Каков источник энергии солнца и других звезд
Перейти к содержимому

Каков источник энергии солнца и других звезд

  • автор:

 

§ 5.15. Источники энергии звезд

Любой мыслимый источник энергии звезды должен удовлетворять следующим условиям:

он должен обеспечить наблюдаемую мощность излучения звезды;

он должен действовать в течение длительного промежутка времени, измеряемого миллиардами лет;

источник должен действовать в тех физических условиях, которые наблюдаются вблизи центра звезды.

Запишем характеристики Солнца: светимость L = 3,8510 26 Дж/с, масса М=210 30 кг.

Найдем количество энергии, которую излучает Солнце в единицу времени в расчете на единицу его массы (удельная мощность излучения Солнца).

Удельной мощностью источника энергии называют количество энергии, которую создает источник в единицу времени в расчете на единицу его массы. Для любого источника .

Существовало несколько гипотез об источнике энергии Солнца и звезд. В начале 20-го века возникла гипотеза, что источником энергии Солнца является ядерная энергия. В настоящее время предполагается 2 самых вероятных источника энергии звезд:

энергия гравитационного сжатия;

энергия термоядерного синтеза.

Из этой формулы следует, что при сжатии звезды за счет уменьшения запасов гравитационной энергии может происходить излучение звезды. Оценим, на сколько времени хватит гравитационной энергии, запасенной в звезде. . Если подставить параметры Солнца, то получится 50 млн. лет. Поэтому, хотя гравитационный источник энергии звезд действует в природе на определенных этапах развития звезды (в самом начале и в самом конце развития), в основной период жизни звезды действует термоядерный источник.

При таких физических условиях наиболее вероятны два так называемых термоядерных цикла:

Р–Р – цикл (протон-протонный цикл):

Расчеты на основе ядерной физики приводят к формуле для удельной мощности Р–Р– цикла:

где – плотность вещества, х – концентрация водорода, T  температура. Применим формулу для Солнца: = 10 5 кг/м 3 , x = 0,8, T10 7 , тогда pp = 210 -3 Дж/(кгс), т.е. для Солнца удельная мощность Р–Р– цикла примерно в 10 раз больше, чем удельная мощность его излучения. Поэтому Р–Р– цикл может быть источником энергии Солнца.

СN – цикл (углеродно-азотный цикл). Здесь также происходит превращение водорода в гелий. В качестве катализатора выступает ядро атома углерода.

Удельная мощность СN–цикла

где xCN – концентрация совместно азота и углерода.

Формула (5.39) отличается от формулы (5.38) гораздо большей степенью зависимости от температуры. Если подставить в формулу параметры для Солнца: xCN = 0,003, тогда CN 10 -10 Дж/(кгс). Отсюда следует, что этот цикл не может быть основным источником энергии звезд типа Солнца. Однако если температура звезды в центре больше 15·10 6 К, то становится значительно больше мощности Р–Р– цикла. Для таких горячих звезд CN– цикл является основным источником энергии.

§ 5.16. Возникновение и эволюция звезд. Модели звезд

Эволюция звезд подчиняется следующим общим закономерностям:

выделяют три фазы эволюции звезд: контракционная фаза, фаза термоядерных реакций, заключительная фаза;

чем больше масса звезды, тем быстрее она проходит фазы своего развития.

Рассмотрим подробно фазы развития звезд.

Согласно современным представлениям, звезды рождаются из газопылевой диффузной среды в результате процесса гравитационного сжатия отдельных газовых облаков под действием собственного тяготения.

Если в некотором объеме, заполненном газом и пылью, масса диффузной материи по каким-то причинам превзойдет определенную критическую величину, то материя в этом объеме начнет сжиматься под действием сил тяготения. Величина критической массы зависит от плотности, температуры и среднего молекулярного веса. Расчеты показывают, что необходимые условия могут создаться лишь в исключительных случаях, когда плотность диффузной материи становится достаточно большой. Такие условия могут возникать в результате случайных флуктуаций, однако не исключено, что увеличение плотности может происходить и в результате некоторых регулярных процессов. Наиболее плотными областями диффузной материи являются, по-видимому, глобулы и «слоновые хоботы» — темные компактные, непрозрачные образования, наблюдаемые на фоне светлых туманностей. Глобулы имеют вид круглых пятнышек, «слоновые хоботы» — узких полосок, которые вклиниваются в светлую материю. Глобулы и «слоновые хоботы» являются наиболее вероятными предками звезд, хотя прямыми доказательствами этого мы не располагаем.

Итак, пусть по каким-то причинам облако межзвездной материи достигло критической массы и начался процесс гравитационного сжатия. Пылевые частицы и газовые молекулы падают к центру облака, потенциальная энергия гравитации переходит в кинетическую, а кинетическая энергия в результате столкновений — в тепло. Облако нагревается и вследствие увеличения температуры возрастает его излучение. Оно превращается в протозвезду (звезда в начальной стадии развития). Судя по тому, что молодые звезды наблюдаются группами, можно думать, что в начале процесса гравитационной конденсации облако межзвездной материи разбивается на несколько частей и одновременно образуется несколько протозвезд.

Полный поток энергии, излучаемой протозвездой, определяется, как можно показать, обычным законом масса — светимость, но размеры протозвезды значительно больше. Поэтому температура ее поверхности много меньше, чем у обычной звезды такой же массы, и на диаграмме спектр-светимость протозвезды должны располагаться справа от главной последовательности. По мере сжатия протозвезды температура ее увеличивается, и она перемещается по диаграмме Герцшпрунга-Рессела сначала вниз, потом влево, почти параллельно оси абсцисс. Когда температура в недрах звезды достигает нескольких миллионов градусов, начинаются термоядерные реакции. Сначала «выгорает» дейтерий, а затем литий, бериллий и бор. Сжатие в результате выделения дополнительной энергии замедляется, но не прекращается совсем, так как эти элементы быстро оказываются израсходованными. Когда температура повышается еще больше, начинают действовать протон-протонные реакции (для звезд с массой, меньшей 1,5 M) или углеродно-азотный

цикл (для звезд с большей массой). С началом этих реакций заканчивается контракционная фаза развития звезды. Указанные реакции могут поддерживаться длительное время, сжатие прекращается и протозвезда превращается в обычную звезду главной последовательности. Давление внутри звезды уравновешивает притяжение, и она оказывается в устойчивом состоянии.

Время гравитационного сжатия сравнительно невелико. Оно зависит от массы протозвезды. Чем больше масса, тем быстрее протекает процесс гравитационной конденсации. Протозвезды, имеющие такую же массу, как Солнце, сжимаются за 10 8 лет. Для звезд с массами в 20 M это время составляет

Так как сжатие происходит быстро, наблюдать звезды в этой первой наиболее ранней стадии эволюции трудно. Предполагается, что в этой стадии находятся неправильные переменные звезды типа Т Тельца.

Фаза термоядерных реакций.

Находясь на главной последовательности, звезды длительное время излучают энергию благодаря термоядерным реакциям, почти не испытывая каких-либо внешних изменений: радиус, светимость и масса остаются почти постоянными. Положение звезды на главной последовательности определяется ее массой. Ниже главной последовательности на диаграмме спектр-светимость проходит последовательность ярких субкарликов. Они отличаются от звезд главной последовательности химическим составом: содержание тяжелых элементов в субкарликах в несколько десятков раз меньше.

В результате термоядерных реакций, протекающих в недрах звезды, происходит постепенная переработка водорода в гелий, или, как говорят, «выгорание» водорода. Время пребывания на главной последовательности зависит от скорости термоядерных реакций, а скорость реакций—от температуры. Чем больше масса звезды, тем выше должна быть температура в ее недрах, чтобы газовое давление могло уравновесить вес вышележащих слоев. Поэтому ядерные реакции в более массивных звездах идут быстрее и время пребывания на главной последовательности для них меньше, так как быстрее расходуется энергия. Для Солнца и звезд с массами, равными солнечной, данное время около 10 10 лет, в то время как для звезд с массами в 20 Mсолнечных масс — около 10 6

Ядерные реакции идут только в центральной части звезды. В этой области (конвективное ядро звезды) вещество все время перемешивается. При выгорании водорода радиус и масса конвективного ядра уменьшаются. Расчеты показывают, что звезда при этом перемещается по диаграмме спектр- светимость вправо. Более массивные звезды перемещаются быстрее, и в результате верхний конец главной последовательности постепенно отклоняется вправо.

Когда весь водород в ядре звезды превратится в гелий, вторая стадия эволюции заканчивается. Реакции превращения водорода в гелий продолжают идти только на внешней границе ядра. Расчеты показывают, что при этом ядро сжимается, плотность и температура в центральной части звезды возрастают, увеличивается светимость и радиус звезды. Звезда сходит с главной последовательности и становится красным гигантом.

Ветвь красных гигантов для звезд рассеянных скоплений идет ниже, чем для звезд шаровых скоплений, а главная последовательность, наоборот, выше. Теоретически это можно объяснить более низким содержанием тяжелых элементов в звездах шаровых скоплений. И действительно, наблюдения показывают, что в звездах сферической подсистемы, к которой принадлежат шаровые скопления, относительное обилие тяжелых элементов меньше, чем в звездах плоской подсистемы. Таким образом, наблюдения удовлетворительно согласуются с теоретическими представлениями об эволюции звезд и подтверждают их. Тем самым получает наблюдательную проверку и теория внутреннего строения звезд, на которой эти представления основаны.

Предполагается, что в стадии красного гиганта (или сверхгиганта) в плотном ядре звезды в течение некоторого времени может идти реакция превращения гелия в углерод. Расчеты показывают, что такие звезды должны располагаться на диаграмме цвет — светимость слева от главной ветви красных гигантов. Когда гелиевая реакция внутри ядра и водородные реакции на его границе исчерпывают себя, стадия красного гиганта и фаза термоядерных реакций подходят к концу. Протяженная оболочка гиганта при этом расширяется, ее наружные слои не могут удерживаться силой тяготения и начинают отделяться. Звезда теряет вещество, и масса ее уменьшается. Наблюдения показывают, что у красных гигантов и сверхгигантов действительно иногда имеет место истечение вещества из атмосферы. В этом случае процесс происходит медленно. Однако звезды с массами, превышающими 8 M, завершают свою эволюцию катастрофически, проходя стадию

вспышки сверхновой звезды (см. § 5.13). Взрыв сверхновой сопровождается образованием атомных ядер тяжелых химических элементов.

Время «жизни» красного гиганта составляет несколько сот тысяч лет.

Когда протяженная оболочка красного гиганта рассеется в пространство, от звезды остается только ее центральное гелиевое ядро, которое сжимается.

Заключительная стадия развития звезды зависит от ее массы. Если масса звезды меньше 1,4 M

(так называемого предела Чандрасекара), то сжатие ядра продолжается до тех пор, пока его не останавливает давление вырожденного электронного газа. При этом возникает звезда очень малых размеров (в 100 раз меньше солнечных) и огромной плотности — белый карлик. Вследствие малых размеров белые карлики, несмотря на свою высокую температуру, имеют малую светимость и поэтому располагаются в нижней левой части диаграммы спектр-светимость. Медленно остывая, белые карлики постепенно излучают запасенную в их недрах тепловую энергию, превращаясь в абсолютно мертвые останки — черные карлики.

Если масса звезды превышает 1,4 M, то давление вырожденного электронного газа не может

остановить сжатие ядра. В этом случае механического равновесия нет, и тогда за время порядка 1 с центральные области сжимаются до ядерных плотностей. При этом электроны как бы вдавливаются в протоны и образуются нейтроны — происходит нейтронизация вещества звезды. Так возникают нейтронные звезды. Внешней оболочкой нейтронной звезды является кора, состоящая из ядер железа при температуре 10 5 –10 6 К. Весь остальной объем, за исключением небольшой области в центре, занимает «нейтронная жидкость». В центре предполагается наличие небольшого гиперонного ядра. При ядерных плотностях «нейтронная жидкость» становится вырожденной и останавливает дальнейшее сжатие нейтронной звезды.

Размеры нейтронных звезд составляют всего 10  20 км. Расчеты показывают, что нейтронные звезды должны быстро вращаться вокруг своей оси и обладать сильным магнитным полем.

При массах, больших нескольких солнечных, даже давление вырожденных нейтронов не в состоянии противостоять гравитационным силам, в результате происходит неудержимое сжатие звезды — коллапс. Звезда превращается в черную дыру — объект, гравитационное поле которого не может покинуть ни одно тело, даже свет. Размеры черных дыр не превышают так называемый гравитационный радиус Шварцшильда

где G — гравитационная постоянная, M — масса черной дыры, c — скорость света. Данное соотношение получено из условия, что параболическая скорость вблизи «поверхности» черной дыры равна скорости света. Так, для Солнца гравитационный радиус Rg = 3 км, а соответствующая плотность ρ ≈ 2∙10 16 г/см 3 (это превышает плотность атомного ядра ρ ≈ 2∙10 14 г/см 3 ).

У черной дыры нет поверхности как таковой, но есть граница, которая называется горизонтом событий. Внутри черной дыры, а также вблизи горизонта событий классические законы физики перестают быть справедливыми и необходимо пользоваться законами общей теории относительности.

Предполагают, что количество черных дыр в нашей Галактике около десяти миллионов. Несмотря на такое огромное их количество, обнаружить одиночную черную дыру практически невозможно. Поэтому одним из лучших мест для поиска черных дыр являются двойные звезды. В 1964 году ученые предсказали мощное рентгеновское энерговыделение от черных дыр в тесных двойных системах. Такие наблюдательные данные в настоящее время получены.

Почему звезды светятся и откуда берется их энергия?

Где звезды берут энергию и чем “питается” Солнце?

За счет чего звезды расходуют такие чудовищные количества энергии? Чем “питается” само Солнце? Не смотря на гигантские размеры звезд, их энергия должна пополняться, ибо «вечного двигателя» в природе не существует.

Какой мощи должна быть эта энергия, что её хватает на миллиарды лет? Хороший вопрос, учитывая, что подсчитано: если бы Солнце состояло из лучшего угля, то, получай оно для этого в достаточном количестве кислород, полностью сгорело бы примерно за 1500 лет.

Некогда существовало мнение, что энергия Солнца поддерживается падением на него метеоритов. Их энергия превращается при падении в теплоту, поддерживающую излучение Солнца. Такой способ питания помог бы Солнцу не больше, чем нам, если бы мы вздумали вскипятить бочку воды, ставя на ее крышку горячие утюги.

Кроме того, метеоритов должно было бы сыпаться на Солнце невероятно много, и они так быстро увеличивали бы массу Солнца, что это было бы заметно.

Может быть, тогда, энергия Солнца пополняется за счет его сжатия, то есть постоянного уменьшения в размерах? Звучит логично, ведь при сжатии, энергия тяготения к центру переходила бы в энергию тепловую. Но и эта теория разбилась о математику.

Было вычислено, что даже если бы Солнце было некогда бесконечно большим, чем сейчас, то и в этом случае его сжатия до современного размера хватило бы на поддержание энергии всего лишь в течение 20 миллионов лет. Между тем доказано, что земная кора существует и освещается Солнцем гораздо дольше – как минимум 4,5 миллиарда лет. Сжатие может иметь и наверное имеет место, но не оно служит главным источником солнечной энергии.

Наше Солнце - громадный ядерный реактор и его топлива хватит ещё на 10 миллиардов лет

Наше Солнце – громадный ядерный реактор и его топлива хватит ещё на 10 миллиардов лет

Тогда, возможно, недра звезд состоят из радиоактивных элементов, таких, как торий, уран и радий? Распадаясь, эти элементы выделяют теплоту.

Но, если бы Солнце целиком состояло из радия, то оно излучало бы… больше энергии, чем действительное Солнце! Тем более, что при большой начальной расточительности, неизбежной при радиоактивном распаде, интенсивность его излучения спадала бы слишком быстро. Радий не мог бы поддерживать наше Солнце так долго, как это необходимо. Допустить же существование тяжелых, сверх-радиоактивных элементов (неизвестных на Земле), да еще сгустившихся в недрах Солнца, современная физика и теория внутреннего строения звезд не позволяют.

Вас может заинтересовать

Ответ на этот вопрос дала людям ядерная физика.

Ядерные реакции в недрах звезд

Как известно, большую часть любой звезды составляет водород, а как известно из школьного курса химии, этот газ очень хорошо горит. Правда “звездное горение” водорода отличается от привычного нам, ведь кислорода там очень мало.

Горение — это химический процесс, то есть перетасовка атомов между молекулами. Но энергии химических реакций недостаточно для поддержания солнечного тепла. С другой стороны, при чудовищном жаре в недрах звезд существование молекул невозможно, они там распадаются. Там возможны только перетасовки тех составных частей, из которых образованы сложные системы, называемые ядрами атомов.

При температурах в миллионы градусов происходит распад не только атомов, но и их ядер и перетасовка продуктов распада, отчего образуются новые химические атомы с иными химическими свойствами. Такие перетасовки называются ядерными реакциями.

Физика ядерных реакций установила, что источником энергии в звездах, в том числе и в Солнце, является непрерывное образование атомов гелия за счет атомов водорода.

Известно, что атом гелия весит приблизительно в четыре раза больше, чем атом водорода. Однако мы не получим атом гелия, сложив попросту четыре атома водорода. Прежде чем материал четырех водородных атомов создаст атом гелия, должен произойти целый ряд чудесных превращений, напоминающих сказочные превращения оборотней, и непременными помощниками и толкачами в этих превращениях оказываются атомы углерода.

Но такие превращения не проходят безнаказанно: при этом выделяется и теряется энергия, а она имеет массу. Оттого-то масса атома гелия получается несколько меньше массы четырех атомов водорода. Так работает фабрика гелия в недрах гигантских звезд.

Как бы не были велики запасы солнечного водорода, они все-таки не бесконечны. Тревожиться на этот счет не стоит – при современной мощности излучения Солнцу хватит “топливо” ещё минимум на 10 миллиардов лет (при том, что само Солнце появилось примерно 5 миллиардов лет назад).

Что же происходит когда звезда начинает “стареть” и “выгорать”? Водород превращается в гелий, а гелий, вероятно, превращается в более тяжелые элементы; следовательно, химический состав Вселенной подвержен непрерывному изменению. Отсюда напрашивается и вывод – на заре зарождения нашей Вселенной, большая её часть состояла из водорода.

С течением времени доля тяжелых элементов по отношению к водороду увеличивается. Часть звездного вещества, обогащенная тяжелыми элементами, возвращается обратно в межзвездную газовую среду, может быть, в форме протуберанцев или более грандиозных взрывов, и поэтому сам межзвездный газ обогащается тяжелыми элементами. Однако даже в настоящее время атомов водорода в 2000 раз больше, чем атомов тяжелых элементов.

Это, как минимум, свидетельствует о том, что наша Вселенная ещё сравнительно молода и до её “старости” осталось не так уж мало времени.

Урок 33. Звезды. Солнце

Основная и дополнительная литература по теме урока:

1.Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. С. 353 – 366

2. В.М. Чаругин. Астрономия. 10-11класс. М.: «Просвещение», 2017. С. 80 — 106

3. Саймон и Жаклин Миттон. Астрономия. М.: «РОСМЭН», 1995.

4.И.А. Климишин. Элементарная астрономия. М.: Наука. 1991.

Основное содержание урока

Наше изучение звёзд начинается с изучения Солнца, ближайшей к Земле, звезды.

Основные характеристики Солнца.

Первая величина, которая легко вычисляется для Солнца – это его радиус.

 

Угол, под которым видно Солнце с Земли, равен 16 секундам. Расстояние от Земли до Солнца — значение большой полуоси орбиты Земли. Радиус Солнца равен 700000 км.

Массу Солнца определим, используя третий обобщённый закон Кеплера:

подставив значения большой полуоси орбиты Земли, гравитационной постоянной и периода вращения Земли вокруг Солнца.

Масса Солнца равна

Зная, что на 1 м 2 за 1 с приходится 1370 Дж энергии, можно найти светимость Солнца:

Химический состав Солнца: примерно 70% водорода, 29 % гелия;

Температура на поверхности Солнца 6000 К.

Атмосфера Солнца. Нижний слой, называющийся фотосферой, имеет небольшую высоту.

Внешняя часть, называющаяся короной, простирается на несколько радиусов Солнца.

В структуре фотосферы выделяют гранулы, протуберанцы, темные пятна.

С поверхности Солнца постоянно идёт поток заряженных частиц, называемый солнечным ветром.

Временами на Солнце происходят вспышки, увеличивающий поток частик и всевозможные излучения Солнца.

Основные характеристики звёзд.

Основные характеристики звёзд. Изучение звёзд затруднено тем, что они находятся далеко и освещенность, которую они создают на Земле очень мало. Проблему наблюдения за звёздами решают при помощи больших телескопов

Измерения температур поверхности звёзд показывают, что есть прямая связь между температурой звезды и видом её спектра.

В результате все звёзды разнесены по звёздным классам: O, B, A, F, G, K,

Э.Герцшпрунг и Г.Рессел составили диаграмму зависимости светимости всех известных звёзд от их спектрального класса.

По этой диаграмме все звёзды расположились в четырёх группах.

Главная последовательность диаграммы дает расположение большинства звёзд. Солнце является звездой данной группы звёзд.

Плотности звёзд данной группы примерно равны плотности Солнца.

Вторая и третья группы звёзд данной диаграммы – гиганты и сверх — гиганты.

Группа звёзд гигантов – звёзды красного цвета со светимостью примерно в сто раз больше Солнца, а размеры в десятки раз больше.

Сверх – гиганты также звёзды со светимостью в сотни тысяч раз больше солнечной, а размерами в сотни раз больше. Плотность сверх – гиганта Бетельгейзе составляет одну миллионную долю плотности воздуха.

Белые карлики – это группа звёзд, которая располагается на диаграмме внизу слева. Светимость белых

карликов в сотни и тысячи раз меньше солнечной и по размерам сравнимы с планетами. Однако, плотность достигает огромных значений.

Источник энергии Солнца и звёзд.

Источником энергии Солнца и звёзд является ядерная энергия, которая выделяется при синтезе ядер гелия из ядер водорода.

Это — так называемая термоядерная реакция.

Доказательством верности наших представлений о строении Солнца является результаты поиска и регистрации нейтрино, которые сопровождают термоядерные реакции в недрах Солнца и легко проникают от места реакции до самой Земли.

Эволюция звёзд.

Рождение звезды происходит в процессе сжатия газопылевых облаков галактик. Сначала увеличивается плотность, растёт температура и начинается излучение в инфракрасном диапазоне. Облако на этом этапе называют протозвездой.

Любая звезда в своей жизни проходит определенные стадии своей эволюции: рождение, пребывание на главной последователь последовательности, расширение и превращение в гиганта или сверх — гиганта. В зависимости от массы звезды происходит дальнейшее преобразование — либо в белого карлика, либо в нейтронную звезду или черную дыру.

Разбор тренировочных заданий

Выберите одно утверждение о звёздах, которые соответствуют диаграмме.

1) «Жизненный цикл» звезды спектрального класса В главной последовательности более длительный, чем звезды спектрального класса G главной последовательности.

2) Температура поверхности звёзд спектрального класса F ниже температуры звёзд спектрального класса А.

3) Звезда Арктур имеет температуру поверхности 4100 К, следовательно, она относится к звёздам спектрального класса В.

4) Средняя плотность сверхгигантов существенно больше средней плотности белых карликов.

Анализ утверждения 1): Начало жизненного цикла звёзд – левый верхний угол главной последовательности диаграммы Герцшпрунга – Рессела. Поэтому длительность «жизни» звезды класса В меньше, чем звезды класса G.

Утверждение 1) неверно.

Анализ утверждения 2): На нижней линии диаграммы указаны спектральные классы звёзд, на верхней линии — соответствующие температуры. Классу F соответствует температура ниже, чем классу А.

Утверждение 2) верно.

Анализ утверждения 3): Звезда с температурой 4100 К относится к классу К, что противоречит утверждению.

Утверждение 3) неверно.

Анализ утверждения 4): Белые карлики имеют рекордно высокую плотность. Это противоречит утверждению.

Утверждение 4) неверно.

Ответ: Верное утверждение – 2)

2. Установите соответствие между элементами

1.Термоядерная реакция, протекающая в ядре Солнца – реакция синтеза ядер гелия из 4 ядер водорода с образованием 2-х позитронов и 2-х нейтрино.

2. Атмосфера Солнца состоит на 70% из водорода, около 30% из гелия.

3. Солнечный ветер – это поток заряженных частиц с фотосферы Солнца: ядра гелия, водорода, электроны и незначительное количество ионов.

Как рождается энергия Солнца?

Есть одна причина, по которой Земля является единственным местом в Солнечной системе, где существует и процветает жизнь. Конечно, ученые подозревают, что под ледяной поверхностью Европы или Энцелада может тоже существовать микробная или даже водная форма жизни, также ее могут найти и в метановых озерах Титана. Но до поры до времени Земля остается единственным местом, которое обладает всеми необходимыми условиями для существования жизни.

Одна из причин этому заключается в том, что Земля расположена в потенциально обитаемой зоне вокруг Солнца (так называемой «зоне Златовласки»). Это означает, что она находится в нужном месте (не слишком далеко и не слишком близко), чтобы получать обильную энергию Солнца, в которую входит свет и тепло, необходимые для протекания химических реакций. Но как именно Солнце обеспечивает нас энергией? Какие этапы проходит энергия на пути к нам, на планету Земля?

Все самые свежие новости из мира высоких технологий вы также можете найти в Google News.

Ответ начинается с того, что Солнце, как и все звезды, может вырабатывать энергию, поскольку является, по сути, массивным термоядерным реактором. Ученые считают, что оно началось с огромного облака газа и частиц (т. е. туманности), которое коллапсировало под силой собственной тяжести — это так называемая теория туманности. В этом процессе родился не только большой шар света в центре нашей Солнечной системы, но и водород, собранный в этом центре, начал синтезироваться с образованием солнечной энергии.

Технически известный как ядерный синтез, этот процесс высвобождает огромное количество энергии в виде тепла и света. Но на пути из центра Солнца к планете Земля эта энергия проходит через ряд важных этапов. В конце концов, все сводится к слоям Солнца, и роль каждого из них играет важную роль в процессе обеспечения нашей планеты важнейшей для жизни энергией.

Ядро Солнца — это область, которая простирается от центра до 20-25% радиуса светила. Именно здесь, в ядре, производится энергия, порождаемая преобразованием атомов водорода (H) в молекулы гелия (He). Это возможно благодаря огромному давлению и высокой температуре, присущим ядру, которые, по оценкам, эквивалентны 250 миллиардам атмосфер (25,33 триллиона кПа) и 15,7 миллионам градусов по Цельсию, соответственно.

Конечным результатом является слияние четырех протонов (молекул водорода) в одну альфа-частицу — два протона и два нейтрона, связанных между собой в частицу, идентичной ядру гелия. В этом процессе высвобождается два позитрона, а также два нейтрино (что меняет два протона на нейтроны) и энергия.

Ядро — единственная часть Солнца, которая производит значительное количество тепла в процессе синтеза. По сути, 99% энергии, произведенной Солнцем, содержится в пределах 24% радиуса Солнца. К 30% радиуса синтез почти целиком прекращается. Остаток Солнца подогревается энергией, которая передается из ядра через последовательные слои, в конечном счете достигая солнечной фотосферы и утекая в космос в виде солнечного света или кинетической энергии частиц.

Солнце высвобождает энергию, преобразуя массу в энергию со скоростью 4,26 миллиона метрических тонн в секунду, что эквивалентно 38,460 септиллионам ватт в секунду. Чтобы вам было понятнее, это эквивалентно взрывам 1 820 000 000 «царь-бомб» — самой мощной термоядерной бомбы в истории человечества.

Зона лучистого переноса

Эта зона находится сразу после ядра и простирается на 0,7 солнечного радиуса. В этом слое нет тепловой конвекции, но солнечная материя очень горячая и достаточно плотная, чтобы тепловое излучение запросто передавало интенсивное тепло из ядра наружу. В основном она включает ионы водорода и гелия, испускающие фотоны, которые проходят короткое расстояние и поглощаются другими ионами.

Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.

Температура этого слоя пониже, примерно от 7 миллионов градусов ближе к ядру до 2 миллионов градусов на границе конвективной зоны. Плотность тоже падает в сто раз с 20 г/см³ ближе к ядру до 0,2 г/см³ у верхней границы.

Конвективная зона

Это внешний слой Солнца, на долю которого приходится все, что выходит за рамки 70% внутреннего радиуса Солнца (и уходит примерно на 200 000 километров ниже поверхности). Здесь температура ниже, чем в радиационной зоне, и тяжелые атомы не полностью ионизированы. В результате радиационный перенос тепла проходит менее эффективно, и плотность плазмы достаточно низка, чтобы позволить появляться конвективным потокам.

Из-за этого поднимающиеся тепловые ячейки переносят большую часть тепла наружу к фотосфере Солнца. После тог, как эти ячейки поднимаются чуть ниже фотосферической поверхности, их материал охлаждается, а плотность увеличивается. Это приводит к тому, что они опускаются к основанию конвективной зоны снова — где забирают еще тепло и продолжают конвективный цикл.

На поверхности Солнца температура падает до примерно 5700 градусов по Цельсию. Турбулентная конвекция этого слоя Солнца также вызывает эффект, который вырабатывает магнитные северный и южный полюса по всей поверхности Солнца.

Именно в этом слое также появляются солнечные пятна, которые кажутся темными по сравнению с окружающей область. Эти пятна соответствуют концентрациям потоков магнитного поля, которые осуществляют конвекцию и приводят к падению температуры на поверхности по сравнению с окружающим материалом.

Фотосфера

Наконец, есть фотосфера, видимая поверхность Солнца. Именно здесь солнечный свет и тепло, излученные и поднятые на поверхность, распространяются в космос. Температуры в этом слое варьируются между 4500 и 6000 градусами. Поскольку верхняя часть фотосферы холоднее нижней, Солнце кажется ярче в центре и темнее по бокам: это явление известно как затемнение лимба.

Толщина фотосферы — сотни километров, именно в этой области Солнце становится непрозрачным для видимого света. Причина этого в уменьшении количества отрицательно заряженных ионов водорода (H-), которые с легкостью поглощают видимый свет. И наоборот, видимый свет, который мы видим, рождается в процессе реакции электронов с атомами водорода с образованием ионов H-.

Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.

Энергия, испускаемая фотосферой, распространяется в космосе и достигает атмосферы Земли и других планет Солнечной системы. Здесь, на Земле, верхний слой атмосферы (озоновый слой) фильтрует большую часть ультрафиолетового излучения Солнца, но пропускает часть на поверхность. Затем эта энергия поглощается воздухом и земной корой, согревает нашу планету и обеспечивает организмы источником энергии.

Солнце находится в центре биологических и химических процессов на Земле. Без него жизненный цикл растений и животных закончился бы, циркадные ритмы всех земных существ были бы сорваны, и жизнь на Земле перестала бы существовать. Важность Солнца была признана еще в доисторические времена, и многие культуры рассматривали его как божество (и зачастую помещали его в качестве главного божества в свои пантеоны).

Однако только в последние несколько столетий мы начали понимать процессы, которые питают Солнце. Благодаря постоянным исследованиям физиков, астрономов и биологов, мы теперь можем понять, как Солнце производит энергию и как она проходит через нашу Солнечную систему. Изучение известной Вселенной с ее разнообразием звездных систем и экзопланет также помогает нам провести аналогию с другими типами звезд.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *