Размер матрицы все, что нужно знать
Раньше было вполне логичным, что покупая компактную камеру, вы получали небольшую матрицу, а если выбирали крупногабаритную зеркалку со сменными объективами, матрица на ней была значительно больше. Это сказывалось на качестве фотографий, поскольку чем больше матрица, тем более детализированы были изображения.
Сейчас это в принципе, тоже в какой-то мере актуально, матрица — это самая дорогая часть камеры в плане производства, и чем больше матрица, тем и камера, соответственно, дороже. Потому на дорогие камеры обычно не устанавливаются матрицы 1/2.3 дюймовые, а на дешевых, соответственно, не найти полнокадровую.
Но надо сказать, что сейчас многие производители стали предлагать компактные камеры с относительно большими матрицами, точно так же как и камеры под сменные объективы с меньшими матрицами. Так что разобраться в ситуации, пожалуй, стало сложнее. Небольшие матрицы способны отлично срабатывать в различных условиях, и даже имеют некоторые преимущества перед большими.
За последние годы и сама технология создания матриц значительно продвинулась вперед, так что сегодня большое количество предлагаемых вариантов может смутить даже опытного пользователя, что уж говорить о тех, кто приобретает первую фотокамеру. А ведь размер матрицы еще и на фокусном расстоянии сказывается, так что учитывать при выборе камеры действительно нужно очень многое.
Итак, мы решили разобраться в различных типах матриц, чтобы расставить все по местам. Но для начала нужно уточнить, как именно размер матрицы влияет на эффективное фокусное расстояние.
Фокусное расстояние
Итак, мы уже выяснили, что размер матрицы связан с фокусным расстоянием, то есть с тем, какой именно объектив подойдет вашей камере. Если вы приобретаете компактный девайс с не съемным объективом, проблема сама собой отпадает, то есть с позиции покупателя это гораздо проще. Но не просто так профессионалы выбирают именно те камеры, где объективы можно менять. Любой объектив должен иметь поле (круг) изображения или диаметр света, который существует в объективе и который покрывает размер матрицы. Есть одно исключение, к которому мы вернемся позже.
Итак, встроенные или нет, объективы всегда помечены реальным фокусным расстоянием, а не эффективным фокусным расстоянием, которое вы получите при использовании на той или иной камере. Но проблема в том, что различные объективы с различной маркировкой могут в итоге обеспечить одно и то же фокусное расстояние для работы. Почему? Потому что они предназначены для разных матриц. Именно поэтому производители помимо маркировки указывают эквивалент, где основным расстоянием считается 35мм или полнокадровая матрица.
Вот — один из примеров: камера с матрицей меньше чем полнокадровая вполне может использоваться с 18-55мм объективом, но на деле фокусное расстояние, которое вы получите будет ближе к 27-82мм. Это все происходит потому, что матрица не достаточно велика, чтобы использовать объектив точно так же как смог бы полнокадровый. Из-за того, что периферическое пространство внутри объектива не принимается в расчет, получается тот же эффект как от использования объектива с большим фокусным расстоянием.
В компактных камерах может был установлен 19мм объектив, но из-за размера матрицы, который меньше фуллфрейма, вы получите в итоге большее фокусное расстояние, около 28мм. Точная длина определяется кроп-фактором, то есть числом, на которое нужно увеличить данное под фуллфрейм фокусное расстояние, чтобы выяснить какое расстояние получится на той или иной камере.
Размеры матриц
1/2.3 дюйма
Размер такой матрицы примерно 6.3 x 4.7 мм. Это — самая маленькая матрица, которую можно найти в современных камерах, и чаще всего — в бюджетных компактных моделях. Разрешение такой матрицы составляет, как правило, 16-20 Мп.
По крайней мере такой расклад был самым популярным какое-то время назад. Сегодня многие производители стали делать больший упор на любительские фотоаппараты с большими матрицами, так что и размер такой не так распространен как ранее.
Однако, преимущество в том, что такой размер позволяет получить компактную камеру и использовать ее с длиннофокусными объективами, например компактными суперзумами. А большая матрица значит, что и объектив понадобится больший.
При хорошем освещении такие камеры могут предоставить неплохой результат, но для более придирчивых фотографов они точно не подойдут, поскольку при низкой освещенности будут зернить.
1/1.7 дюймов
Размер этих матриц 7.6 x 5.7мм. С такой матрицей гораздо проще выделить объект съемки из фона, и соответственно, производительность в плане деталей как в тени, так и на свету. Так что использовать их можно уже в более разнообразных условиях. Раньше такие камеры были самыми распространенными среди любителей, но сейчас их место стремительно занимают дюймовые матрицы, о которых речь и пойдет дальше.
А вот 1/1.7 дюймовые матрицы используются в некоторых относительно устаревших камерах Q-серии Pentax.
Дюймовые матрицы
Размер дюймовой матрицы 13.2мм x 8.8мм. Сегодня такие матрицы очень популярны на различных типах камер, размер позволяет им оставаться легкими и компактными. Логично, что самый популярный способ применения для дюймовой матрицы — это карманные любительские камеры, на которых объектив будет лимитирован 24-70мм или 24-100мм (если брать эквивалент 35мм). Однако, на некоторых суперзум камерах он тоже используется?, примеры — это Sony RX10 III и Panasonic FZ2000.
Гораздо лучше дюймовая матрица нам знакома по камерам Nikon серии 1, например Nikon 1 J5 — отличной и легкой камере, которая способна делать отличные фото и снимать 4К видео. Такую матрицу можно встретить даже среди смартфонов — Panasonic CM1.
Камеры с дюймовой матрицей способны показать результаты, значительно отличные от предыдущих вариантов. Качество их будет высоким, а даже компактные камеры, как правило, имеют широкую максимальную апертуру, так что на матрицу попадает достаточно света, потому и фотографии выходят четкими и резкими.
Частично, это результат технологии, а не только размера матрицы. Матрицы современного производства могут более эффективно захватывать свет.
Микро 4/3
Матрица микро 4/3 имеет физический размер 17.3 x 13мм. Этот формат используется в компактных зеркалках и беззеркалках Olympus и Panasonic. Они ненамного больше по размеру, чем дюймовые матрицы, но меньше чем APS-C, речь о которых пойдет ниже.
По сути, микро 4/3 — это четверть размера полнокадровой матрицы, так что считать для нее активное фокусное расстояние предельно просто: достаточно умножить фокусное расстояние на 2.
Иными словами, 17мм объектив на камере с матрицей микро 4/3 обеспечит фокусное расстояние такое же, как 34мм объектив на полнокадровой матрице. По аналогии, 12-35мм даст 24-70мм и так далее.
На камере Lumix DMC-LX100 используется матрица микро 4/3 разрешением 12.8 Мп. Это — одна из компактных цифровых камер, которые обладают большим количеством функций и небольшим размером. Камера оснащена объективом Leica с фокусным расстоянием 24-75мм.
Средний физический размер такой матрицы 23.5 x 15.6мм. Такая матрица используется на зеркальных камерах для начинающих и любительских камерах, а сейчас и на многих беззеркалках. Матрица APS-C обеспечивает отличный баланс между качеством изображения, размером и вариативностью в плане совместимости с различными объективами.
Не все APS-C матрицы одинаковы по размеру, ведь это зависит от производителя тоже. Например, матрицы APS-C на камерах Canon физически немного меньше чем те, что установлены в Nikon и Sony, таким образом ее кроп-фактор равен 1.6x, а не 1.5x. В любом случае, APS-C — это всегда отличный вариант и профессиональные фотографы нередко предпочитают его для съемок природы и спортивных мероприятий, потому что благодаря кроп-фактору появляется возможность “приблизиться” к объекту съемки имеющимся объективом.
APS-C доступны на некоторых компактных камерах, например Fujifilm X100F, это обеспечивает высокое качество для фотографий на портативных камерах, особенно в комплекте с объективами с постоянным фокусным расстоянием. 23мм объектив на Fujifilm X100F, имеет широкую максимальную апертуру, потому с помощью этой камеры можно без труда добиться узкой глубины резкости.
Размер матриц APS-H как правило равен 26.6 x 17.9мм. Сегодня этот формат практически не встречается, и ассоциируется только с устаревшими моделями Canon EOS-1D (EOS-1D Mark III и Mark IV). Сейчас, правда, в этой серии используются фуллфреймы.
Поскольку APS-H больше чем APS-C, но меньше полнокадровой матрицы, кроп-фактор, соответственно равен 1.3х, потому 24мм объектив обеспечит на такой камере фокусное расстояние приблизительно 31мм.
Одна из последних фотокамер, где можно встретить такую матрицу — это Sigma sd Quattro H. Однако и Canon решили не отказываться от APS-H совсем, и предпочли применить эту матрицу для камер наблюдения, а не для зеркальных фотоаппаратов.
Фуллфрейм
36 x 24мм она же фуллфрейм, она же полнокадровая матрица и она же примерно такая же по размеру как негатив пленочной фотографии. Используются полнокадровые матрицы на любительских и профессиональных камерах и считаются самым удобным вариантом для съемок. Размер такой матрицы позволяет ей принимать на себя больше света, вследствие чего и фото получаются выше по качеству чем с меньшими матрицами. Соответственно, и когда речь идет о количестве пикселей, выбор больше. А разрешение полнокадровых матриц варьируется от 12 до 50Мп.
Кроп-фактор, конечно, в случае с полнокадровой матрицей значения не имеет, так как маркировка объектива будет соответствовать активному фокусному расстоянию. Однако же, некоторые объективы, созданные под APS-C матрицы все равно можно использовать с фуллфреймами, но разрешение будет ограничено (камера обрежет углы, чтобы избежать виньетирования). Но проверять совместимость, разумеется, нужно всегда, иначе есть риск повредить зеркало.
Средняя (медиум) матрица
44мм x 33мм — размер такой матрицы. Это, очевидно, больше фуллфрейма и с момента появления такие матрицы вызвали оживленный интерес и дискуссии. Они использованы в камерах Fujifilm GFX 50S, Hasselblad X1D и Pentax 645Z, последняя немного старше остальных. Применяются они в основном, исключительно профессиональными фотографами в силу цены таких камер и их специфики.
Не факт, что на этом развитие матриц как таковых остановится, но пока что это — все доступные на рынке типы матриц, а какая подойдет для ваших фото интересов, решать только вам.
Матрицы для камер видеонаблюдения. На что обращать внимание?
Качество изображения видеокамеры во многом зависит от используемого в ней светочувствительного сенсора (матрицы). Ведь поставь хоть лучший процессор для оцифровки видео – если на матрице получено плохое изображение, хорошим оно уже не станет. Попытаюсь популярно объяснить, на что следует обращать внимание в характеристиках сенсора камеры видеонаблюдения, чтобы потом не было мучительно больно при взгляде на изображение…
Тип матрицы
В интернете вы наверняка найдете информацию о том, что в камерах видеонаблюдения применяются CCD (ПЗС, прибор с зарядовой связью) и CMOS (КМОП, комплементарная структура металл-оксид-полупроводник) светочувствительные матрицы. Забудьте! Давно остался только CMOS, только хардкор.
CCD матрицы, при всех их достоинствах (лучшая светочувствительность и цветопередача, меньший уровень шумов) – уже практически не используются в видеонаблюдении. Потому что сам принцип их действия CCD матриц – последовательное считывание заряда по ячейкам – слишком медленный, чтобы удовлетворить запросы быстрых современных видеокамер высокого разрешения. Ну и самое главное CCD дороже в производстве, а в условиях современной высококонкурентной среды на счету каждая копейка прибыли. Вот почему все ключевые производители сосредоточились на выпуске именно CMOS матриц.
Осталось производителей, между прочим, не так и много. Крупнейшими, по состоянию на начало 2017 года, являются компании: ON Semiconductor Corporation (в свое время поглотившая известную профильную компанию Aptina), Omnivision Technologies Inc., Samsung Electronics и Sony Corporation. Кроме того, матрицы для собственных нужд производит, например, компания Canon, Hikvision.
Конкуренцию старым брендам пытаются создать молодые, полные энтузиазма и денег китайские чипмейкеры «второго эшелона», вроде компании SOI (Silicon Optronics, Inc.) и др. Трудно сказать, выживет ли молодая поросль, когда на рынке CMOS сенсоров наступит насыщение и станет слишком тесно. Но в любом случае в этом сегменте не исключено появление новых игроков и обострение борьбы, ведь наладить производство CMOS сенсоров не слишком и сложная по современным меркам задача.
Крупные мировые бренды типа Hikvision или Dahua обычно предпочитают работать с производителями матриц первого эшелона или собственными. Локальные же ведут себя по разному. Например, Tecsar даже в недорогих камерах использует матрицы с хорошей репутацией от ON Semiconductor, Omnivision и Sony. В в ассортименте других “народных” марок, например Berger, широко представлены сенсоры SOI и т.д.
Как делаются матрицы цифровых камер
Лидерские качества CMOS
CMOS технология предусматривает размещение электронных компонентов (конденсаторов, транзисторов) непосредственно в каждом пикселе светочувствительной матрицы.
Структура пикселя и CMOS матрицы
Это уменьшает полезную площадь светочувствительного элемента и снижает чувствительность, плюс активные элементы повышают уровень собственных шумов матрицы. Зато технология позволяет осуществлять преобразование заряда светочувствительного элемента в электрический сигнал прямо в матрице и гораздо быстрее сформировать цифровой сигнал изображения, что критично для видеокамер. Именно поэтому CMOS лучше подходят для камер видеонаблюдения, где требуется быстрая смена кадров.
Принцип работы CCD и CMOS матриц
Плюс возможность произвольного считывания ячеек CMOS матрицы дает возможность буквально «на лету» изменять качество и битрейт получаемого видео, что невозможно для CCD. А энергопотребление CMOS-решений ниже, что тоже немаловажно для компактных камер наблюдения.
Да будет цвет
Для получения цветного изображения матрица разлагает световой поток на составляющие цвета: красный, зеленый и синий. Для этого используются соответствующие светофильтры. Разные производители варьируют размещение и количество светочувствительных элементов разного цвета, но суть от этого не меняется.
Принцип формирования изображения на светочувствительной матрице:
Р – светочувствительный элемент
Т — электронные компоненты
Как устроен и работает КМОП сенсор камеры можно также посмотреть на этом видео от Canon:
CMOS матрицы всех производителей базируются на вышеописанных общих принципах, отличаясь лишь в деталях реализации на кремнии. Например, в погоне за дешевизной и сверхприбылью, чипмейкеры стараются выпускать матрицы как можно меньшего размера. Расплата за это неизбежна…
Почему большой – это хорошо
Типоразмер (или другими словами формат) матрицы обычно измеряют по диагонали в дюймах и указывают в виде дроби, например 1/4″, 1/3″, 2/3″, 1/2 дюйма и др.
Первое правило выбора лучшей матрицы довольно простое: при одинаковом количестве пикселей (разрешении), чем больше физические размеры сенсора – тем лучше. У большей матрицы крупнее пиксели, а значит, она улавливает больше света. Пиксели большей матрицы расположены менее тесно, а значит меньше влияние взаимных помех и ниже уровень паразитных шумов, что напрямую влияет на качество получаемого изображения. Наконец, более крупная матрица позволяет получить большие углы обзора при использовании объектива с одним и тем же фокусным расстоянием!
Светочувствительная матрица производства ON Semicondactor для камер видеонаблюдения
Светочувствительная матрица, установленная на плате видеокамеры
Увы, большеформатные матрицы в массовых камерах видеонаблюдения сейчас практически не используются в силу дороговизны и самих матриц, и объективов для них, которые должны иметь более крупные линзы и, соответственно, габариты и стоимость. На сегодня в камеры устанавливают в основном матрицы типоразмера 1/2″ – 1/4″ (это самые крошечные). Выбирая камеру, нужно четко понимать, что покупая ультрадешевую модель с 1/4″ матрицей производства SOI и крохотным объективом с пластиковыми линзами сомнительной прозрачности, вы не сможете создать систему видеоконтроля приемлемого качества, на которой можно было бы хорошо различать небольшие детали отснятых событий, особенно при съемке в условиях слабой освещенности.
Выбирая же камеру с матрицей Sony типоразмера 1/2.8″ вы априори получите гораздо лучший результат по качеству видео, камеру с такой матрицей уже вполне можно использовать в профессиональной системе видеонаблюдения. И чувствительность у такой камеры будет заведомо выше, что позволит лучше снимать в условиях слабой освещенности: в плохую погоду, в сумерках, в полутемном помещении и т.п. С увеличением разрешения при том же размере матрицы светочувствительность падает, и это тоже нужно учитывать при выборе. Для камеры, установленной в темной подворотне у черного хода, имеет смысл выбрать матрицу с меньшим разрешением и более высокой чувствительностью, чем камеру ультравысокого разрешения с низкой чувствительностью матрицы на которой из-за шумов ничего нельзя будет толком различить.
Светочувствительность
Светочувствительность матрицы определяет возможность ее работы в условиях слабого окружающего освещения. С точки зрения физики это выглядит совсем банально: чем меньше световой энергии достаточно для получения изображения матрицей, тем выше ее светочувствительность. Но! Будем откровенны, гнаться за высокой чувствительностью уже особо не стоит. Дело в том, что современные камеры видеонаблюдения благополучно переходят в режимы «день/ночь», при снижении освещенности переводя матрицу в режим черно-белого изображения с более высокой чувствительностью. Плюс автоматическое включение инфракрасной подсветки дает камерам возможность отлично снимать даже в полной темноте. Например, в закрытом помещении без окон и с выключенным светом, когда об уровне какой-то внешней освещенности даже речи нет. Светочувствительность остается критичной для камер лишенных ИК подсветки, но использовать такие в современном видеонаблюдении – почти моветон. Хотя корпусные модели без подсветки все еще продаются, конечно.
Сравнение матриц разных производителей
Вообще правило таково: чем выше освещенность, тем лучше снимет матрица и, соответственно, камера. Поэтому не рекомендуется ставить камеры по полутемным закоулкам, даже если у них хорошая чувствительность. Имейте в виду, что в спецификации матриц камер обычно указывается минимальный уровень освещенности, когда можно зафиксировать хоть какое-то изображение. Но никто не обещает, что это изображение будет хотя бы приемлемого качества! Оно будет отвратительным в 100% случаев, на нем с трудом можно будет что-либо разобрать. Для достижения хотя бы удовлетворительного результата рекомендуется снимать как минимум при освещенности хотя бы в 10-20 раз большей, чем минимально допустимая для матрицы.
Производители придумали ряд технических решений, чтобы улучшить чувствительность CMOS матриц и снизить потери света в процессе фиксации изображения. Для этого в основном используется один принцип: вынести светочувствительный элемент как можно ближе к микролинзе матрицы, собирающей свет. Сначала компания Sony предложила свою технологию Exmor, сократившую путь прохождения света в матрице:
Затем прогрессивные производители дружно перешли на использование матриц с обратной засветкой, позволяющей не только сократить путь света сквозь матрицу, но и сделать полезную площадь светочувствительного слоя больше, разместив его над другими электронными элементами в ячейке:
Технология обратной засветке дает камере максимальную чувствительность. Отсюда вывод – «при прочих равных условиях» лучше приобрести камеру использующую матрицу с обратной засветкой, чем без таковой.
Для улучшения изображения в условиях слабого освещения для слабочувствительных дешевых матриц производители камер могут использовать различные ухищрения. Например, режим «медленного затвора», а говоря проще – режим большой выдержки. Однако «размазывание» контуров движущихся объектов уже на этапе фиксации изображения матрицей в таком режиме не позволяет говорить о мало-мальски качественной видеосъемке, поэтому такой подход совершенно неприемлем в охранном видеонаблюдении, где важны детали.
Определенным прорывом в качестве изображения стало появление технологии Starlight, впервые появившейся в камерах Bosch в 2012 году. Эта технология, благодаря комбинации огромной светочувствительности матрицы (порядка 0,0001 — 0,001 люкс) и очень эффективной технологии шумоподавления позволила получать очень качественное цветное изображение с видеокамер в условиях слабой освещенности и даже в ночное время.
Тогда как традиционный способ преодоления слабой освещенности – использование ИК подсветки – дает возможность получить четкое изображение лишь в монохромном режиме (оттенках серого), камеры с технологией Starlight позволяют получить цветную картинку, обладающую гораздо большей информативностью. В частности, при слабой освещенности система видеонаблюдения с технологией Starlight легко сможет различать цвета автомобилей, одежды и др. важные признаки.
Вот демонстрация технологии Starlight в действии:
При выборе камеры видеонаблюдения обязательно обращайте внимание на характеристики матрицы, а не только ее разрешение. Ведь от этого в значительной степени будет зависеть качество изображения, а следовательно и полезность камеры. В первую очередь следует обращать внимание на надежный бренд, типоразмер и разрешение матрицы, светочувствительность принципиальна лишь для камер лишенных ИК-подсветки.
Очень рекомендую брать камеру с матрицей, по которой можно найти вменяемый даташит с подробной информацией, а не покупать кота в мешке. Например, вы легко найдете спецификации на матрицы производства ON Semiconductor, Omnivision или Sony. А вот мало-мальски подробных характеристик матриц SOI не сыскать днем с фонарем. Возникает подозрение, что производителю есть что скрывать…
А общий итог такой: CMOS матрицы безоговорочно победили в устройствах видеонаблюдения и в ближайшем будущем не собираются сдаваться какой-либо конкурирующей технологии.
Физический размер матрицы и его влияние на качество снимков
Не все начинающие пользователи знают, что такое физический размер матрицы. Многие путают его с разрешением, но это разные вещи. При этом, физический размер матрицы — это один из важнейших параметров камеры, который влияет на качество снимков.
Прежде чем приступить к рассмотрению влияния размера матрицы на фотографии, рассмотрим сначала какие именно бывают матрицы.
Иногда бывает не просто узнать какая именно матрица стоит на том или ином фотоаппарате. Продавцы в магазинах зачастую просто не знают этого, а производители крайне редко указывают эту информацию. Почему? Этот загадка.
И всё же, что такое физический размер матрицы?
Как многие могли догадаться, физический размер матрицы — это ей длинна и ширина, измеряемые в миллиметрах.
Исторически сложилось так, что в спецификациях производители указывают физический размер матрицы в обратном количестве дюймов, а не в миллиметрах. Это выглядит следующим образом: 1 / 3.2 — это 3.4 * 4.5 мм.
Зачастую даже в дюймах размер матрицы в спецификациях не указывается, хотя тенденция начинает изменяться. В анонсах новых камер часто можно встретить эту информацию, но не факт, что её можно будет найти в инструкции к камере. В тех случаях, когда размер неизвестен, можно воспользоваться расчетом. Облегчит это занятие таблица со стандартными значениями:
Размеры матриц смартфонов и фотоаппаратов. Просто о сложном
Что такое размер матрицы? Как от него зависит качество снимков? Что означает матрица 1 дюйм, APS-C или полный кадр? Как с этим связан кроп-фактор? Обо всём этом в нашей статье. Мы расскажем простым языком о размерах современных сенсоров, ведь в этой области довольно много путаницы.
Наши западные коллеги из Dpreview и Petapixel также обратили внимание на эту проблему. Мы поддерживаем их в стремлении сделать вопрос размеров матриц более прозрачным и стремимся в нашем журнале перейти к единому с ними обозначению форматов матриц. Но обо всём по порядку. А полная таблица размеров сенсоров изображения ждёт вас внизу страницы.
Матрицы современных смартфонов. Сенсоры формата 1″ недавно начали появляться в отдельных моделях, ориентированных на фотографов.
Что такое полный кадр?
Начнём с самого простого — с понятия «полный кадр». Ещё его называют 35 мм. Он пришёл к нам ещё из плёночной эпохи и соответствует стандартному кадру 24х36 мм, который использовался в большинстве плёночных фотоаппаратов от «Зенитов» до пластмассовых мыльниц. А почему 35 мм? Потому что такой была ширина плёнки вместе с перфорацией. Вот и пример той самой путаницы в названиях форматов кадра.
Nikon Z 6II с полнокадровой матрицей
Что такое кроп-фактор и эквивалентное фокусное расстояние?
Из-за своего широкого распространения полный кадр 24х36 мм стал отправной точкой для понятия «кроп-фактор». Всё началось в момент появления первых цифровых зеркалок. Изготовить для них матрицу размером 24х36 мм тогда оказалось слишком дорого и сложно. Производители брали за основу классические зеркальные фотоаппараты, сохраняли их байонет и совместимость с оптикой, но устанавливали матрицу уменьшенного размера. Из-за этого привычные фотографам объективы начинали работать по-другому на цифровых камерах. Кадр как бы обрезался по краям, объективы «приближали» картинку сильнее, чем на плёночных камерах.
Кремниевая пластина в процессе производства матриц. Это довольно сложные и очень крупные микросхемы, цена которых напрямую зависит от их размера.
Соотношение диагонали полного кадра к диагонали уменьшенной матрицы стали называть кроп-фактором. Привыкшим к полнокадровой технике фотографам он указывал, насколько сильнее привычные им объективы будут «приближать» изображение на новых цифровых фотоаппаратах. Например, снимавший на зеркалку Nikon D300s c 50-мм объективом фотограф мог умножить кроп-фактор х1,5 на фокусное расстояние объектива и понять, какому полнокадровому объективу соответствует его «полтинник» на камере с уменьшенной матрицей. Такое значение получило название эквивалентного фокусного расстояния.
Матрица формата 4/3 с кроп-фактором x2
Именно в этом ключе кроп-фактор представляет практическую пользу. Для фотографов, не имевших большого опыта работы с полнокадровой техникой, а сразу взявших в руки цифровые камеры с уменьшенной матрицей, никакой полезной информации кроп-фактор не сообщит.
Матрицы APS-C
Матрицы формата APS-C получили наибольшее распространение в любительских зеркалках и беззеркалках. Такие модели с матрицей APS-C ещё называют «кропнутыми». Размеры APS-C могут незначительно варьироваться. В большинстве случаев примерный размер APS-C матрицы составляет 23,5×15,6 мм. Лишь в камерах Canon он чуть меньше: 22,3×14,9 мм.
Fujifilm X-T30 с матрицей формата APS-C
Матрицы 4/3, 1”, 1/2,33”, матрицы камер смартфонов
Маленькие матрицы в производстве намного дешевле больших. Это же касается и объективов. А ещё такие системы компактнее. Поэтому только форматом APS-C дело не ограничилось. Появились совсем крохотные сенсоры сначала для компактных камер, а затем и для смартфонов.
Матрица формата 1″
Такие форматы кадра получили обозначение… в долях дюйма! И здесь кроется главный подвох. Выглядит это примерно так: 4/3”, 1”, ½”, 1/2,33” и т.д. Странность заключается в том, что с реальными дюймами такое обозначение не имеет ничего общего. Указанный размер — вовсе не диагональ кадра. Обозначение пришло к нам из телевидения, где использовалось в работе с передающей телевизионной трубкой Видикон. Там так обозначались диаметры трубок, а не размер кадра. Естественно, сам кадр был меньше диаметра трубки. Отсюда и путаница.
Трубка видикона формата 2/3″. Фото: Sphl
Поэтому в наших статьях далее мы всегда будем называть такое обозначение не размером, а форматом кадра. Ниже мы приводим сводную таблицу реальных размеров кадра в мм для всех форматов. Обратите внимание, например, что сенсор формата 1” намного меньше реального дюйма.
Таблица размеров матриц разных форматов
Формат кадра или матрицы | Реальный размер матрицы | Реальная диагональ кадра |
1/3,6″ | 4х3 мм | 5 мм |
1/3,2″ | 4,6х3,4 мм | 5,7 мм |
1/3″ | 4,8х3,6 мм | 6 мм |
1/2,7″ | 5,3х4 мм | 6,6 мм |
1/2,3″ | 6,3х4,7 мм | 7,8 мм |
1/2″ | 6,4х4,8 мм | 8 мм |
1/1,8″ | 7,2х5,3 мм | 8,9 мм |
1/1,7″ | 7,6х5,7 мм | 9,5 мм |
2/3″ | 8,8х6,6 мм | 11 мм |
1/1,33″ | 9,6х7,2 мм | 12 мм |
1″ (3:2) | 13,2х8,8 | 15,9 мм |
1″ (4:3) | 13,1х9,8 мм | 15,9 мм |
4/3″ | 18х13,5 мм | 22,5 мм |
APS-C (Canon) | 22,3х14,9 мм | 26,8 мм |
APS-C | 23,5х15,6 мм | 28,2 мм |
Super35 | 24,9х18,7 | 31,1 мм |
35 мм (полный кадр) | 36х24 мм | 43,3 мм |
Цифровой средний формат | 44х33 мм | 55 мм |
Что такое средний формат?
Это понятие пришло к нам тоже из плёночной эры и насчитывает чуть ли не сотню лет. Тогда плёнка с кадром 24х36 мм (тот самый формат 35 мм) только вошла в широкий оборот и называлась «узкой». В противовес ей ставились громоздкие форматные камеры, где размер кадра мог измеряться десятками сантиметров, а в качестве фотоматериала использовались стеклянные пластины или листовая плёнка. Между ними был средний формат, дошедший до наших дней в виде фотоплёнки типа 120.
Максимальная высота кадра на такой плёнке составляла примерно 6 см. Кадр же мог быть узким (45 х 60 мм), квадратным (6х6 см), широким (6х7 см и больше).
Среднеформатный Fujifilm GFX50R
К сожалению, в мире цифровой фотографии такой размер кадра — слишком дорогое удовольствие. Поэтому цифровой средний формат использует более компактные матрицы. Разве что в дорогом 100-мегапиксельном Hasselblad H6D стоит матрица с размерами 53,4х40 мм. В более доступных среднеформатных системах Fujifilm GFX или Hasselblad X размер сенсора составляет примерно 44х33 мм.
Зачем нужно знать размер матрицы?
Размер матрицы во многом определяет качество изображения. Ведь от него зависит размер каждого отдельного пикселя. Меньший пиксель будет улавливать меньше фотонов света. При слабом освещении это становится особенно заметно — появляется цифровой шум, снижается динамический диапазон. Конечно, технологии не стоят на месте. Современные матрицы при том же размере и разрешении во многом превосходят изделия пяти- и десятилетней давности. А в смартфонах давно применяются технологии многокадровой съёмки и сложной компьютерной обработки. Но при прочих равных большая матрица будет иметь преимущества.
Матрица формата 1″
Именно поэтому профессиональные репортажные камеры до сих пор делают полнокадровыми, в студиях используют средний формат, а стандартом де-факто для качественных компактов стал формат кадра 1”.
Здесь же кроется ответ на вопрос, почему изготовители смартфонов так неохотно сообщают размеры матриц в их камерах. Формат сенсора 1/1,66” или 1/1,33” вряд ли кого-то впечатлит. Именно такие матрицы стоят в основных камерах флагманов, а в дополнительных камерах или в моделях эконом-класса могут быть применяться ещё более мелкие сенсоры. Исключения можно пересчитать по пальцам одной руки. Речь о Xiaomi 12S Ultra, Sony Xperia Pro-I и прототипе Panasonic DMC-CM1.
Sony Xperia Pro-I
Таким образом рано списывать со счетов классические фотоаппараты. Техническое качество всё ещё на их стороне.