Когда появились плазменные телевизоры
Перейти к содержимому

Когда появились плазменные телевизоры

  • автор:

 

Как за 25 лет изменились телевизоры

История «телевизоростроения» полна взлетов и падений. Когда телеприемник только появился, казалось, что это привет из фантастического будущего и торжество человеческого гения. В 2000-х, наоборот, на горизонте замаячил закат этого эпохального устройства. Тем не менее телевизоры смогли выжить и приспособиться к актуальным потребностям. Поэтому сегодня телик — не столько для просмотра телепрограмм, сколько центр домашних развлечений с фильмами, интернетом и играми. Самые стремительные метаморфозы произошли с телевизором в последние 25 лет. Вместе с сетью магазинов «5 элемент» вспомним, какие телеприемники были в конце 1990-х и во что они превратились сегодня.

Закат кинескопной эры

В середине 1990-х еще мало кто думал о том, что телевизор может выглядеть иначе. Все привыкли к огромным тяжеленным (или, наоборот, миниатюрным «кухонным», но все равно тяжеленным) ящикам. Лишь самые любопытные из нас, читавшие «продвинутые» журналы вроде «Техника — молодежи», могли познакомиться с удивительными статьями о зарубежных прототипах, которые обещали нечто совсем уж невиданное, невероятное и труднопредставляемое — экраны толщиной с палец.

Без иллюстраций сначала даже сложно было понять, что за прикол с толщиной телевизора в несколько миллиметров. Имеется в виду толщина деревянных/пластмассовых стенок? То есть в качестве объемного предмета телевизор все равно воспринимался как массивный ящик, а мозг отказывался верить, что десятилетиями не менявшаяся конструкция может вдруг стать совсем другой.

Те модели телевизоров по меркам электроники и правда берут свое начало из древности. Базировались они на электронно-лучевой трубке, прообраз которой создали еще в конце XIX века. Принцип работы ЭЛТ-телевизоров прост. Есть большая колба (кинескоп) с горизонтальными и вертикальными отклоняющими катушками. Позади катушек находится «электронная пушка», бомбардирующая электронами флуоресцентную поверхность экрана. Подавая разный ток на катушки, можно точно направлять пучок электронов на конкретную выбранную точку, подсвечивая ее.

Огромным достижением в 1990-е виделся факт перехода от черно-белых к цветным моделям. Ближе к началу XXI века было модно иметь крутой плоский ЭЛТ-телевизор. Задача у производителей, к слову, была нетривиальной. Дело в том, что сам принцип работы такого кинескопа предполагает наличие выпуклой поверхности с искажениями по краям. Чтобы компенсировать эти искажения и «выровнять» поверхность экрана, разные компании прибегали к различным хитростям. Дешевле всего было добавить внешний слой стекла с небольшой внутренней кривизной по краям, компенсирующей искажения картинки. Что ж, и правда — если сидеть прямо перед экраном, ни на градус не отклоняясь, изображение воспринималось более-менее плоским. Однако при желании кривизну всегда можно было словить, стоило только присмотреться как следует.

Пожалуй, одной из последних попыток привнести в давно устаревшее устройство что-то новое стало распространение так называемых видеодвоек. Вы наверняка помните такие «кубики», где над или под экраном еще находился отсек для видеокассет. Универсальная штука! И телевизор, и видеомагнитофон в одном корпусе. Купить такой в 1990-е было особенно престижно. Говорят, на рубеже веков даже встречались такие нелепые монстры, как помесь телевизора и DVD-плеера. Автор таких штуковин не припомнит, однако если они и были, то отличались редкостью и дороговизной.

К счастью, конец эры кинескопных телевизоров был предрешен. Громоздкие и тяжелые ящики надоели всем. Сегодня смешно подумать, но в то время доступный максимум диагонали экрана ТВ-приемника составлял 32—34 дюйма. Речь шла об огромных и крайне дорогих аппаратах, которые обязательно устанавливались на отдельную тумбу и служили в качестве прообраза нынешних домашних кинотеатров. Новое время требовало новых решений, и они не заставили себя ждать.

Плазма, ЖК и OLED

С начала 2000-х медленно, но верно в обиход стали входить по-настоящему плоские телевизоры. В то время наибольшую популярность получили плазменные панели. Разумеется, смотреть дома «плазму» еще долгое время было непозволительной для большинства роскошью.

Тяжелые, горячие, но плоские телевизоры с огромным для того времени экраном воспринимались как представители космических технологий! На самом же деле принцип работы плазменных телевизоров известен со времен, не намного отстоящих от появления первых кинескопных телевизоров. Однако с массовым внедрением «плазмы» пришлось подождать.

Первые модели таких панелей появились лишь в первой половине 1990-х, а пика своего развития технология достигла аккурат в начале 2000-х. В плазменном телевизоре матрица представляет собой «бутерброд» из двух слоев стекла, между которыми располагаются ячейки с плазмой, то есть ионизированным газом. Когда через него пропускали электричество, ячейки излучали свет.

Одновременно с плазменными панелями развивались и их ЖК-конкуренты. Принцип работы у них отличается. В жидкокристаллических экранах был (и есть) слой жидких кристаллов, за которым располагается флуоресцентная (ранее) или светодиодная (как сейчас) подсветка. В каждом кристалле-пикселе находятся три субпикселя красного, зеленого и синего цветов.

В начале XXI века сложно было предположить, какая из технологий одержит победу. Очевидно лишь было, что электронно-лучевым трубкам осталось всего ничего. Крупные производители еще выпустили несколько кинескопных телевизоров в начале 2000-х, но вскоре полностью перешли на ЖК и «плазму».

Долгое время качество изображения оставалось за плазменными моделями. У них были высокая контрастность и натуральные цвета. В целом картинка на таком телевизоре мало отличалась от ЭЛТ-теликов, но при этом «ящик» был плоский и с куда бóльшим экраном.

Однако и ЖК-технологии было что противопоставить конкуренту. Во-первых, они были дешевле. Во-вторых, ярче (плазменные телевизоры было сложно смотреть в ярко освещенном помещении). В-третьих, потребляли меньше электроэнергии. В четвертых, без эффекта выгорания. В-пятых, тоньше и больше. Да, у «плазмы» тоже было ограничение по диагонали матрицы. Если не принимать во внимание сверхдорогие и экспериментальные модели, то максимум, на что можно было рассчитывать, это 55 дюймов, причем с разрешением всего лишь Full HD.

Поэтому ничего удивительного, что плазменные модели телевизоров ненадолго пережили кинескопные аппараты. Уже ближе к 2010-му на рынке стали доминировать ЖК-модели, а еще через несколько лет от производства «плазмы» отказались все производители телевизоров. Некоторые об этом жалеют и утверждают, что при должном развитии «плазма» могла стать лучше ЖК.

Последнюю четверть века телевизоры действительно развиваются очень резво. Всего-то за 25 лет в отрасли случились три масштабные революции: отказ от ЭЛТ в пользу «плазмы» и ЖК, победа последней технологии в конкурентной борьбе с плазменными моделями и, наконец, «война» между ЖК и OLED, свидетелями которой мы сегодня являемся.

OLED-матрицы стали завоевывать рынок относительно недавно. Сначала они оккупировали рынок смартфонов, а сегодня стараются дать бой старой доброй ЖК-технологии. У OLED, в отличие от единственного конкурента, нет отдельного слоя с подсветкой, здесь сами ячейки, состоящие из органических светодиодов, умеют излучать свет. Отсюда высокая яркость, бесконечная контрастность, а также возможность создавать очень тонкие панели толщиной в считаные миллиметры.

Без недостатков, правда, тоже не обошлось, иначе OLED уже вытеснили бы ЖК. Такие телевизоры дорогие и при этом характеризуются выгоранием при статичной картинке. Одновременно совершенствуются ЖК-панели, все ближе и ближе по многим параметрам приближающиеся к OLED. Так что пока сложно сказать, кто же здесь одержит победу.

Телевизор 25 лет назад — это в прямом смысле ящик, который умел показывать эфирное ТВ да кино через видеомагнитофон. Сегодня телевизор самостоятельно умеет выходить в интернет, показывать YouTube, загружать миллион приложений и даже запускать игры. А что будет еще через 25 лет?

«5 элемент» — это сеть магазинов электроники и бытовой техники, а также онлайн-магазин 5element.by с доставкой в 13 000 населенных пунктов Беларуси.

В этом году компании «5 элемент» исполняется 25 лет! И в честь праздника для клиентов сети доступны выгодные акции. Следите за информацией о праздничных предложениях на сайте 5element.by или уточняйте у консультантов в магазинах сети.

Спецпроект подготовлен при поддержке ЗАО «ПАТИО», УНП 100183195.

Наш канал в Telegram. Присоединяйтесь!

Есть о чем рассказать? Пишите в наш телеграм-бот. Это анонимно и быстро

История изобретения — Телевизор. ⁠ ⁠

В начале радиолампы были вытеснены полупроводниками – первый телевизор на основе полупроводников был разработан в 1960 году фирмой «Sony». В дальнейшем появились модели на основе микросхем. Теперь же существуют системы, когда вся электронная начинка телевизора заключена в одну единственную микросхему.

История изобретения - Телевизор. История, Телевизор, Технологии, Видео, Длиннопост

С давних времен человечество мечтало о передаче изображений на расстояния. Все мы слышали сказки и легенды про волшебные зеркала, тарелочки с яблочками и тому подобное. Но прошло не одно тысячелетие, прежде чем эта мечта осуществилась.

Первые телевизоры, пригодные для массового производства появились в конце 30-х годов прошлого столетия. Однако этому предшествовало несколько десятилетий упорных исследований и множество гениальных открытий.

С чего все начиналось.

Эпоха телевидения началась после открытия явления фотоэффекта. Прежде всего, получил применение внутренний фотоэффект, суть которого состояла в том, что некоторые полупроводники при их освещении значительно меняли свое электрическое сопротивление.

Первым эту интересную способность полупроводников отметил англичанин Смит. В 1873 году он сообщил о произведенных им опытах с кристаллическим селеном. В этих опытах полоски из селена были разложены в стеклянные запаянные трубки с платиновыми вводами. Трубки помещали в светонепроницаемый ящик с крышкой. В темноте сопротивление полосок селена было довольно высоким и оставалось весьма стабильным, но как только крышка ящика отодвигалась, проводимость возрастала на 15-100%.

Вскоре открытие Смита стало широко применяться в телевизионных системах. Известно, что каждый предмет становится видимым только в том случае, если он освещаем или если является источником света. Светлые или темные участки наблюдаемого предмета или его изображения отличаются друг от друга различной интенсивностью отраженного или излучаемого ими света. Телевидение как раз и базируется на том, что каждый предмет (если не учитывать его цветность) можно рассматривать как комбинацию большого числа более или менее светлых и темных точек.

В 1878 году португальский профессор физики Адриано де Пайва в одном из научных журналов изложил идею нового устройства для передачи изображений по проводам. Передающее устройство де Пайва представляло собой камеру-обскуру, на задней стенке которой была установлена большая селеновая пластина. Различные участки этой пластины должны были по разному изменять свое сопротивление в зависимости от освещения. Впрочем, де Пайва признавал, что не знает, как произвести обратное действие — зас-тавить светиться экран на приемной станции.

В феврале 1888 г., русский ученый Александр Столетов провел опыт, наглядно демонстрирующий влияние света на электричество. Столетову удалось выявить несколько закономерностей этого явления. Им же был и разработан прообраз современных фотоэлементов, так называемый «электрический глаз». Позднее подобными исследованиями занималось и множество других великих ученых, в том числе Ф. Ленард, Дж. Томпсон, О. Ричардсон, П. Лукирский и С. Прилежаев. Но полностью объяснить природу фотоэффекта смог лишь Альберт Эйнштейн в 1905 году.

Параллельно этим исследованиям происходило и множество других, сыгравших в итоге не менее важную роль в истории создания телевизоров. К примеру, в 1879 году английским физиком Уильямом Круксом были открыты вещества, способные светится при воздействии на них катодными лучами – люминофоры. Позднее было установлено, что яркость свечения люминофоров напрямую зависит от силы их облучения. В 1887 году первую версию катодо-лучевой трубки (кинес-копа) представляет немецкий физик Карл Браун.

К концу 19-века сама идея телевидения не кажется уже чем-то абсурдным и фантастическим. Никто из ученых уже не сомневается в возможности передачи изображений на расстояния. Один за другим выдвигаются проекты телевизионных систем, по большей части неосуществимые с точки зрения физики. Главные же принципы работы телевидения были созданы французским ученым Морисом Лебланом. Независимо от него, подобные труды создает и американский ученый Е. Сойер. Они описали принцип, согласно которому для передачи изображения требуется его быстрое покадровое сканирование, с дальнейшим превращением его в электрический сигнал. Ну а так как радио тогда уже существовало и успешно использовалось, то вопрос с передачей электрического сигнала решился сам собой.

В 1907 году Борису Розингу удалось теоретически обосновать возможность получения изображения посредством электронно-лучевой трубки, разработанной ранее немецким физиком К. Брауном. Розингу так же удалось осуществить это на практике. И хотя удалось получить изображение в виде одной единственной неподвижной точки, это был огромный шаг вперед. В целом, в деле развития электронных телевизионных систем Розинг сыграл огромную роль.

В 1933 году в США русский эмигрант Владимир Зворыкин продемонстрировал иконоскоп – передающую электронную трубку. Принято считать, что именно В. Зворыкин является отцом электронного телевидения.

Первое устройство механического сканирования разработал в 1884 году немецкий инженер Пауль Нипков. Это устройство лишний раз подтвердило справедливость высказывания относительно простоты всего гениального. Его устройство являло собой вращающийся непрозрачный диск, диаметром до 50 см, с нанесенными по спирали Архимеда отверстиями – так называемый диск Нипкова (иногда в литературе приспособление Нипкова называют «электрическим телескопом»).

Таким образом происходило сканирование изображения световым лучом, с последующей передачей сигнала на специальный преобразователь. Для сканирования же хватало одного фотоэлемента. Количество же отверстий иногда доходило до 200. В телевизоре процесс повторялся в обратном порядке — для получения изображения опять таки использовался вращающийся диск с отверстиями, за которым находилась неоновая лампа. При помощи столь нехитрой системы и проецировалось изображение. Так же построчно, но с достаточной скоростью, для того чтобы человеческий глаз видел уже целую картинку. Таким образом, первыми начали создаваться именно проекционные телевизоры. Качество картинки оставляло желать лучшего – лишь силуэты, да игра теней, но тем не менее, различить что именно показывают было возможно. Диск Нипкова был основным компонентом практически всех механических систем телевизоров до их полного вымирания как вида.

Телевидение уходит в массы.

В 1925 году шведскому инженеру Джону Бэрду удалось впервые добиться передачи распознаваемых человеческих лиц. Опять таки с использованием диска Нипкова. Несколько позже им же была разработана и первая телесистема, способная передавать движущиеся изображения.

Первый же электронный телевизор, пригодный для практического применения был разработан в американской научно-исследовательской лаборатории RCA, возглавляемой Зворыкиным, в конце 1936 года. Несколько позже, в 1939 году, RCA представила и первый телевизор, разработанный специально для массового производства. Эта модель получила название RCS TT-5. Она представляла собой массивный деревянный ящик, оснащенный экраном с диагональю в 5 дюймов.

Первое время развитие телевидения шло в двух направлениях – электронном и механическом (иногда механическое телевидение называют еще и «малострочным телевидением»). Причем развитие механических систем происходило практически до конца 40-х годов 20-го века, прежде чем было полностью вытеснено электронными устройствами. На территории СССР механические телесистемы продержались несколько дольше.

 

Параллельно разработка телевизоров происходила и на территории Советского Союза. Первый опытный сеанс телевещания состоялся 29 апреля 1931 года. С 1 октября того же года телепередачи стали регулярными. Так как телевизоров еще не у кого не было, проводились коллективные просмотры, в специально отведенных для этого местах. Многие советские радиолюбители начинают собирать механические модели телевизоров своими руками. В 1932 году при разработке плана на вторую пятилетку телевидению было уделено много внимания. 15 ноября 1934 года впервые состоялась трансляция телевизионной передачи со звуком. Довольно длительное время существовал лишь один канал – Первый. На время Великой Отечественной Войны транслирование было прервано, и восстановлено лишь после ее окончания. А в 1960 году появился и Второй канал.

История изобретения - Телевизор. История, Телевизор, Технологии, Видео, Длиннопост

Первый советский телевизор, поставленный на поток, назывался Б-2. Эта механическая модель появилась в апреле 1932 года.

История изобретения - Телевизор. История, Телевизор, Технологии, Видео, Длиннопост

Первый же электронный телевизор был создан гораздо позже — в 1949 году. Это был легендарный КВН 49. Телевизор был оснащен столь маленьким экраном, что для более-менее комфортного просмотра перед ним устанавливалась специальная линза, которую нужно было наполнять дистиллированной водой. В дальнейшем появилось и множество других, более совершенных моделей. Впрочем, качество сборки и надежность советских телевизоров (даже самых поздних моделей) были настолько низкими, что стали притчей во языцех. Производство же цветных телевизоров в СССР началось лишь в средине 1967 года.

Хотя систему цветного телевидения разработал еще Зворыкин в 1928 году, лишь к 1950 году стало возможна ее реализация. Да и то лишь в качестве эксперементальных разработок. Прошло много лет, прежде чем эта технология стала общедоступной.

История изобретения - Телевизор. История, Телевизор, Технологии, Видео, Длиннопост

Первый, пригодный к продаже цветной телевизор создала в 1954 году все та же RCA. Эта модель была оснащена 15 дюймовым экраном. Несколько позже были разработаны модели с диагоналями 19 и 21 дюймов. Стоили такие системы дороже тысячи долларов США, а следовательно, были доступны далеко не всем. Впрочем, при желании была возможность приобрести эту технику в кредит. Из-за сложностей с повсеместной организацией цветного телевещания цветные модели телевизоров не могли быстро вытеснить черно-белые, и долгое время оба типа производились параллельно. Единые стандарты (PAL и SECAM) появились и начали внедрятся в 1967 году.

История изобретения - Телевизор. История, Телевизор, Технологии, Видео, Длиннопост

Стремительное развитие телевидения во второй половине 20-го века привело к тому, что уже выросло несколько поколений, не представляющих себе жизни без телевизора. Качество вещания значительно возросло и стало цифровым. Сами телевизоры уже перестали восприниматься как «ящики», ибо появились плоские LCD и плазменные модели. Размеры экрана перестали измеряться парой десятков сантиметров. Телевидение стало нормой.

Когда появились плазменные телевизоры

FISHKINET

Плазма, прощай: почему перестали производить плазменные телевизоры?

Еще относительно недавно такие телевизоры стоили очень много, поскольку были уникальны в своем роде и представляли собой новинку в сфере телевизионных технологий. Их производством занимались практически все компании, специализирующиеся на выпуске бытовой техники. Качество звука и изображения было своего рода прорывом. Но сейчас плазму практически невозможно найти даже при желании. Что вынудило производителей завершить выпуск таких ТВ-приемников?

Как все начиналось: история плазмы

Своим появлением такая технология обязана инженеру Жоржу Клоду. Именно он в 1911 году получил первый в мире патент на неоновую трубку. С плазменными панелями ее объединяет применение холодного разряда. Прошло почти 50 лет до того момента, прежде чем впервые задумались над возможностью использования этой технологии в производстве телевизоров. Даже в СССР имелось несколько специальных панелей, используемых для отображения информации. Но в широком доступе, естественно, их нельзя было встретить. Главная причина, конечно, отсутствие на тот момент технологической возможности создания доступных по цене устройств.

Новая ТВ-реальность. А что дальше?

Новая ТВ-реальность. А что дальше?

Но почему же плазму перестали выпускать и продавать? Все просто. Развитие технологий продолжается, и на смену плазменным телевизорам пришли так называемые OLED. На первом этапе была предпринята попытка выпускать ТВ-приемники по обеим технологиям. Но пока новинка не была проверена временем, а ее качество не подтверждено отзывами, в сознании покупателя четко закрепилась установка о бессмысленности огромных затрат на покупку непонятной и не опробованной технологии. Зачем платить больше, если можно приобрести привычную проверенную плазму?

Вендоры приняли решение отказаться от плазмы, оставив в производстве только технологию OLED. Ситуация, в общем-то, двоякая. С одной стороны, нельзя сказать, что производители поступили нечестно, потому что новая технология существенно лучше предшественницы. Благодаря ей можно смотреть телевизор в максимально хорошем качестве и с превосходным звуком. Ее единственным относительно сильным конкурентом как раз и была плазма. ЖК-телевизоры, стоившие дешевле, существенно проигрывали по уровню качества. С другой стороны, ничего плохого в том, что все три технологии существовали бы на рынке одновременно, не было бы. Это позволило бы покупателю выбирать и сравнивать по набору подходящих для него качеств и, конечно, обеспечивало бы здоровую конкуренцию.

При этом можно сказать, что технически плазму улучшить не представляется возможным. В данной сфере предельный максимум уже достигнут по всем параметрам. И вполне логично, что на смену ей идет новая. Таким образом, главной причиной того, что производство плазменных телевизоров было завершено, стала необходимость подготовки ниши для более совершенного оборудования. При этом у многих людей остались такие приемники, и до выхода их из строя пользователи не собираются ни на что менять плазменные телевизоры. Конечно, постепенно OLED-телевизоры тоже упадут в цене. Вопрос только во времени, которое для этого понадобится. А плазма для своей эпохи была вполне доступная, хорошо проверенная и качественная. Поэтому жаль, что она больше не вернется. А какие телевизоры предпочитаете вы и почему?

Плазменный дисплей

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными поверхностями. В качестве газовой среды обычно используется неон или ксенон. Разряд в газе протекает между прозрачным электродом на лицевой стороне экрана и адресными электродами, проходящими по его задней стороне. Газовый разряд вызывает ультрафиолетовое излучение, которое, в свою очередь, инициирует видимое свечение люминофора. В цветных плазменных панелях каждый пиксель экрана состоит из трёх идентичных микроскопических полостей, содержащих инертный газ (ксенон) и имеющих два электрода, спереди и сзади. После того, как к электродам будет приложено сильное напряжение, плазма начнёт перемещаться. При этом она излучает ультрафиолетовый свет, который попадает на люминофоры в нижней части каждой полости. Люминофоры излучают один из основных цветов: красный, зелёный или синий. Затем цветной свет проходит через стекло и попадает в глаз зрителя. Таким образом, в плазменной технологии пиксели работают, подобно люминесцентным трубкам, но создание панелей из них довольно проблематично. Первая трудность — размер пикселя. Суб-пиксель плазменной панели имеет объём 200 мкм x 200 мкм x 100 мкм, а на панели нужно уложить несколько миллионов пикселей, один к одному. Во-вторых, передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова, поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома — он проводит ток намного лучше, но, к сожалению, непрозрачен.

Наконец, требуется подобрать правильные люминофоры. Они зависят от требуемого цвета:

  • Зелёный: Zn2SiO4:Mn2+ / BaAl12O19:Mn2+
  • Красный: Y2O3:Eu3+ / Y0,65Gd0,35BO3:Eu3
  • Синий: BaMgAl10O17:Eu2+

Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего. Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх суб-пикселей. На плазменной панели 1280×768 пикселей присутствует примерно три миллиона суб-пикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления суб-пикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние — в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, — подобно сканированию лучом на ЭЛТ-мониторах.

Немного истории.

Первый прототип плазменного дисплея появился в 1964 году. Его сконструировали ученые Иллинойского университета Битцер и Слоттоу как альтернативу кинескопному экрану для компьютерной системы Plato. Дисплей этот был монохромным, не требовал дополнительной памяти и сложных электронных схем и отличался высокой надежностью. Его предназначением было в основном индицировать буквы и цифры. Однако в качестве компьютерного монитора он так и не успел, как следует реализоваться, поскольку благодаря полупроводниковой памяти, появившейся в конце 70-х, кинескопные мониторы оказались дешевле в производстве. Зато плазменные панели благодаря малой глубине корпуса и большому экрану получили распространение в качестве информационных табло в аэропортах, вокзалах и на биржах. Информационными панелями плотную занялась компания IBM, а в 1987 году бывший студент Битцера, доктор Лэрри Вебер, основал компанию Plasmaco, которая занялась производством монохромных плазменных дисплеев. Первый же цветной плазменный дисплей 21″ был представлен фирмой Fujitsu в 1992 году. Разрабатывался он совместно с конструкторским бюро Иллинойского университета и компанией NHK. А в 1996 Fujitsu покупает компанию Plasmaco со всеми ее технологиями и заводом, и выбрасывает на рынок первую коммерчески успешную панель плазмы – Plasmavision с экраном разрешения 852 х480 диагональю 42″ с прогрессивной разверткой. Началась продажа лицензий другим производителям, первым среди которых стал Pioneer. Впоследствии, активно развивая плазменную технологию, Pioneer, пожалуй, больше всех остальных преуспел на плазменном поприще, создав целый ряд великолепных моделей плазмы.

При всем ошеломляющем коммерческом успехе плазменных панелей качество изображения поначалу было, мягко сказать, удручающим. Стоили же они баснословных денег, но быстро завоевали аудиторию благодаря тому, что выгодно отличались от кинескопных монстров плоским корпусом, дававшим возможность повесить телевизор на стену, и размерами экрана: 42 дюйма по диагонали против 32 (максимум для кинескопных телевизоров). В чем же был основной дефект первых плазменных мониторов? Дело в том, что при всей красочности картинки они совершенно не справлялись с плавными цветовыми и яркостными переходами: последние распадались на ступеньки с рваными краями, что на подвижном изображении выглядело вдвойне ужасно. Оставалось только гадать, отчего возникал данный эффект, о котором, как будто сговорившись, ни слова не писали средства массовой информации, превозносившие новые плоские дисплеи. Однако лет через пять, когда сменилось несколько поколений плазмы, ступеньки стали встречаться все реже, да и по другим показателям качество изображения стало стремительно расти. К тому же помимо 42-дюймовых появились панели 50″ и 61″. Постепенно росло и разрешение, и где-то на этапе перехода к 1024 х 720 плазменные дисплеи были, что называется, в самом соку. Совсем же недавно плазма успешно переступила новый порог качества, войдя в привилегированный круг устройств Full HD. В настоящее время наиболее популярными являются размеры экрана 42 и 50 дюймов по диагонали. В придачу к стандартному 61″ появился размер 65″, а также рекордный 103″. Впрочем, настоящий рекорд только грядет: компания Matsushita (Panasonic) недавно анонсировала панель 150″! Но это, как и модели 103″ (кстати, на основе панелей Panasonic плазмы такого же размера производит известная американская компания Runco), штука неподъемная как в прямом, так и в еще более прямом смысле (вес, цена).

Технологи плазменных панелей.

Просто о сложном.

Вес был упомянут неспроста: плазменные панели очень много весят, особенно модели больших размеров. Это является следствием того, что плазменная панель в основном состоит из стекла, если не считать металлическое шасси и пластиковый корпус. Стекло здесь необходимо и незаменимо: оно останавливает вредное ультрафиолетовое излучение. По этой же причине никто не производит люминесцентные лампы из пластика, только из стекла.

Вся конструкция плазменного экрана — это два листа стекла, между которыми находится ячеистая структура пикселей, состоящих из триад субпикселей — красных, зеленых и голубых. Ячейки заполнены инертными, т. н. «благородными» газами — смесью неона, ксенона, аргона. Проходящий через газ электрический ток заставляет его светиться. По сути, плазменная панель представляет собой матрицу из крошечных флуоресцентных ламп, управляемых при помощи встроенного компьютера панели. Каждый пиксель-ячейка является своеобразным конденсатором с электродами. Электрический разряд ионизирует газы, превращая их в плазму — т. е. электрически нейтральную, высокоионизированную субстанцию, состоящую из электронов, ионов и нейтральных частиц. На самом деле каждый пиксель делится на три субпикселя, содержащих красный(R), зеленый(G) либо синий(B) люминофор: • Зелёный: Zn2SiO4:Mn2+ / BaAl12O19:Mn2+ • Красный: Y2O3:Eu3+ / Y0,65Gd0,35BO3:Eu3 • Синий: BaMgAl10O17:Eu2+ Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего. Фактически вертикальные ряды R, G и B просто поделены на отдельные ячейки горизонтальными перетяжками, что делает структуру экрана очень похожей на масочный кинескоп обычного телевизора. Сходство с последним еще и в том, что здесь используется тот же цветной фосфор, которым покрыты изнутри ячейки субпикселей. Только поджог фосфорного люминофора осуществляется не электронным лучом, как в кинескопе, а ультрафиолетовым излучением. Для создания разнообразных оттенков цветов интенсивность свечения каждого субпикселя контролируется независимо. В кинескопных телевизорах это делается путем изменения интенсивности потока электронов, в `плазме` — при помощи 8-битной импульсной кодовой модуляции. Общее число цветовых комбинаций в этом случае достигает 16,777,216 оттенков.

Как получается свет. Основа каждой плазменной панели — это собственно плазма, т. е. газ, состоящий из ионов (электрически заряженных атомов) и электронов (отрицательно заряженных частиц). В нормальных условиях газ состоит из электрически нейтральных, т. е. не имеющих заряда частиц.

Если ввести в газ большое число свободных электронов, пропустив через него электрический ток, ситуация меняется радикально. Свободные электроны сталкиваются с атомами, `выбивая` все новые и новые электроны. Без электрона меняется баланс, атом приобретает положительный заряд и превращается в ион.

Когда электрический ток проходит через образовавшуюся плазму, отрицательно и положительно заряженные частицы стремятся друг к другу.

Среди всего этого хаоса частицы постоянно сталкиваются. Столкновения `возбуждают` атомы газа в плазме, заставляя их высвобождать энергию в виде фотонов в ультрафиолетовом спектре.

При попадании фотонов на люминофор, частицы последнего возбуждаются, испускают свои собственные фотоны, но они уже окажутся видимы и приобретут форму световых лучей.

Между стеклянными стенками располагаются сотни тысяч ячеек, покрытых люминофором, который светится красным, зеленым и голубым светом. Под видимой стеклянной поверхностью — по всему экрану — расположены длинные, прозрачные дисплейные электроды, изолированные сверху листом диэлектрика, а снизу слоем оксида магния (MgO).

Чтобы процесс был стабильным и управляемым, необходимо обеспечить достаточное количество свободных электронов в толще газа плюс достаточно высокое напряжение (порядка 200 В), которое заставит ионный и электронные потоки двигаться навстречу друг другу.

А чтобы ионизация происходила мгновенно, помимо управляющих импульсов на электродах присутствует остаточный заряд. К электродам управляющие сигналы подводятся по горизонтальным и вертикальным проводникам, образующим адресную сетку. Причем вертикальные (дисплейные) проводники представляют собой токопроводящие дорожки на внутренней поверхности защитного стекла с передней стороны. Они прозрачны (слой окиси олова с примесью индия). Горизонтальные же (адресные) металлические проводники располагаются с тыльной стороны ячеек.

Ток течет от дисплейных электродов (катодов) к анодным пластинкам, повернутым под углом 90 градусов относительно дисплейных электродов. Защитный слой служит для исключения прямого контакта с анодом.

Под дисплейными электродами располагаются уже упомянутые нами ячейки пикселей RGB, выполненные в форме крохотных коробочек, изнутри покрытых цветным люминофором (каждая „цветная“ коробочка — красная, зеленая или голубая — называется подпикселем). Под ячейками находится конструкция из адресных электродов, расположенных под углом 90 градусов к дисплейным электродам и проходящих через соответствующие цветные подпиксели. Следом располагается защитный для адресных электродов уровень, закрытый задним стеклом.

Прежде, чем плазменный дисплей будет запаян, в пространство между ячейками впрыскивается под низким давлением смесь двух инертных газов — ксенона и неона. Для ионизации конкретной ячейки создается разность напряжений между дисплейным и адресным электродами, расположенными друг напротив друга выше и ниже ячейки.

Немного реалий.

На самом деле структура реальных плазменных экранов гораздо сложнее, да и физика процесса совсем не так проста. Помимо описанной выше матричной сетки существует и другая разновидность — сопараллельная, предусматривающая дополнительный горизонтальный проводник. Кроме этого, тончайшие металлические дорожки дублируют для выравнивания потенциала последних по всей длине, которая довольно значительна (1 м и более). Поверхность электродов покрыта слоем окиси магния, который выполняет изолирующую функцию и одновременно обеспечивает вторичную эмиссию при бомбардировке положительными ионами газа. Существуют и различные типы геометрии пиксельных рядов: простая и «вафельная» (ячейки разделены двойными вертикальными стенками и горизонтальными перемычками). Прозрачные электроды могут выполняться в форме двойного Т или меандра, когда они как бы переплетаются с адресными, хотя и находятся в разных плоскостях. Существует множество и других технологических хитростей, направленных на повышение эффективности плазменных экранов, которая изначально была довольно низкой. С этой же целью производители варьируют газовый состав ячеек, в частности, увеличивают процентное содержание ксенона с 2 до 10%. Кстати, газовая смесь в ионизированном состоянии слегка светится и сама по себе, поэтому, дабы устранить загрязнение спектра люминофоров этим свечением, в каждой ячейке устанавливают миниатюрные светофильтры.

Управление сигналом.

Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх субпикселей. На плазменной панели 1280×768 пикселей присутствует примерно три миллиона субпикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления субпикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние — в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, — подобно сканированию лучом на ЭЛТ-мониторах. Управление пикселями осуществляется с помощью трех типов импульсов: стартовых, поддерживающих и гасящих. Частота — порядка 100 кГц, хотя известны идеи дополнительной модуляции управляющих импульсов радиочастотами (40 МГц), что обеспечит более равномерную плотность разряда в толще газа.

По сути, управление свечением пикселей носит характер дискретной широтно-импульсной модуляции: пикселей светятся ровно столько, сколько длится поддерживающий импульс. Длительность же его при 8-битной кодировке может принимать 128 дискретных значений, соответственно, получается такое же количество градаций яркости. Уж не в этом ли была причина рваных градиентов, распадающихся на ступеньки? Плазма более поздних поколений постепенно наращивала разрешение: 10, 12, 14 бит. Последние модели Runco, относящиеся к категории Full HD, используют 16-битную обработку сигнала (вероятно, и кодировку также). Так или иначе, ступеньки исчезли и больше, будем надеяться, не появятся.

Помимо самой панели.

Постепенно совершенствовалась не только сама панель, но и алгоритмы обработки сигнала: масштабирования, прогрессивного преобразования, компенсации движений, подавления шумов, оптимизации цветосинтеза и пр. У каждого производителя плазмы появился свой набор технологий, частично дублирующий чужие под другими названиями, но частично и свои. Так, почти все использовали алгоритмы масштабирования и адаптивного прогрессивного преобразования DCDi Faroudja, в то время как некоторые заказывали оригинальные разработки (например, Vivix у Runco, Advanced Video Movement у Fujitsu, Dynamic HD Converter у Pioneer и т. д.). В целях повышения контрастности вносились коррективы в структуру управляющих импульсов и напряжений. Для увеличения яркости в форму ячеек вводились дополнительные перемычки для увеличения покрытой люминофором поверхности и снижения засветки соседних пикселей (Pioneer). Постепенно росла роль «интеллектуальных» алгоритмов обработки: вводилась покадровая оптимизация яркости, система динамического контраста, продвинутые технологии цветосинтеза. Корректировки в исходный сигнал вносились не только исходя из характеристик самого сигнала (насколько темным или светлым являлся текущий сюжет или насколько быстро движутся объекты), но и из уровня внешней освещенности, который отслеживался с помощью встроенного фотосенсора. С помощью продвинутых алгоритмов обработки удалось достичь просто фантастических успехов. Так, компания Fujitsu путем интерполяционного алгоритма и соответствующих доработок процесса модуляции добилась увеличения количества градаций цвета в темных фрагментах до 1019, что намного превышает собственные возможности экрана при традиционном подходе и соответствует чувствительности человеческого зрительного аппарата (технология Low Brightness Multi Gradation Processing). Эта же компания разработала метод раздельной модуляции четных и нечетных управляющих горизонтальных электродов (ALIS), который затем использовался в моделях Hitachi, Loewe и др. Метод давал повышенную четкость и уменьшал зубчатость наклонных контуров даже без дополнительной обработки, в связи, с чем в спецификациях использовавших его моделей плазмы появился необычный показатель разрешения 1024 × 1024. Такое разрешение, конечно, являлось виртуальным, но эффект оказался весьма впечатляющим.

Достоинства и недостатки.

Плазма — это дисплей, который, подобно кинескопному телевизору, не использует светоклапаны, а излучает уже модулированный свет непосредственно фосфорными триадами. Это в определенной степени роднит плазму с электронно-лучевыми трубками, столь привычными и доказавшими свою состоятельность на протяжении нескольких десятилетий.

У плазмы заметно более широкий охват цветового пространства, что также объясняется спецификой цветосинтеза, который формируется «активными» фосфорными элементами, а не путем пропускания светового потока лампы через светофильтры и светоклапаны.

Кроме того, ресурс плазмы около 60000 часов.

Итак, плазменные телевизоры это:

— Большой размер экрана + компактность + отсутствие элемента мерцания; — Высокая четкость изображение; — Плоский экран, не имеющий геометрических искажений; — Угол обзора 160 градусов по всем направлениям; — Механизм не подверженный влиянию магнитных полей; — Высокие разрешение и яркость изображения; — Наличие компьютерных входов; — Формат кадра 16:9 и наличие режима прогрессивная развертка.

В зависимости от ритма пульсации тока, который пропускается через ячейки, интенсивность свечения каждого субпикселя, контроль над которым осуществлялся независимо, будет разной. Увеличивая или уменьшая интенсивность свечения, можно создавать разнообразные цветовые оттенки. Благодаря такому принципу работы плазменной панели удаётся получить высокое качество изображения без цветовых и геометрических искажений. Слабой стороной является относительно низкая контрастность. Это связано с тем, что на ячейки постоянно должен подаваться ток низкого напряжения. В противном случае время отклика пикселей (их загорание и затухание) будет увеличено, что недопустимо.

Теперь о недостатках.

Передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова, поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома — он проводит ток намного лучше, но, к сожалению, непрозрачен. Боится плазма и не очень деликатной транспортировки. Потребление электроэнергии весьма значительное, хотя в последних поколениях его удалось существенно снизить, заодно исключив и шумные вентиляторы охлаждения.

Выгорание пикселей

Важным недостатком плазмы является неравномерное выгорание пикселей при длительном воспроизведении статического изображения, контуры которого затем проступают при смене сюжета. Чтобы не допустить деградации дисплеев от выгорания, применяются различные методы: скринсейверы (как в компьютерных мониторах), автоматическое отключение через некоторое время при статическом сигнале или отсутствии его, а также плавные перемещения изображения по экрану.

Еще один важный недостаток `плазмы` — большой размер пикселей. Большинство производителей неспособны создавать ячейки менее 0,3 мм — это больше, чем зерно стандартного компьютерного монитора.

Блики.

Но, пожалуй, все же самый главный недостаток плазменных экранов — это блики. Да, плазма практически не чувствительна к внешнему освещению, цвета на экране остаются яркими, и изображение не теряет четкость, но на это изображение накладывается отражение всего, что находится за спиной у зрителя, включая его самого.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *