Средства защиты людей при повреждении электроустановок
Как осуществляется защита людей в случае повреждения электрооборудования?
Средства защиты, используемых в электроустановках, делятся на те, которые обеспечивают безопасность при нормальном режиме работы электрооборудования и обеспечивающие безопасность при аварийном состоянии электрооборудования.
При повреждении электрооборудования причиной поражения током может быть появление напряжения на металлических частях электрооборудования (корпус, кожух, ограждения) в результате повреждения изоляции или замыкания фазного проводника на землю и появление шагового напряжения из-за нарушения заземления и т. Д.
Согласно ПУЭ, в электроустановках используют такие системы мер по обеспечению их безопасной эксплуатации: защитное заземление, зануление, изоляция токопроводящих частей, защитное отключение, малые напряжения, недоступность к неизолированным проводников.
Какие существуют виды заземления?
В электроустановках существуют три вида заземления: защитное заземление для защиты людей от поражения током; рабочее заземления, обеспечивает нормальную работу оборудования, и заземления системы молниезащиты, что защищает сооружения от атмосферных перенапряжений.
Защитным заземлением называется преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением в результате повреждения электрической изоляции или при наведении на них электростатических зарядов и действия электромагнитной индукции.
Заземлению подлежат все металлические нетоковедущие части электрического оборудования, в результате повреждения изоляции могут оказаться под напряжением и к которым может коснуться человек. Это металлические корпуса электрических машин, трансформаторов, светильников, приводы электрических аппаратов, металлические кожухи, ящики, щитки электроустановок и др.
Заземлению не подлежат арматура изоляторов, кронштейны и аппаратура освещения, смонтированная на деревянных опорах ЛЭП, электрооборудования установлено на заземленных металлических конструкциях, электроприемники с двойной изоляцией, корпуса электроизмерительных приборов, реле, устройств автоматики и другие, которые установлены на щитках, щиты и рельсовые пути (кроме крановых), выходящие за пределы предприятия.
В чем заключается защитное действие заземления?
Основной задачей заземления является устранение опасности поражения током при прикосновении к металлическим частям электрооборудования, оказалось под напряжением. Защитное действие заземления заключается в снижении силы тока, протекающего по телу человека, до безопасной величины. Достигается это благодаря тому, что малое сопротивление заземления (единицы, десятки Ом) присоединяется параллельно большого сопротивления человека (тысячи Ом). Чем больше будет отношение сопротивления человека к сопротивлению заземления, тем меньше величина тока пройдет по человеку, а затем и последствия поражения будут легкими.
Сопротивление заземления подбирают таким образом, чтобы ток который будет проходить через человека, был безопасным. Для выполнения своей защитной роли заземления должно быть с незначительным сопротивлением. Это сопротивление исчисляется по отношению напряжения на заземлитель в силу тока, который проходит в землю. Он состоит из сопротивления заземления относительно земли, сопротивления заземления как металлического проводника и сопротивления заземляющих проводников, соединяющих заземлитель с корпусом электрооборудования.
Как влияют условия труда по уровню электробезопасности на устройство заземления?
Защитное заземление устраивают во всех электроустановках независимо от категории помещения при напряжении 380 В и более при переменном токе и 440 В и более при постоянном токе. В наружных электроустановках и помещениях особо опасных и с повышенной опасностью заземления устраивают при напряжении свыше 42 В переменного тока и более 110В постоянного тока. Во взрывоопасных помещениях его устраивают — любого значения напряжения, как постоянного, так и переменного тока.
Защитное заземление не требуется выполнять в электрических установках переменного тока с номинальным напряжением до 42 В, а при постоянном токе до 110В во всех случаях, за исключением взрывоопасных помещений. НЕ заземляются также электроустановки с двойной изоляцией.
3. Защитное заземление: определение, назначение, принцип действия, область использования.
Защитное заземление это преднамеренное электрическое соединение с землёй или её эквивалентом не токоведущих частей электрических установок, которые могут оказаться под напряжением.
Назначение защитного заземления. – устранение опасности поражения людей током при появлении напряжения на конструктивных частях оборудования, т.е. при замыкании на корпус.
Принцип действия защитного заземления. заключается в снижении до безопасных значений напряжений прикосновения. Это, как правило, достигается уменьшением потенциала заземляемого оборудования , а также выравниванием потенциала за счёт подъёма потенциала основания, на котором стоит человек, до потенциала близкого по значению к потенциалу заземляемого оборудования.
Область применения защитного заземления. это трёхфазные, трёхпроводные электрические сети напряжением свыше 1000В с любым режимом нейтрали.
В данном случае сопротивление заземляющего устройства существенно мало по отношению к сопротивлению человека, следовательно при замыкании на корпус наибольшая часть тока пройдет через заземляющее устройство.Rз.у. в соответствии с правилами устройства электроустановок (ПУЭ) не должно превышать 4 Ом.
Заземляющим устройством принято считать совокупность заземлителя (металлических проводников) находящихся непосредственно в контакте с землёй и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем. Различают выносную и контурную систему заземлителя.
Выносная система характеризуется тем, что заземлители выносятся за пределы площадки на которой расположено центральное оборудование. Удаление заземлителя от заземляемого оборудования может составлять от нескольких метров до нескольких сотен метров. Выносную схему также называют схемой заземления в ряд.
Контурная система заземления характеризуется тем, что одиночные заземлители размещаются по периметру площадки, на которой размешено оборудование.
2. Остаточный риск — объективная предпосылка производственных аварий. Вероятность возникновения чрезвычайных ситуаций.
Риск – количественная мера опасности. Обозначается R. Риск – отношение числа неблагоприятных проявлений опасности к их общему числу за время T.
Остаточный риск— свойство систем, объектов быть потенциально опасными.
Различают фактический риск (Rф) и нормированный риск (Rн). Rф>> Rн/ Rн=10 -6 .
Примеры.
1) Погибло человек. П=
.
Работающих — человек. N=
.
.
2) Неестественной смертью умерло человек. n=
.
Всего умерло . N=
/
Риск есть всегда ненулевая величина. Опасные факторы реализуются в чрезвычайных ситуациях.
Экзаменационные билеты ЭЛТИ
ЭБ ТПУ 8.4/ЕН.06/2005
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 15
по дисциплине Безопасность жизнедеятель-ности
1. Акустические колебания. Постоянный и непостоянный шум. Действие шума на человека.
2. Производственные аварии. Размер и структура зон поражения характеристика очагов, первичные и вторичные поражающие факторы при производственных авариях.
3. Зануление: определение, назначение, принцип действия, область использования.
Составитель: ______________ /Ю.Ф. Свиридов/
Утверждаю: Зав. кафедрой ЭБЖ _____________ /С.В. Романенко/
«_6_» апреля 2009 г.
3. Зануление: определение, назначение, принцип действия, область использования.
Защитное зануление – это преднамеренное электрическое соединение токопроводных частей электроустановок, которые могут оказаться под напряжением с неоднократно заземленным нулевым проводником.
Назначение защитного зануления – устранение опасности поражения людей током в случае замыкания на корпус.
Принцип действия защитного зануления – превращение замыкания на корпус в свободное короткое замыкание, то есть, замыкание между фазным и нулевым проводом с целью создания большого тока, способного обеспечить срабатывание системы защиты и тем самым отключить поврежденную электроустановку от сети. В качестве такой защиты могут использоваться плавкие вставки (предохранители) и автоматические выключатели.
Время отключения поврежденной установки составляет 5-7с. при защите с помощью плавкой вставки и 1-2 с. при защите автоматом. Кроме того, поскольку зануленные части является заземленными через нулевой проводник, то в аварийный период также проявляется защитное свойство этого заземления, подобно тому, как в случае использования защитного заземления.
Область применения защитного зануления – трехфазные электрические сети напряжением <1000В с заземленной нейтралью. Как правило, это сети 380/220 В.
Экзаменационные билеты ЭЛТИ
ЭБ ТПУ 8.4/ЕН.06/2005
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 16
по дисциплине Безопасность жизнедеятель-ности
1. Ультразвук, контактное и акустическое действие ультразвука
2. Характерные особенности аварий в химической промышленности, в производствах с применением ЯВ и пожаровзрывоопасных производств.
3. Защитное отключение (УЗО): определение, назначение, принцип действия, область использования.
Составитель: ______________ /Ю.Ф. Свиридов/
Утверждаю: Зав. кафедрой ЭБЖ _____________ /С.В. Романенко/
«_6_» апреля 2009 г.
Экзаменационные билеты ЭЛТИ
ЭБ ТПУ 8.4/ЕН.06/2005
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 17
по дисциплине Безопасность жизнедеятель-ности
1. Нормирование акустического воздействия. Измерения шумов и вибраций.
2. Современные средства поражения, их воздействие на объекты и людей. Краткая характеристика очагов поражения.
3. Порядок оказания первой помощи пострадавшему при поражении электрическим током.
Составитель: ______________ /Ю.Ф. Свиридов/
Утверждаю: Зав. кафедрой ЭБЖ _____________ /С.В. Романенко/
«_6_» апреля 2009 г.
Экзаменационные билеты ЭЛТИ
ЭБ ТПУ 8.4/ЕН.06/2005
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 18
по дисциплине Безопасность жизнедеятель-ности
1. Измерения шумов и вибраций. Принципы защиты от шумов и вибраций.
2. Стихийные бедствия. Характеристика очагов поражения в районах стихийных бедствий, влияние особенностей отраслей народного хозяйства на обстановку в очагах. Первичные и вторичные поражающие факторы.
3. Мероприятия по защите от поражения электрическим током.
Составитель: ______________ /Ю.Ф. Свиридов/
Утверждаю: Зав. кафедрой ЭБЖ _____________ /С.В. Романенко/
«_6_» апреля 2009 г.
Экзаменационные билеты ЭЛТИ
ЭБ ТПУ 8.4/ЕН.06/2005
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 19
по дисциплине Безопасность жизнедеятель-ности
1. Ударная волна, понятие фронта, фазы сжатия, разрежения, скоростного напора воздуха. Средства защиты.
2. Пожаровзрывобезопасность. Причины возникновения пожаровзрывоопасных условий в чрезвычайных ситуациях.
3. Вопросы безопасности жизнедеятельности в законах и подзаконных актах. Нормативно-техническая документация по охране труда и окружающей среды. Система стандартов безопасности труда (ССБТ).
Составитель: ______________ /Ю.Ф. Свиридов/
Утверждаю: Зав. кафедрой ЭБЖ _____________ /С.В. Романенко/
«_6_» апреля 2009 г.
3. Вопросы безопасности жизнедеятельности в законах и подзаконных актах. Нормативно-техническая документация по охране труда и окружающей среды. Система стандартов безопасности труда (ССБТ).
Законадательное обеспечение БЖД.
Законадательное обеспечение охраны труда.
Законадательное обеспечение экологической безопасности.
Законадательное обеспечение безопасности в чрезвычайных ситуациях.
Основой законодательного обеспечения безопасности является основной закон государства – Конституция
В конституции РФ базовой статьей является Ст.37:
Каждый имеет право распоряжаться своими способностями к труду, выбирать вид деятельности; запрет принудительного труда.
П.3:» каждый имеет право на труд в условиях, отвечающих требованиям безопасности и гигиены…»
утверждение права каждого на охрану здоровья и медицинскую помощь;
«Сокрытие должностными лицами фактов и обстоятельств, создающих угрозу для жизни, здоровья людей влечет за собой ответственность в соответствии с федеральным законом»
Кодекс законов о труде
Устанавливаются права и обязанности работодателей и радотников в отношении охраны труда; оговариваются ограничения к труду в особо тяжелых условиях некоторых групп населения (беременных женщин и т.д.)
«Управление охраной труда на предприятии и ее обеспечение»
Создание и управление системой охраны на предрпиятие осуществляет собственник предприятия или уполномоченыне им лица; они создают службы охраны труда или на договорной основе принимают специалистов по охране труда.
В настоящем законе говорится о том, что численность и структура служб охраны труда на предприятии обусловлена размером предприятия и численностью его сотрудников.
(Если численность сотрудников < 10 человек – спец. комиссии или специалиста не нанимают, но полную ответственность несет работодатель; >= 10 человек – создается комиссия на паритетной основе (входят представители работодателей и работников) ; если > 100 человенк – вводится должность человека по охране труда; > 1000 человек – служба по охране труда )
Важнейшей статьей этой главы является статья «права и обязанности сторон участвующих в трудовом пороцессе» ( 10 статья) :
Описываются права работника (работник имеет право на рабочее место, свободное от воздействия опасных и вредных факторов; на информацию о состоянии условий его труда; на обеспечение СИЗ за счет средст работодателя; на прведение инспектирования условий труда на рабочем месте соответствующими службами госсударственного и общественного контроля )
Существует положени о отестации рабочего места «по условиям труда» .
Работник имеет право на отказ о работы в опасных условиях; на обучение безопасным методам работы; на переподготовку за счет средств работодаителя в случае закрытия предприятия, ликвидации места вследствие нарушения законодательства по охране труда или технической невозможности обеспечения безопасности труда.
соблюдать правила и нормы;
выполнять медецинские рекомендации;
извещать руководителя (непосредственно) о возникновении опасной ситуации;
немедленно сообщать о несчастном случае на рабочвем месте;
имеет право выступать с предложением об изменении стандата;
на проведение инспекции при расследовании несчастного случая службми государственного надзора и контроля;
Обязанности работодателя (соотносятся с правами работника)
обеспечить рабочие еста, находящиеся под его контролем, безопасным для здоровья и жизни людец состоянием;
осуществлять за счет предприятия медицинское обследование работников;
проводить инструктаж о безопасности, а также:
проводить в установленные сроки ттестацию рабочих мест по условиям труда;
Положение о порядке проведения аттестации рабочих мест по условиям труда.
(является приложением к постановлению Мин-ва труда и соц-го развития РФ, от 14.03.1997)
Аттестации подлежат все имеющиеся в организации рабочего места.
Нормативная основа проведения аттестции рабочих мест:
гигиенические критерии оценки условий труда по показателям вредности и опасности, утвержденные Госсанэпидемндзором РФ
система стандартов безопасности труда (ССБТ) ГОСТ 12.0.001.-79 (общие положения, определения)
12.1 – ГОСТ на опасные и вредные факторы
003 – позиции и группы
12.2 — ГОСТ безопасности оборудования
12.3 – безопасность технологических процессов;
12.4 – требования к коллективным и индивидуальным средствам защиты
санитарные правила и нормы
Проведение аттестации начинается с составления перечня всех рабочих мест, подлежащих аттестации. Издается приказ руководителем предприятия о проведении аттестации.
Изд-ся приказ руководителем предприятия о проведения аттестации в соответствии с которым создается аттестационная комиссия; в ее состав рекомендуется включить представителей охрны труда, служб оплаты труда и зарплаты, главных специалистов, руководителей подразделений, мед. работников, представителей профсоюзных комитетов ( не реже 1 раза в 5 лет)
По результатам аттестации возможны 3 решения :
рабочее место соответствует требованиям безопасности и гиеены.
рабочее место подлежит рационализации
решение о закрытии рабочего места (ликвидация рабочего места, как не соответствующего требования безопасности)
Нормативное обеспечение охраны труда включает:
ССБТ система стандартов безопасности труда . (До 70 г. единых стандартов не было, действовали СН и Пп строительные нормы и правила СанПиНы . В 70г. началась работа по созданию СОБТ ГОСТ 12 .)
Соц-но-экономические нормативы (продолжительность рабочего дня, сверхурочное время и т.д.)
Инструкции, нормы и правила.
Сертификат безопасности предприятия (свидетельствует о том, что предприятие соответствует требованиям безопасности), и др.нормативные акты в области охраны труда(положение о расследовании несчастного случая, положение об аттестации рабочих мест)
Стандарты, нормы и правила разрабатываются гос. органом по охране труда (Управление по охране труда при Министерстве труда и занятости РБ.)
ССБТ является обязательными для всей территории РФ и РБ. В этой же главе говорится об обеспечении требований охраны труда при строительстве проектировании предприятий и объектов (при их эксплуатации)ю Органом по охране труда м.б. закрыто любое предприятие, не соотв-щее нормативам ССБТ. Гл.2. «З-на об охране труда РБ» также включает Ст.14 «Финансирование охраны труда»
Финансирование охраны труда осуществляется государством через фонды охраны труда . В государственном бюджете есть специальная статья на обеспечение охраны труда; эти бюджетные средства используются для содержания органов надзора и контроля за безопасностью , для финансирования НИ-работ в области безопасности и выполнения целевых программ по охране труда.
Фонд охраны труда (в рамках субъекта республиканский РБ) складывается из:
целевых ассигнований, выделяемых Советом Министров.
Части средств фонда социального страхования
Части фондов охраны труда предприятий.
Части штрафов налагаемых на предприятия за нарушение законодательства об охране труда.
Части штрафов, налагаемых на должностные лица.
Добровольных отчислений предприятий.
Добровольных взносов граждан и организаций.
Городской и районный фонд охраны труда формируется за счет тех же источников, за исключением 2, 5.
Экзаменационные билеты ЭЛТИ
ЭБ ТПУ 8.4/ЕН.06/2005
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 20
по дисциплине Безопасность жизнедеятель-ности
1. Естественные и антропогенные электромагнитные поля. Воздействие на человека статических электрических и магнитных полей.
2. Пожаровзрывоопасных показатели, классификация помещений по пожарной (взрывной) опасности. Горючесть материалов.
3. Система управления охраной труда на предприятии.
Составитель: ______________ /Ю.Ф. Свиридов/
Утверждаю: Зав. кафедрой ЭБЖ _____________ /С.В. Романенко/
«_6апреля 2009 г.
Экзаменационные билеты ЭЛТИ
ЭБ ТПУ 8.4/ЕН.06/2005
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 21
по дисциплине Безопасность жизнедеятель-ности
1. Основные виды контроля состояния охраны труда и условий труда.
2. Гигиеническое нормирование качества воздуха.
3. Основные федеральные законы в области охраны ОС
Составитель: ______________ /Ю.Ф. Свиридов/
Утверждаю: Зав. кафедрой ЭБЖ _____________ /С.В. Романенко/
«_6_» апреля 2009 г.
3. Основные федеральные законы в области охраны ОС
Законадательное обеспечение охраны труда.
Законадательное обеспечение экологической безопасности.
Законадательное обеспечение безопасности в чрезвычайных ситуациях.
Основой законодательного обеспечения безопасности является основной закон государства – Конституция
В конституции РФ базовой статьей является Ст.37:
Каждый имеет право распоряжаться своими способностями к труду, выбирать вид деятельности; запрет принудительного труда.
П.3:» каждый имеет право на труд в условиях, отвечающих требованиям безопасности и гигиены…»
утверждение права каждого на охрану здоровья и медицинскую помощь;
«Сокрытие должностными лицами фактов и обстоятельств, создающих угрозу для жизни, здоровья людей влечет за собой ответственность в соответствии с федеральным законом»
Экзаменационные билеты ЭЛТИ
ЭБ ТПУ 8.4/ЕН.06/2005
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 22
по дисциплине Безопасность жизнедеятель-ности
1. Классификация вредных веществ по характеру воздействия на организм человека
2. Действие шума на человека.
3. Система управления воздействием на ОС на предприятии.
Составитель: ______________ /Ю.Ф. Свиридов/
Утверждаю: Зав. кафедрой ЭБЖ _____________ /С.В. Романенко/
«_6апреля 2009 г.
Классификация вредных веществ по характеру воздействия на организм человека
По степени воздействия на организм человека вредные вещества в соответствии с ГОСТ 12.1.007 ССБТ «Вредные вещества. Классификация и общие требования безопасности» подразделяются на четыре класса опасности: 1 – вещества чрезвычайно опасные (ванадий и его соединения, оксид кадмия, карбонил никеля, озон, ртуть, свинец и его соединения, терефталевая кислота, тетраэтилсвинец, фосфор желтый и др.); 2 – вещества высоко опасные (оксиды азота, дихлорэтан, карбофос, марганец, медь, мышьяковистый водород, пиридин, серная и соляная кислоты, сероводород, сероуглерод, тиурам, формальдегид, фтористый водород, хлор, растворы едких щелочей и др.); 3 – вещества умеренно опасные (камфара, капролактам, ксилол, нитрофоска, полиэтилен низкого давления, сернистый ангидрид, спирт метиловый, толуол, фенол, фурфурол и др.); 4 – вещества малоопасные (аммиак, ацетон, бензин, керосин, нафталин, скипидар, спирт этиловый, оксид углерода, уайт-спирит, доломит, известняк, магнезит и др.). Степень опасности вредных веществ может быть охарактеризована двумя параметрами токсичности: верхним и нижним. Верхний параметр токсичности характеризуется величиной смертельных концентраций для животных различных видов. Нижний – минимальными концентрациями, влияющими на высшую нервную деятельность (условные и безусловные рефлексы) и мышечную работоспособность. Практически неядовитыми веществами обычно называют те, которые могут стать ядовитыми в совершенно исключительных случаях, при таком сочетании различных условий, которое в практике не встречается.
Действие шума на человека.
Действие шума на организм человека
Шум, даже когда он невелик (при уровне 50—60 дБА), создает значительную
нагрузку на нервную систему человека, оказывая на него психологическое
воздействие. Это особенно часто наблюдается у людей, занятых умственной
деятельностью. Слабый шум различно влияет на людей. Причиной этого могут
быть: возраст, состояние здоровья, вид труда, физическое и душевное состояние
человека б момент действия шума и другие факторы. Степень вредности какого-
либо шума зависит также от того, насколько он отличается от привычного шума.
Неприятное воздействие шума зависит и от индивидуального отношения к нему.
Так, шум, производимый самим человеком, не беспокоит его, в то время как
небольшой посторонний |^ум может вызвать сильный раздражающий эффект.
Известно, что ряд таких серьезных заболеваний, как гипертоническая и язвенная
болезни, неврозы, в ряде случаев желудочно-кишечные и кожные заболевания,
связаны с перенапряжением нервной системы в процессе труда и отдыха.
Отсутствие необходимой тишины, особенно в ночное время, приводит к
преждевременной усталости, а часто и к заболеваниям. В этой связи необходимо
отметить, что шум в 30—40 дБА в ночное время может явиться серьезным
беспокоящим фактором. С увеличением уровней до 70 дБА и выше шум может
оказывать определенное физиологическое воздействие на человека, приводя к
видимым изменениям в его организме.
Под воздействием шума, превышающего 85—90 дБА, в первую _очередь снижается
слуховая чувствительность на высоких частотах.
Сильный шум вредно отражается на здоровье и работоспособности людей. Человек,
работая при шуме, привыкает к нему, но продолжительное действие сильного шума
вызывает общее утомление, может привести к ухудшению слуха, а иногда и к
глухоте, нарушается процесс пищеварения, происходят изменения объема
Воздействуя на кору головного мозга, шум оказывает раздражающее действие,
ускоряет процесс утомления, ослабляет внимание и замедляет психические
реакции. По этим причинам сильный шум в условиях производства может
способствовать возникновению травматизма, так как на фоне этого шума не
слышно сигналов -транспорта, автопогрузчиков и других машин.
Эти вредные последствия шума выражены тем больше, чем сильнее шум и чем
продолжительнее его действие.
Таким образом, шум вызывает нежелательную реакцию всего организма человека.
Патологические изменения, возникшие под влиянием шума, рассматривают как
Звуковые колебания могут восприниматься не только ухом, но и непосредственно
через кости черепа (так называемая костная проводимость). Уровень шума,
передаваемого этим путем, на 20—30 дБ меньше уровня, воспринимаемого ухом.
Если при невысоких уровнях передача за счет костной проводимости мала, то при
высоких уровнях она значительно возрастает и усугубляет вредное действие на
При действии шума очень высоких уровней (более 145 дБ) возможен разрыв
Экзаменационные билеты ЭЛТИ
ЭБ ТПУ 8.4/ЕН.06/2005
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 23
по дисциплине Безопасность жизнедеятель-ности
1. Производственная вентиляция. Виды систем вентиляции
2. Комбинированное действие вредных веществ
3. Основные виды НТД на предприятии в области охраны ОС
Составитель: ______________ /Ю.Ф. Свиридов/
Утверждаю: Зав. кафедрой ЭБЖ _____________ /С.В. Романенко/
«_6_» апреля 2009 г.
1. Производственная вентиляция. Виды систем вентиляции
Вентиляция – организованный и регулируемый воздухообмен, обеспечивающий удаление из помещения воздуха, загрязненного вредными парами, газами, пылью, и подачу вместо него наружного или очищенного воздуха, а также улучшением этих условий в помещении.
Заземление. Что это такое и как его сделать (часть 1)
В первой части (теория) я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования.
Во второй части (практика) будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений.
Третья часть (практика) в некотором смысле продолжит вторую. В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий.
Если читатель обладает теоретическими знаниями и интересуется только практической реализацией — ему лучше пропустить первую часть и начать чтение со второй части.
Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками — лучше пропустить первые две части и сразу перейти к чтению третьей.
Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт.
Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.
1 часть. Заземление
В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.
А. Термины и определения
Б. Назначение (виды) заземления
Б1. Рабочее (функциональное) заземление
Б2. Защитное заземление
Б2.1. Заземление в составе внешней молниезащиты
Б2.2. Заземление в составе системы защиты от перенапряжения (УЗИП)
Б2.3. Заземление в составе электросети
В. Качество заземления. Сопротивление заземления.
В1. Факторы, влияющие на качество заземления
В1.1. Площадь контакта заземлителя с грунтом
В1.2. Электрическое сопротивление грунта (удельное)
В2. Существующие нормы сопротивления заземления
В3. Расчёт сопротивления заземления
А. Термины и определения
Это устройство/ схема, состоящее из заземлителя и заземляющего проводника, соединяющего этот заземлитель с заземляемой частью сети, электроустановки или оборудования. Может быть распределенным, т.е. состоять из нескольких взаимно удаленных заземлителей.
На рисунке оно показано толстыми красными линиями:
Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с грунтом (ПУЭ 1.7.15).
Проводящая часть — это металлический (токопроводящий) элемент/ электрод любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро 🙂 и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.
Конфигурация заземлителя (количество, длина, расположение электродов) зависит от требований, предъявляемых к нему, и способности грунта “впитывать” в себя электрический ток идущий/ “стекающий” от электроустановки через эти электроды.
На рисунке он показан толстыми красными линиями:
Сопротивление заземления — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю (ПУЭ 1.7.26).
Заземляющий электрод (электрод заземлителя) — проводящая часть, находящаяся в электрическом контакте с локальной землей (ГОСТ Р 50571.21-2000 п. 3.21)
Повторюсь: в качестве проводящей части может выступать металлический (токопроводящий) элемент любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро 🙂 и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.
На рисунке они показаны толстыми красными линиями:
Далее определения, не встречающиеся или не описанные достаточно точно в стандартах и нормах, поэтому имеющие только мое описание.
Контур заземления — “народное” название заземлителя или заземляющего устройства, состоящего из нескольких заземляющих электродов (группы электродов), соединенных друг с другом и смонтированных вокруг объекта по его периметру/ контуру.
На рисунке объект обозначен серым квадратом в центре,
а контур заземления — толстыми красными линиями:
Б. Назначение (виды) заземления
Заземление делится на два основных вида по выполняемой роли — на рабочее (функциональное) и защитное. Также в различных источниках приводятся дополнительные виды, такие как: “инструментальное”, “измерительное”, “контрольное”, “радио”.
Б1. Рабочее (функциональное) заземление
Это заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) (ПУЭ 1.7.30).
Рабочее заземление (электрический контакт с грунтом) используется для нормального функционирования электроустановки или оборудования, т.е. для их работы в ОБЫЧНОМ режиме.
Б2. Защитное заземление
Это заземление, выполняемое в целях электробезопасности (ПУЭ 1.7.29).
Защитное заземление обеспечивает защиту электроустановки и оборудования, а также защиту людей от воздействия опасных напряжений и токов, могущих возникнуть при поломках, неправильной эксплуатации техники (т.е. в АВАРИЙНОМ режиме) и при разрядах молний.
Также защитное заземление используется для защиты аппаратуры от помех при коммутациях в питающей сети и интерфейсных цепях, а также от электромагнитных помех, наведенных от работающего рядом оборудования.
- в составе внешней молниезащитной системы в виде заземленного молниеприёмника
- в составе системы защиты от импульсного перенапряжения
- в составе электросети объекта
Б2.1. Заземление в составе молниезащиты
Молния — это разряд или другими словами «пробой», возникающий ОТ облака К земле, при накоплении в облаке заряда критической величины (относительно земли). Примерами этого явления в меньших масштабах является “пробой” (wiki) в конденсаторе и газовый разряд (wiki) в лампе.
Воздух — это среда с очень большим сопротивлением (диэлектрик), но разряд преодолевает его, т.к. обладает большой мощностью. Путь разряда проходит по участкам наименьшего сопротивления, таким как капли воды в воздухе и деревья. Этим объясняется корнеобразная структура молнии в воздухе и частое попадание молнии в деревья и здания (они имеют меньшее сопротивление, чем воздух в этом промежутке).
При попадании в крышу здания, молния продолжает свой путь к земле, также выбирая участки с наименьшим сопротивлением: мокрые стены, провода, трубы, электроприборы — таким образом представляя опасность для человека и оборудования, находящихся в этом здании.
Молниезащита предназначена для отвода разряда молнии от защищаемого здания/ объекта. Разряд молнии, идущий по пути наименьшего сопротивления попадает в металлический молниеприёмник над объектом, затем по металлическим молниеотводам, расположенным снаружи объекта (например, на стенах), спускается до грунта, где и расходится в нём (напоминаю: грунт является средой, имеющей свойство “впитывать” в себя электрический ток).
Для того, чтобы сделать молниезащиту «привлекательной» для молнии, а также для исключения распространения молниевых токов от деталей молниезащиты (приёмник и отводы) внутрь объекта, её соединение с грунтом производится через заземлитель, имеющий низкое сопротивление заземления.
Заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает полный и быстрый переход молниевых токов в грунт, не допуская их распространение по объекту.
Б2.2. Заземление в составе системы защиты от импульсного перенапряжения (УЗИП)
УЗИП предназначено для защиты электронного оборудования от заряда, накопленного на каком-либо участке линии/сети в результате воздействия электромагнитного поля (ЭМП), наведенного от рядом стоящей мощной электроустановки (или высоковольтной линии) или ЭМП, возникшего при близком (до сотен метров) разряде молнии.
Ярким примером этого явления является накопление заряда на медном кабеле домовой сети или на “пробросе” между зданиями во время грозы. В какой-то момент приборы, подключенные к этому кабелю (сетевая карта компьютера или порт коммутатора), не выдерживают «размера» накопившегося заряда и происходит электрический пробой внутри этого прибора, разрушающий его (упрощенно).
Для “стравливания” накопившегося заряда параллельно “нагрузке” на линию перед оборудованием ставит УЗИП.
Классический УЗИП представляет собой газовый разрядник (wiki), рассчитанный на определенный «порог» заряда, который меньше “запаса прочности” защищаемого оборудования. Один из электродов этого разрядника заземляется, а другой — подключается к одному из проводов линии/ кабеля.
При достижении этого порога внутри разрядника возникает разряд 🙂 между электродами. В результате чего накопленный заряд сбрасывается в грунт (через заземление).
Как и в молниезащите — заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает своевременное и гарантированное возникновение разряда в УЗИПе, не допуская превышение заряда на линии выше безопасного для защищаемого оборудования уровня.
Б2.3. Заземление в составе электросети
Третий пример защитной роли заземления — это обеспечение безопасности человека и электрооборудования при поломках/ авариях.
Проще всего такая поломка описывается замыканием фазного провода электросети на корпус прибора (замыкание в блоке питания или замыкание в водонагревателе через водную среду). Человек, коснувшийся такого прибора, создаст дополнительную электрическую цепь, через которую побежит ток, вызывающий в теле повреждения внутренних органов — прежде всего нервной системы и сердца.
Для устранения таких последствий используется соединение корпусов с заземлителем (для отвода аварийных токов в грунт) и защитные автоматические устройства, за доли секунды отключающие ток при аварийной ситуации.
Например, заземление всех корпусов, шкафов и стоек телекоммуникационного оборудования.
В. Качество заземления. Сопротивление заземления.
Для корректного выполнения заземлением своих функций оно должно иметь определенные параметры/ характеристики. Одним из главных свойств, определяющих качество заземления, является сопротивление растеканию тока (сопротивление заземления), определяющее способность заземлителя (заземляющих электродов) передавать токи, поступающие на него от оборудования в грунт.
Это сопротивление имеет конечные значения и в идеальном случае представляет собой нулевую величину, что означает отсутствие какого-либо сопротивления при пропускании «вредных» токов (это гарантирует их ПОЛНОЕ поглощение грунтом).
В1. Факторы, влияющие на качество заземления
- площадь ( S ) электрического контакта заземлителя с грунтом
- электрическое сопротивление ( R ) самого грунта, в котором находятся электроды
В1.1. Площадь контакта заземлителя с грунтом.
Чем больше будет площадь соприкосновения заземлителя с грунтом, тем больше площадь для перехода тока от этого заземлителя в грунт (тем более благоприятные условия создаются для перехода тока в грунт). Это можно сравнить с поведением автомобильного колеса на повороте. Узкая покрышка имеет небольшую площадь контакта с асфальтом и легко может начать скользить по нему, “отправив” автомобиль в занос. Широкая покрышка, да еще и немного спущенная, имеет много бОльшую площадь контакта с асфальтом, обеспечивая надежное сцепление с ним и, следовательно, надежный контроль за движением.(Пример оказался неграмотным. Спасибо SVlad — комментарий: habrahabr.ru/post/144464/#comment_4854521)
Увеличить площадь контакта заземлителя с грунтом можно либо увеличив количество электродов, соединив их вместе (сложив площади нескольких электродов), либо увеличив размер электродов. При применении вертикальных заземляющих электродов последний способ очень эффективен, если глубинные слои грунта имеют более низкое электрическое сопротивление, чем верхние.
В1.2. Электрическое сопротивление грунта (удельное)
Напомню: это величина, определяющая — как хорошо грунт проводит ток через себя. Чем меньшее сопротивление будет иметь грунт, тем эффективнее/ легче он будет “впитывать” в себя ток от заземлителя.
Примерами грунтов, хорошо проводящих ток, является солончаки или сильно увлажненная глина. Идеальная природная среда для пропускания тока — морская вода.
Примером “плохого” для заземления грунта является сухой песок.
Возвращаясь к первому фактору и способу уменьшения сопротивления заземления в виде увеличения глубины электрода можно сказать, что на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности. Часто встречаются грунтовые воды, которые обеспечивают грунту очень низкое сопротивление. Заземление в таких случаях получается очень качественным и надежным.
В2. Существующие нормы сопротивления заземления
Так как идеала (нулевого сопротивления растеканию) достигнуть невозможно, все электрооборудование и электронные устройства создаются исходя из некоторых нормированных величин сопротивления заземления, например 0.5, 2, 4, 8, 10, 30 и более Ом.
- для подстанции с напряжением 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
- при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление не более 2 или 4 Ом
- для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
- у источника тока (например, трансформаторной подстанции) сопротивление заземления должно быть не более 4 Ом при линейном напряжении 380 В источника трехфазного тока или 220 В источника однофазного тока (ПУЭ 1.7.101)
- у заземления, использующегося для подключения молниеприёмников, сопротивление должно быть не более 10 Ом (РД 34.21.122-87, п. 8)
- для частных домов, с подключением к электросети 220 Вольт / 380 Вольт:
- при использовании системы TN-C-S необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом (ориентируюсь на ПУЭ 1.7.103)
- при использовании системы TT (изолирование заземления от нейтрали источника тока) и применении устройства защитного отключения (УЗО) с током срабатывания 100 мА необходимо иметь локальное заземление с сопротивлением не более 500 Ом (ПУЭ 1.7.59)
В3. Расчёт сопротивления заземления
Для успешного проектирования заземляющего устройства, имеющего необходимое сопротивление заземления, применяются, как правило, типовые конфигурации заземлителя и базовые формулы для расчётов.
Конфигурация заземлителя обычно выбирается инженером на основании его опыта и возможности её (конфигурации) применения на конкретном объекте.
Выбор формул расчёта зависит от выбранной конфигурации заземлителя.
Сами формулы содержат в себе параметры этой конфигурации (например, количество заземляющих электродов, их длину, толщину) и параметры грунта конкретного объекта, где будет размещаться заземлитель. Например, для одиночного вертикального электрода эта формула будет такой:Точность расчёта обычно невысока и зависит опять же от грунта — на практике расхождения практических результатов встречается в почти 100% случаев. Это происходит из-за его (грунта) большой неоднородности: он изменяется не только по глубине, но и по площади — образуя трёхмерную структуру. Имеющиеся формулы расчёта параметров заземления с трудом справляются с одномерной неоднородностью грунта, а расчёт в трёхмерной структуре сопряжен с огромными вычислительными мощностями и требует крайне высокую подготовку оператора.
Кроме того, для создания точной карты грунта необходимо произвести большой объем геологических работ (например, для площади 10*10 метров необходимо сделать и проанализировать около 100 шурфов длиной до 10 метров), что вызывает значительное увеличение стоимости проекта и чаще всего не возможно.В свете вышесказанного почти всегда расчёт является обязательной, но ориентировочной мерой и обычно ведётся по принципу достижения сопротивления заземления “не более, чем”. В формулы подставляются усредненные значения удельного сопротивления грунта, либо их наибольшие величины. Это обеспечивает “запас прочности” и на практике выражается в заведомо более низких (ниже — значит лучше) значениях сопротивления заземления, чем ожидалось при проектировании.
Строительство заземлителей
При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов — у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.
В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т.п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.
Как работает заземление в домашней сети
Всем известно, что электричество – это неотъемлемый атрибут современного человека. Без использования электроэнергии невозможно включить чайник, чтобы попить чая или кофе, разогреть еду в микроволновке или посмотреть телевизор. Несмотря на незаменимость электричества, не стоит забывать и о его коварстве. Очень много неприятных случаев бывает при ударе током, бывают даже летальные ситуации.
Приветствую дорогие друзья и читатели сайта «Электрик в доме». Многие ощущали на себе неприятный удар током, когда случайно касались оголенного провода. Но в быту встречаются ситуации, когда человека может ударить током, даже если он дотрагивается к безобидному с виду бытовому прибору. Почему так происходит?
Как правило, такое случается, когда повреждается внутренняя изоляция и прибор не имеет заземления. В этом материале постараемся простым языком объяснить читателю, что такое заземление, как работает заземление и для чего оно необходимо.
От чего защищает заземление?
Основное предназначение заземления в электрической сети – это защита. Для работы электрических приборов в электропроводке предусмотрено два провода: фазный и нулевой.
Защита, которую обеспечивает заземление заключается в подключении третьего проводника, соединенного непосредственно с заземлителем который в свою очередь соединен с контуром заземления. Благодаря заземлению можно не беспокоиться о том, что возникшая по вине неисправности бытового прибора аварийная ситуация приведет к удару электрическим током кого либо из окружающих.
Друзья давайте разберемся, какие аварийные ситуации могут возникнуть и в чем заключается принцип работы защитного заземления?
Опасность поломки электрического прибора заключается в том, что его корпус может оказаться под напряжением, тем самым сделав его опасным. Такое обстоятельство может возникнуть в том случае, если повреждается внутренняя изоляция. Например, когда провода прибора со временем ссыхаются или плавятся, и соприкасается с металлическим корпусом бытового прибора.
Визуально заметить такую аварийную поломку невозможно, однако достаточно дотронуться к электроплите или стиральной машинке, удар током пройдет незамедлительно.
У многих после таких ситуаций возникает вопрос: как работает заземление, и может ли оно эффективно защитить. Сила такого удара может быть разной в зависимости от состояния человека и окружающих условий.
Что произойдет, если корпус не соединен с заземлением? Сама по себе такая поломка ничего собой не представляет. Стиральная машинка с пробитым корпусом как работала, так и будет работать. Она будет отлично выполнять свои функции, пока вы к ней не дотронетесь.
Все дело в том, что человек больше чем на 70% состоит из воды и является прекрасным проводником электричества. Когда вы стоите на полу или прикасаетесь к стене, то ваше тело может послужить проводником. При прикосновении к поврежденному корпусу ток начнет протекать через ваше тело в землю.
Конечно, можно избежать удара током, если одеть резиновые перчатки или обувь, но в доме так никто не ходит. Если у вас в доме нет заземления, и прибор бьется током, следует помнить, что даже невысокое напряжение может привести к плачевным обстоятельствам.
Величина в 50 мА уже является опасной для человека. Такое маленькое значение тока может привести к фибрилляции сердца и даже к смертельному случаю.
Для того чтобы не беспокоиться за свою жизнь и здоровье семьи важно, чтобы в доме было подключено заземление. В этом случае опасный потенциал, имеющийся на корпусе прибора, будет уходить в землю, защищая вас от удара. В этом заключается принцип работы заземления. К тому же дополнительно заземлению рекомендуется устанавливать УЗО, которое отключит поврежденное оборудование при малейших утечках.
Принцип работы заземления
После того как приборы будут заземлены пробой внутренней изоляции нам не страшен. Если по каким-то причинам корпус прибора окажется под напряжением, возникнет короткое замыкание между фазой и заземлением. В результате чего сработает автоматический выключатель. Благодаря правильно установленному заземлению и срабатыванию автомата, человека не ударит током.
Однако здесь есть некоторые нюансы электротехники. Не всегда при пробое напряжения на корпус может выбить автомат и в таких случаях прекрасным помощником станет устройство защитного отключения.
Также хочется отметить тот факт, что при качественном монтаже заземляющего контура его сопротивление должно составлять 4 Ом , и если по каким-то причинам произойдет задержка в отключении автомата или он вовсе не отключится, потенциал на корпусе поврежденного прибора будет равен потенциалу заземлителя. В этом случае человека при касании током не ударит, так как разность потенциалов отсутствует. Как работает заземление электрооборудования
Что касается жителей частного сектора, то в основном, на этих районах электричество на участки подводится воздушными линиями электропередач. Как правило, это двухпроводные линии, которые состоят из фазного и нулевого провода. В нашей стране линии электропередач оставляют желать лучшего, ведь на одном кабеле, идущем по основной линии, может быть много скруток.
Порывы ветра, падающие ветки и осадки могут в любой момент оборвать силовой кабель и если у вас в доме не установлена система защиты в виде заземления и устройства УЗО, то пострадать может не только владелец дома, но и вся его техника. Здесь установка заземления особенно актуальный вопрос.
Сегодня можно самостоятельно создать хорошую защиту для дома и создать заземление собственными руками, обеспечивая сохранность приборов и здоровья домочадцев.
Правильно изготовленная и установленная система защиты сможет уберечь электроприборы даже в момент обрыва линии идущей к дому. В настоящее время индивидуальная работа заземления дома в совокупности с УЗО считается популярными средствами защиты от удара током в собственном доме.
Работа заземления в частном секторе
В данном разделе разберем, как работает заземление на примере частного дома. Схема питания дома, изображенная на рисунке состоит из воздушной линии. Воздушная линия – двухпроводная, наиболее часто встречающаяся в частном секторе. Состоит из двух проводов фазного (на рисунке обозначен красным цветом) и нулевого (синего цвета). Нулевой провод является нулевым рабочим и защитным одновременно. То есть совмещенным проводником. В электротехнической литературе обозначается как PEN проводник.
Для того чтобы разделить этот проводник на два независимых рабочий и защитный, во вводном щите дома делается специальное ответвление на заземляющий контур. После этого с вводного щита выходит два нулевых проводника которые имеют разное назначение. Один из них рабочий ноль, который служит для работы приборов. Другой защитный ноль — заземляющий проводник, должен иметь желто-зеленую маркировку и обозначение PE .
В «Правилах Устройства Электроустановок» такая система заземления обозначается как TN-C-S. Внутренняя электропроводка дома должна быть трехпроводной, то есть фаза, ноль и заземление. Все розетки в доме должны быть соответственно с заземляющим контактом. В этом случае корпус потенциально опасного прибора будет подключен к защитному проводнику через заземляющий контакт розетки. В зону риска особенно входит так называемая мокрая техника это водонагреватели, насосы, посудомоечные и стиральные машинки.
Если в ходе эксплуатации фазный провод в результате пробоя изоляции соприкасается с корпусом прибора (для примера это корпус холодильника), то между фазным проводом (красным) и заземляющим (желто-зеленым) произойдет замыкание, в результате чего отключится силовой автомат.
Мнимая защита или неправильное заземление
Бывают ситуации, когда заземление может быть опасным. Это при условии НЕПРАВИЛЬНОГО ПОДКЛЮЧЕНИЯ. Друзья сейчас рассмотрим случай неправильного подключения заземления и сравним его со случаем рассмотренным выше.
На рисунке изображена схема неправильного заземления. Суть его заключается в подключении заземляющего проводника (провода заземления в электропроводке) к нулевому рабочему. Нулевой провод же заземлен на подстанции, почему же от него не заземлиться? К сожалению, встречаются специалисты в нашей отрасли, которые совершают такие ошибки.
В чем заключается опасность? В исправном состоянии техника будет работать без нареканий, все электрические приборы будут выполнять свою работу. Друзья давайте теперь рассмотрим другую ситуацию когда нулевой провод на линии был оборван в результате сильного ветра, при этом красный все еще остался целым.
При замыкании фазного провода на корпус в этом случае короткого замыкания не возникнет, так как заземляющий провод, который одновременно является и нулевым рабочим оборван по пути к дому, разности потенциалов между фазным и заземляющим проводом нет, и короткого замыкания не произойдет. Отсюда не сложно догадаться, что автоматический выключатель не отключится, так как ему просто не на что реагировать (нет тока короткого замыкания).
Из этого следует, что корпус холодильника, находясь под опасным напряжением, будет ждать свою жертву. Сила удара током в этой ситуации будет напрямую зависеть от того какая соприкосаемость человека с землей. Чем лучше контакт, тем сильнее ударит.
В некоторых случаях удар током через корпус прибора может быть фатальным, чтобы не случилось неприятностей нужно знать, как работает заземление в доме.
К примеру, вы прикасаетесь к пробиваемой электрической водогрейке и одновременно беретесь за водопроводную трубу. Также опасно браться за корпус прибора, который находится под напряжением при этом стоять босым на бетонных полах. Такой пол может служить проводником.
Как работает узо с заземлением
Чувствительность системы заземления, а соответственно и электробезопасность можно повысить установив в электрощите устройство защитного отключения (УЗО). Данный прибор реагирует на утечку тока и отключается при ее появлении тем самым обестачивая технику с поврежденной изоляцией. УЗО срабатывает даже в тех случаях если происходит малейшая утечка тока.
В реальности утечка тока может происходить как через заземленный корпус прибора, так и через тело человека (если заземления в доме отсутствует), что менее приятно. На рисунке показана ситуация когда ток проходит через тело человека.
К примеру, человек касается корпуса неисправного прибора, корпус которого не заземлен. В момент прикосновения через человека начинает протекать ток, и УЗО реагируя на него мгновенно отключится. Продолжительность удара током для человека в этом случае будет равна времени отключения УЗО. Обычно она равняется десятым долям секунды.
Незначительное и кратковременное воздействие тока в большинстве случаев приносить незначительный вред, человек получает болевые неприятные ощущения и испуг, который проходит уже через несколько минут.
Казалось бы идеальный вариант защиты, но не все так гладко. Даже такая система защиты имеет свои недостатки:
- если прибор не имеет заземления, то, следовательно, УЗО не сможет зафиксировать утечку, а понять поломку можно будет только после пусть небольшого, но удара током;
- по сути УЗО — это сложный электронный прибор, который не может сработать моментально, для отключения требуется время, следовательно, защита только с помощью УЗО может оказаться слишком медленной.
- за счет высокой стоимости на УЗО домовладельцы, как правило, экономят и покупают устройства низкого качества либо устанавливают одно УЗО на весь дом, а в этом случае сложно гарантировать своевременное срабатывание.
Не стоит использовать устройства УЗО сомнительного качества и малоизвестных брендов. Ответственность за свою защиту, каждый человек несет самостоятельно, поэтому покупать нужно только оригинальный и сертифицированный товар. В настоящий момент рынок переполнен электрооборудованием различных производителей и нужно ответственно относиться, к такой покупке.
Друзья мы с вами рассмотрели принцип работы заземления, и что может произойти при неправильном способе заземления. Основное преимущество такой схемы подключения заключается в том, что у нее имеется свой индивидуальный контур заземления и в случае обрыва провода на линии электропередач он не сможет никак повлиять на работоспособность.
Важно! Не стоит думать, что если у дома есть заземление, то не нужно использовать УЗО. Даже при малейшей утечке прибор может зафиксировать проблему и отключить поврежденный участок сети, обеспечив безопасность и здоровье человека.
Электричество – это друг и враг человека, поэтому чтобы не произошло чего-то непредвиденного необходимо правильно делать электропроводку, и знать, как работает заземление в доме. Если нет знаний и опыта работы с электричеством, то такую работу лучше доверить профессионалам, которые все сделают, не только быстро, но и качественно с учетом всех норм и требований.