Линии напряжённости
Для наглядного изображения электрического поля пользуются линиями напряжённости или силовыми линиями. Линией напряжённости называют такую линию, в каждой точке которой вектор напряжённости электрического поля направлен по касательной к ней. Направление этих линий совпадает с направлением поля. Условились эти линии проводить так, чтобы число линий, отнесённых к единице площади площадки, расположенной перпендикулярно к ним, равнялось
Р
ис. 1
бы модулю напряжённости поля в месте расположения площадки. При таком способе построения по густоте линий напряжённости можно судить о модуле напряжённости электрического поля в различных точках поля. Там, где линии расположены гуще, модуль напряжённости поля больше. Следует отметить, что линии напряжённости никогда не пересекаются, поскольку их пересечение означало бы отсутствие определённого направления вектора в точках их пересечения. Картина линий напряжённости для неоднородного электростатического поля приведена на рис. 1. Из этого рисунка видноE3 < E2 < E1. Об этом судят по густоте линий. Условились считать, что линии напряжённости начинаются на положительных зарядах и оканчиваются на отрицательных.
Поток напряжённости электрического поля.
1. Потоком напряжённости электрического поля через какую-либо поверхность называют число линий напряженности , пронизывающих её. Пусть площадкаS находится в однородном электростатическом поле. При этом она перпендикулярна к линиям напряженности. Поскольку через единицу площади проходит число линий напряжённости, равное Е, то элементарный поток через эту площадку равен ФE = ES.
Рассмотрим теперь случай, когда в однородном электростатическом поле находится плоская площадка, нормаль к площадке составляет уголс направлением поля, т.е. с вектором напряжённости
(рис. 2). Число линий напряжённости, проходящих через площадкуS и её проекцию Sпр на плоскость, перпендикулярную к этим линиям, одинаково. Следовательно, поток
напряжённости электрического поля через них одинаков. Используя выражение предыдущую формулу, находим, что
НоSпр = S cos. Поэтому
ФЕ = ES cos = En S, (6)
где Ecos = En проекция вектора на направление нормали
к площадке.
Рис. 2 Рис. 3
Для вычисления потока ФЕ напряжённости электрического поля через произвольную поверхность S, помещённую в неоднородное электрическое поле (рис. 3), надо мысленно разбить его на элементарные участки dS, чтобы площадку можно было бы считать плоской, а поле в её пределах однородным. Тогда, согласно (6), элементарный поток dФE = En dS, а поток напряжённости электрического поля через всю поверхность равен сумме этих потоков dФE, т.е.
(7)
поскольку суммирование бесконечно малых величин означает интегрирование.
Теорема гаусса для электростатического поля
Проведём вокруг точечного заряда сферу произвольного радиуса r с центром в точке расположения заряда (рис. 3). Найдём поток напряжённости электростатического поля через эту поверхность. В данном случае направления векторов и
в любой точке поверхности совпадают. ПоэтомуEn = Ecos 0 = E. Модуль напряжённости во всех точках на поверхности сферы одинаков и равен
C учётом этого из (6) получаем:
Р
ис. 3
(8)
где значок на интеграле означает, что интегрирование производится по замкнутой поверхности. E вынесена за знак интеграла, поскольку она не зависит от S. Суммирование же всех площадей элементарных площадок даёт площадь S сферы, т.е. Соотношение (8) справедливо не только для сферы, но и для любой замкнутой поверхности, поскольку число линий напряжённости, пронизывающих её и сферу, одинаково. Если имеется система точечных зарядов, то очевидно, что полный потокФЕ напряжённости электрического поля через замкнутую поверхность в силу принципа суперпозиции полей равен сумме потоков ФЕi, создаваемых каждым зарядом qi в отдельности, т.е.
=
. Но, как следует из (8),ФEi = qi / (). Поэтому
(9)
поскольку и постоянные величины их вынесли за знак суммы. Таким образом, получен общий результат, названный теоремой Гаусса: поток напряжённости электростатического поля через любую замкнутую поверхность равен алгебраической сумме зарядов, заключённых внутри неё, делённой на электрическую постоянную и диэлектрическую проницаемость среды.
Заряды в пространстве могут распределяться не только дискретно, но и непрерывно. В этом случае вводится понятие о плотности зарядов. При непрерывном распределении зарядов по объёму вводят объёмную плотность заряда. Пусть заряд q равномерно распределён по объёму V. Тогда объёмной плотностью заряда называется отношение = q/V. Если же распределение заряда неравномерное, то надо выделить на поверхности элементарный участок dV, в пределах которого заряд dq, находящийся на нём, можно считать равномерно распределённым. Объёмная плотность заряда находится по формуле:
(10)
т.е. объёмная плотность зарядов равна заряду, приходящемуся на единицу объёма. Используя (6.8), по аналогии с (6.7) можно найти заряд, расположенный в некотором объёме V:
(11)
Здесь интегрирование производится по всему объёму V, по которому распределён заряд. Тогда при непрерывном распределении заряда на некоторому объёму
(12)
Физика. 10 класс
Для описания электростатического поля нужно знать как модуль, так и направление напряжённости в каждой его точке. Чтобы наглядно отображать распределение поля в пространстве, Фарадей в 1845 г. предложил способ изображения электрических полей в виде воображаемых линий. Их назвали линиями напряжённости или силовыми линиями.
Линии напряжённости — воображаемые направленные линии, касательные к которым в каждой точке поля совпадают по направлению с напряжённостью электростатического поля в той же точке (т. е. с направлением электростатической силы, действующей на положительный заряд) (рис. 111).
Очевидно, что через любую точку поля, в которой , можно провести одну и только одну линию напряжённости. В каждой такой точке напряжённость имеет вполне определённое направление.
На рисунке 112, а изображены линии напряжённости полей, образованных зарядами, равномерно распределёнными по поверхности уединённых проводящих шариков. Направление каждой стрелки на рисунке 112, а совпадает с направлением напряжённости поля. Линии напряжённости в первом случае направлены от положительного заряда в бесконечность, а во втором — из бесконечности к отрицательному заряду и оканчиваются на нём. В электростатическом поле линии напряжённости начинаются и оканчиваются на электрических зарядах даже тогда, когда одним своим концом уходят в бесконечность, где и находятся недостающие на рисунке заряды.
На рисунке 112, б изображены линии напряжённости электростатического поля, образованного двумя разноимёнными зарядами, модули которых одинаковые, находящимися на проводящих шариках. Стрелки показывают направления напряжённости поля в различных его точках.
На рисунке 112, в представлены линии напряжённости электростатического поля двух одинаково заряженных шариков.
На рисунке 112, г изображено поле, созданное зарядами противоположных знаков, модули которых одинаковые, находящимися на двух плоских металлических пластинах, длина которых много больше расстояния между ними. Линии напряжённости такого поля параллельны друг другу за исключением пространства вблизи краёв пластин и вне области их перекрытия. Электростатическое поле в центральной области между разноимённо заряженными металлическими пластинами является примером однородного поля.
Однородное электростатическое поле — электростатическое поле, напряжённость которого во всех точках пространства одинакова.
Электростатические поля, изображённые на рисунках 112, а, б, в, являются неоднородными, так как или модуль, или направление (или и то, и другое) напряжённости в разных точках поля отличается.
Линии напряжённости электростатического поля не прерываются в пространстве (при отсутствии в нём других зарядов), никогда не пересекаются и не касаются друг друга.
Чтобы линии напряжённости отображали не только направление, но и модуль напряжённости поля, на рисунках их условились проводить с определённой густотой. Линии напряжённости идут гуще там, где модуль напряжённости поля больше, и реже там, где он меньше. В однородном электростатическом поле густота линий напряжённости не меняется. Картину линий напряжённости принято строить так, чтобы она, по возможности, отображала симметрию изображаемого электростатического поля. Число линий напряжённости, началом или концом которых служит данный заряд, пропорционально значению этого заряда (рис. 113).
1. Что называют линиями напряжённости электростатического поля?
2. Каковы особенности линий напряжённости электростатического поля?
3. Как направлены линии напряжённости электростатического поля заряда в зависимости от его знака? Системы двух зарядов (одноимённых и разноимённых)?
4. Какое электростатическое поле называют однородным? Приведите примеры.
Что называют линиями напряженности электрического поля
641 дн. с момента
до конца учебного года
Электростатическое поле и его характеристики
Электростатическое поле существующий вокруг неподвижный заряженных тел, действует на заряд с некоторой силой, вблизи заряда – сильнее.
Электростатическое поле не изменяется во времени.
Силовой характеристикой электрического поля является напряженность
Напряженностью электрического поля в данной точке называется векторная физическая величина, численно равная силе, действующей на единичный положительный заряд, помещенный в данную точку поля.
Силовыми линиями (линиями напряженности электрического поля) называют линии, касательные к которым в каждой точке поля совпадают с направлением вектора напряженности в данной точке.
Силовые линии начинаются на положительном заряде и заканчиваются на отрицательном ( Силовые линии электростатических полей точечных зарядов. ).
Густота линий напряженности характеризует напряженность поля (чем плотнее располагаются линии, тем поле сильнее).
Электростатическое поле точечного заряда неоднородно (ближе к заряду поле сильнее).
Силовые линии электростатических полей бесконечных равномерно заряженных плоскостей.
Электростатическое поле бесконечных равномерно заряженных плоскостей однородно. Электрическое поле, напряженность во всех точках которого одинакова, называется однородным.