметры вращения которого подлежат измерению, непосредственно входит внутрь преобразователя и фиксируется в полой втулке либо в сквозном отверстии. В данном случае корпус энкодера не фиксируется, за исключением какой-либо пластины или ограничителя, не позволяющей ему вращаться.

Подключение и работа энкодеров. Реальные примеры.

Ниже я рассмотрю несколько примеров использования энкодеров в реальном оборудовании.

Измерение скорости полотна

В данном примере, инкрементальный энкодер ELCO используется для измерения скорости бумажного полотна при производстве бумаги. Энкодер закреплен на бумаговедущем валу через муфту, скорость вращения которого однозначно говорит о скорости бумаги.

При помощи системы «энкодер+контроллер» можно вычислить мгновенную скорость, а также погонную длину произведенной продукции.

Энкодер работает на бумаговедущем валу

или другой ракурс:

Энкодер ELCO работает на бумаговедущем валу. Корпус энкодера закреплен жестко, стыковка валов – через компенсирующую муфту

Минус такой установки – при механической поломке вала (а это бывало уже не раз, изнашиваются подшипники) ломается либо муфта, либо сам энкодер.

Положение деталей на конвейере

В этом случае энкодер насажен на вал двигателя, подключенного через преобразователь частоты. Двигатель через редуктор передает движение на конвейер, по которому движутся заготовки деталей.

Положение детали на конвейере, позиционирование при помощи энкодера на двигателе

С помощью энкодера и оптических датчиков, фиксирующих просвет между образцами продукции, контроллер с большой точность может управлять обработкой деталей.

При этом направление знать не обязательно (оно всегда одно), и могут применяться энкодеры без ноль-метки:

Энкодер для определения только скорости вращения

По моему мнению, насаживание энкодера на вал двигателя – не очень хорошая идея в смысле того, что энкодер крутится на больших оборотах (до 3000 об/мин). Кроме повышенного механического износа, необходимо предусмотреть обработку сигналов со сравнительно высокой скоростью. Но сегодня, с развитием промышленной электроники, это не проблема.

Крепление энкодера на валу двигателя позволяет очень точно контролировать скорость привода. С появлением высокооборотистых энкодеров многие производители наладили выпуск двигателей со встроенным энкодером.

Если интересно применение ПЧ в конвейерах, вот моя статья на Дзене, где я подробно рассматриваю схему включения ПЧ для конвейера.

Ещё пример точного позиционирования при помощи энкодера для двигателя:

Энкодер – работа на валу двигателя со стороны крыльчатки

В этом случае двигатель приводит в действие цепную передачу лифта, подающего заготовку на обработку. Точность позиционирования лифта – порядка 1 мм, длина пути – более 2 м.

Перемещение детали

Ещё большую точность, чем в предыдущем случае, можно получить, если вал энкодера закрепить на ходовой винт с резьбой.

На фото сверху вниз – направляющая, ходовой винт, кабель к энкодеру

Если на ходовой винт закрепить гайку, которая механически скреплена с перемещаемой деталью (в реальном примере это – металлическая заготовка, которая рубится или гнётся по нужному размеру), то с помощью энкодера можно до долей миллиметра узнать её положение. Точность вычисления будет зависеть от шага резьбы и разрешающей способности энкодера.

Минус такого решения – при большой скорости возможен «промах», и нужно либо уменьшать скорость при приближении к цели, либо постоянно двигаться на низкой скорости. Кроме того, механика тоже должна быть точной, чтобы исключить любые люфты и перекосы.

Перемещение упора

Задача стоит в принципе такая же, как и в предыдущем случае. Но тут другой принцип перемещения – за счет зубчатой передачи:

Зубчатая передача перемещения каретки

Плюс данной реализации в том, что энкодер насажен непосредственно на зубчатое колесо, которое осуществляет передачу вращения. При большом разрешении энкодера и отсутствии механических люфтов можно добиться очень высокой точности позиционирования.

Использование энкодера совместно с винтовой и зубчатой передачей позволяет достичь высокой точности обработки деталей в станках с ЧПУ.

Вычисление точной координаты

В производстве полиграфической продукции иногда нужно нанести клей (или краску) в точное место. Когда печатная продукция (например, коробки или конверты) движутся по ленточному конвейеру, при помощи оптического датчика определяется начало коробки, затем контроллер при помощи энкодера вычисляет нужную координату, и включает подачу клея.

Вычисление точной координаты при помощи измерительного колеса

Формируется клеевая дорожка нужной длины, затем клей выключается. Далее коробка подается на фальцовочный узел, где складывается и склеивается. При этом скорость работы линии может достигать до 300 коробок в минуту.

Системы дозирования

Для точного открытия заслонки в системе дозирования жидкостей служит система, состоящая из двигателя с редуктором, на вал которого с одной стороны закреплена задвижка, с другой – энкодер.

Поворот на определенный угол при помощи энкодера

Поворот вала редуктора на угол не более 180° ограничен индуктивными датчиками приближения, а точное положение определяется по сигналу от энкодера. В исходном состоянии задвижка закрыта, и датчик минимального положения активен. Это состояние принимается за ноль. Далее включается двигатель, и вал поворачивается. Точный угол поворота пропорционален количеству импульсов от энкодера обратной связи. В данном случае энкодер не делает полный оборот, его движение ограничено датчиками.

Датчики активируются кулачками, которые закреплены (и могут корректироваться шаловливыми ручками)) на том же валу, что и энкодер.

При выключении питания положение энкодера (а значит, и задвижки) запоминается в памяти контроллера. В случае необходимости оператор может провести инициализацию (установку нулевого и максимального положения) за счет индуктивных датчиков. Опорная “Z” – метка при этом не используется.

Защита двигателя

Даже при перегрузке двигателя его скорость понижается, скольжение есть всегда, даже на холостом ходу. Но изменение тока при этом ничтожно. Особенно (например), если двигатель работает на застрявшую продукцию через редуктор.

Поэтому, очень удобно использовать энкодер, закрепленный на валу двигателя, для определения повышенного скольжения. А значит – перегрузки двигателя.

У меня на Дзене есть статья, как энкодер защищает двигатель от перегрузки, там тема раскрыта подробнее.

Вот фото оттуда:

Энкодер, механическая поломка из-за смещения двигателя

Энкодер перестал выдавать импульсы (перегрузки, правда, не было), и тут же контроллер выдал сообщение:

Сообщение на экране оператора о поломке энкодера

Запоминающие энкодеры

Энкодеры умнеют на глазах. В американской линии довелось иметь дело с серводвигателем, в состав которого входит энкодер с памятью.

Энкодер в составе серводвигателя с памятью

Энкодер не простой – у него в памяти зашиты параметры серводвигателя (их более сотни), которые он каждый раз при включении питания передает к центральный контроллер. Из-за заводского брака энкодер был плохо закреплён, и начал тереться о корпус двигателя, что привело к нарушению синфазности вращения двигателя и энкодера. Американцы дистанционно заново программировали этот энкодер, чтобы можно было запустить линию. Но это уже совсем другая история…

Оптический энкодер или шутка производителя

Рано или поздно в жизни каждого самоделкина возникает потребность в покупке чего-то такого этакого, что обычно само в голову не придет. Вот и я жил себе спокойно и об энкодерах даже не задумывался. Хотя должен признаться опыт работы с энкодерами имел. Как-то в одной и поделок использовал энкодер из принтера.

В данной истории все приключилось внезапно. Ползая по своим хоббийным форумам натолкнулся на конкурс. Сайт (называть не буду, т.к. разговор не о нем) проводил видимо раскрутку посещаемости и плюс один из форумчан проводил раскрутку своих российского производства изделий. И разыгрывался комплект из 3 наборов для самостоятельной сборки сервоконтроллеров. Я зарегистрировался на этом форуме, подал заявку (вместе с 3 или 4-мя всего лишь участниками) и… выиграл.

Так я стал обладателем 3-х наборов для сборки сервоконтроллеров. Далее мне потребовались энкодеры. Позволю себе объяснить для читателей не так глубоко погруженных в электронные компоненты, что такое сервоконтроллер, энкодер и с чем все это едят.

Есть 2 основных способа управлять точным перемещением в изделиях с ЧПУ (числовое программное управление). Попробую объяснить максимально доступным языком, без сложных схем и терминов. Первый способ это шаговые двигатели. Шаговый двигатель имеет сложное устройство — несколько катушек, притягивающих сердечник в заданных положениях.

Количество положений, в которых может быть зафиксирован сердечник называется шагами, промежуточные положения (регулируются различными промежуточными напряжениями и соответственно магнитными полями) называют микрошагами. Управляет шаговым двигателем драйвер — это плата управления, как правило с микропереключателями шагов и регулировкой тока, протекающего через двигатель. На вход драйвера подаются сигналы: Enable (разрешить работу шагового двигателя), DIR (направление вращения), STEP (количество шагов, на которое двигателю необходимо повернуть вал). И драйвер переводит команды в обороты вала двигателя. Очень простая и надежная конструкция. Из минусов — скорость вращения двигателя ограничена из-за его конструктива, и если двигатель пропустит по той или иной причине шаги, то управляющая программа об этом не узнает. Отсюда и область применения — низко и среднескоростные двигатели в заданной области нагрузок. Например 3Д принтер или хоббийные станки.

Второй способ управлять перемещениями — сервомотор. Мотор сам по себе может быть любым, постоянного или переменного тока, без разницы. Единственное условие, его вал должен иметь энкодер. Энкодер — это устройство определения позиции вала в данный момент времени. Об энкодерах мы поговорим подробнее чуть позже. Сервоконтроллер имеет другой принцип работы, в отличии от драйвера шагового двигателя. Сервоконтроллер получает на входе те же самые сигналы Enable, STEP, DIR и подает на двигатель напряжение. Двигатель начинает вращаться в нужном направлении, энкодер возвращает данные о положении вала двигателя. Как нужное положение достигается, вал двигателя в нем фиксируется. Конечно это сильно упрощено, т.к. есть ускорение и торможение двигателя, управление током и напряжением, пропорционально-интегрально-дифференцирующий (ПИД) регулятор в контуре обратной связи,… но мы же договорились в этот раз не сильно лезть в теорию.

Какие же плюсы серводвигателей: любая скорость вращения, отсутствие пропуска шагов, бесшумность (шаговый двигатель ощутимо громок в работе из-за своего конструктива). Но цена сервоконтроллеров выше и существенно драйверов шаговых двигателей. Поэтому основная ниша сервоконтроллеров — профессиональное применение.

Для своего проекта я выбрал двигатели Динамо Сливен. Эти двигатели широко использовались в советское время в ЭВМ и их было какое-то нереально большое количество. Кажется, что практически любой хоббийщик или имеет такой двигатель или сталкивался с ним. На барахолках их до сих пор перепродают. Это двигатели постоянного тока с фантастическим неубиваемым ресурсом и устойчивостью к любым издевательствам.

В качестве сервоконтроллера я использовал выигранную плату. Она представляет собой развитие open source сервоконтроллера, известного под устойчивым брендом «сервоконтроллер Чена» — по имени китайца, году так в 2004-м, если не ошибаюсь, предложившим данную схему.

Теперь уже практически переходим сути обзора — к энкодерам. Выбор энкодера был осуществлен по характеристикам и цене. Какие бывают типы энкодеров. В основном это оптические и магнитные. Магнитные — когда на краях диска закреплены магниты, а возле них находится датчик Холла.

Решение дорогое, промышленное, обладает повышенной надежностью. Цена не хоббийная ни разу.

Оптические энкодеры. Самое распространенное решение. Есть в каждой мышке. Раньше отвечали за вращение шарика и колесика. Теперь шариков уже нет, а вот колесики остались. Принцип работы прост — прерывание светового пучка проходящим непрозрачным телом.

Оптические энкодеры есть 2-х типов: инкрементальные и абсолютные. Инкрементальные делятся на 2 подтипа. Простейшие инкрементальные — такие как изображены на рисунке выше. Они определяют пересечение светового потока и на их основе можно построить, например, тахометр. Недостаток данного энкодера состоит в том, что при помощи него невозможно определить направление вращения диска. Инкрементальные 2-х канальные решают задачу определения направления вращения диска.

Для этого используется не один фотодиод, а несколько, обычно 4. Они формируют 2 независимых канала передачи данных, и сравнивая сигналы с этих каналов можно однозначно сделать вывод о направлении вращения диска.

Какие же недостатки есть у данного инкрементального энкодера? Недостаток один, но для ряда применений он критичный. При инициализации энкодера мы не знаем в каком положении находится диск. Т.е. мы можем узнать только направление и скорость вращения диска.

Для получения полной информации, а именно — начальное положение диска, направление и скорость вращения используются абсолютные энкодеры.

Абсолютные энкодеры используют диск со сложной системой кодировки положения. Наиболее распространен код Грея — двоичная кодировка с защитой от ошибок.

Я остановил свой выбор на инкрементальном энкодере с контролем направления вращения, т.е. с двумя квадратурными каналами вывода информации. Разрешения в 100 линий на оборот диска мне было за глаза. Поэтому на Алиэкспрессе я нашел энкодеры за разумную цену и с нужными мне характеристиками.

Вот фотка 3-х пришедших мне энкодеров. Дошли они недели за 3.

У энкодеров 4 вывода, Красный — питание 5В, Черный — земля, Цветные — каналы А и В. Я быстренько выточил втулочку на вал двигателя под крепление диска, ввинтил туда стержень с резьбой.

На 3Д принтере распечатал площадку под крепление датчика энкодера

Собрал все вместе

Подключил сервоконтроллер, и… тут бы был счастливый конец обзору, но нет. Ничего не заработало. Даже близко ничего не заработало.

Подключил осциллограф и понял, что никаких квадратурных сигналов на выходе нет, только шумы, наводки и непонятные выплески. Грешил я на все на свете. И на требовательность к позиционированию, и на засветку, и на наводки электромагнитные. И часами аккуратно возюкал датчик в разных положениях, выключал свет и пытался проделать все тоже самое в темное. «Крокодил не ловится, не растет кокос.» Разумеется я перепробовал все 3 энкодера. Везде тоже самое. И тут меня дернуло поразглядывать датчик в микроскоп.

То что я увидел повергло меня в изумление. Все 4 сенсора стояли в ряд по радиусу диска, т.е. засвечивались через прорезь диска одновременно. Разумеется ничего не работало. Датчики должны стоять перпендикулярно радиусу диска, и засвечиваться последовательно разными фронтами прорези диска. Я не мог поверить, что это так просто и так глупо. Китайцы поставили датчик с поворотом на 90 градусов. Я спросил на форуме у такого же как я покупателя таких же энкодеров как у него стоит датчик. И у него все было также неправильно и не работало.

Почесав в затылке я решил попробовать это дело исправить. Энкодер разобрался легко, при помощи фена расплавил термоклей и достал внутренности.

Поднес датчик к диску так чтобы сенсоры был поперек рисок. Конечно датчик корректно не встал, но на осциллографе начал появляться какой-то осмысленный сигнал.

Дальше разрезал корпус энкодера сбоку, наростил проводочками расстояние между светодиодом и матрицей сенсоров и засунул все в корпус по-новому.

На фото видно, что сенсоры стали перпендикулярно радиусу диска.

Собрал, подключил к сервоконтроллеру и… Бинго, все заработало! Мотор встал в режим удержания позиции. Т.е. при попытке проворота вала двигателя, мотор упирается и если его все же провернуть, то возвращается в исходное положение.

Ну а дальше двигатель займет свое место на фрезерном станке, но это уже совсем другая история…:-)

Как резюме. Энкодер из коробки не работает. К покупке не рекомендую. Но в своей ценовой категории, если он был бы исправным, это хорошее бюджетное решение. Либо если переделка изделия в работающее не пугает, то можно брать и переделывать.

У продавца куча положительных отзывов на такой энкодер. Либо это все липа, либо, что вероятнее, брак пошел массово совсем недавно.

Я написал продавцу, он пока шлет мне тонну технических описаний и предлагает попробовать еще, и намекает, что это я не разобрался. Буду на него давить. Пусть хоть часть денег вернет. Я столько времени угрохал из-за их заводского разгильдяйства.

Всем добра и удовольствия от хобби!

Резольвер

Совсем коротко о резольвере. По сути он выполняет те же функции, что и энкодер – может вычислять скорость и направление вращения двигателя. Но резольвер – аналоговый измерительный прибор. В некоторых случаях он гораздо точнее говорит об угле поворота, поскольку фактически речь идет о вычислении сдвига фаз на его выходах.

Реальный японский резольвер SMARTSYN TAMAGAWA SEIKI MODEL: TS2651N141E78, довелось когда-то ремонтировать:

Литература

  1. Sensors and Controls. SOLUTIONS GUIDE. Bourns, 2003.
  2. Bourns® Rotary Encoders. Short Form Brochure. Bourns, 2011.
  3. Encoders. DESIGN CONSIDERATIONS. TECHNICAL NOTE. Bourns, 2010.
  4. Bourns® Sensors & Controls. Model EM14 Brochure. Bourns, 2004.
  5. Bourns® Model EMS22 Non-Contacting Magnetic Encoder. Sensors & Controls Product Brochure. Bourns, 2014.
  6. Selecting the Appropriate Position Feedback Sensor for Factory Automation Valve Designs. WHITE PAPER. Bourns, 2011.
  7. Bourns® Medical Industry Products. Focus Market Brochure. Bourns, 2007.
  8. https://www.bourns.com/.

Получение технической информации, заказ образцов, заказ и доставка.

Тахогенератор

Не путайте энкодер и тахогенератор (его иногда ошибочно называют тахометром)!

У них схожие функции и область применения, но у тахо от скорости вращения двигателя зависит не частота выходных импульсов, а выходное напряжение.

Посмотрите, какая конструкция установлена у нас на заводе на двигателе постоянного тока мощностью 200 кВт:

Энкодер + тахометр слиты в единое целое на валу двигателя

Тахогенераторы, как и двигатели постоянного тока, в современном оборудовании практически не используются.

Где применяют энкодеры

На вопрос, что это за устройство такое — энкодер, можно ответить перечислением того, где используют данные приборы. Сферы применения угловых датчиков зависят от их сложности и способности выдерживать нагрузки.

Датчики поворота используют наиболее часто на станкостроительных заводах, в системах точного перемещения, робототехнических комплексах, в измерительных устройствах, где требуется точная фиксация поворотов, наклонов, вращений.

Датчики поворота

В промышленности и сложных механизмах, используют высокопроизводительные энкодеры, устойчивые к тепловому воздействию и взрывам.

Другие области и механизмы, в которых применяют эти датчики:

  • в печатной промышленности: устройства устанавливают на валах, по которым движется бумага;
  • в автомобилестроении: с их помощью определяют угол поворота колес (иногда взаимодействуют с движками);
  • на металлообрабатывающих предприятиях для контроля вращения валов с металлическими лентами;
  • в химической и пищевой промышленности: на оборудовании автоматизированной фасовки;
  • в электротехнике.

Пример использования прибора есть почти в каждом современном доме. Это обычная компьютерная мышь, в которой также установлен такой датчик.

компьютерная мышь

Производители энкодеров

Среди российских производителей энкодеров мне известен лишь только Питерский СКБ ИС, который производит энкодеры марки ЛИР. К сожалению, российского промышленного оборудования сейчас почти не производится, и ЛИРы применяются лишь в военном и лабораторном оборудовании.

Читайте на Дзене моё мнение (2 статьи) по импортозамещению электротехнической продукции.

По этой причине я имею дело только с энкодерами зарубежного производства. Производителей энкодеров много – их производят почти все производители полупроводниковых датчиков. Чаще всего я встречаюсь с энкодерами Autonics – как и в случае с датчиками, в России представлен большой ассортимент. Другие известные мне производители энкодеров – немецкий Sick, японский Omron, и несколько китайских брендов.

Использование тех или иных марок энкодеров обусловлено часто не техническими причинами, поскольку их параметры, схемы подключения и надежность практически идентичны. Тут скорее политические мотивы – производители комплектующих любыми путями стараются, чтобы их продукция вошла в состав больших и массовых производственных линий, чтобы таким образом закрепиться на рынке.

Применение энкодера

Области применений сегодня настолько обширны, что преобразователь перемещений можно встретить в принтере, метро, самолете, трамвае, строительном кране, лифте, даже на продвинутом дачном участке в качестве датчика открывания ворот. Ниже представлен далеко не полный список применений, где датчики обратной связи получили наибольшее распространение:

  1. Автоматизация производств
      Упаковка
  2. Текстильное производство
  3. Производство продуктов питания и напитков
  4. Промышленные роботы
  5. Медицинская техника
      Томографы
  6. Роботы-хирурги
  7. Строительная и карьерная техника
      Передвижные буровые станции
  8. Карьерные самосвалы
  9. Передвижные краны
  10. Промышленные задвижки и регулирование уровня воды
      Радиальные и барабанные ворота
  11. Вертикальные шлюзы
  12. Автоматические трубопроводные задвижки
  13. Лифты
      Пассажирские
  14. Грузовые
  15. Специализированные подъемники
  16. Хранение и перемещение грузов
      Автоматизированные склады
  17. Автопогрузчики
  18. Портовые краны
  19. Багажные ленты
  20. Ножничные подъемники
  21. Альтернативная энергетика
      Ветряные генераторы
  22. Солнечные батареи
  23. Станкостроение и модернизация станков
      Универсальные станки
  24. Станки с ЧПУ
  25. Сервомоторы

  • Оборудование

Содержание:

  • Применяемые технологии
  • Выходной сигнал
  • Основные параметры
  • Когда применяют инкрементальные энкодеры
  • Области применения

Инкрементальные энкодеры, в отличие от абсолютных, выдают информацию о положении относительно положения в предыдущий момент времени. После включения питания вся информация о предыдущих перемещениях пропадает и положение вала становится неопределённым. Как правило в таком случае механизм приходится перемещать в некоторое известное положение для того чтобы информация о положении снова стала актуальной.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *