Что такое коэффициент стабилизации
Перейти к содержимому

Что такое коэффициент стабилизации

  • автор:

Что такое коэффициент стабилизации

Хочешь узнать ответ

Стабилизатор применяется для обеспечения нагрузки стабильным, заданным напряжением, независимо от скачков и колебаний напряжения питания.

Основными параметрами стабилизатора напряжения являются следующие:

— коэффициент стабилизации Кст

— выходное сопротивление Rвых

— коэффициент полезного действия h

— температурный коэффициент ТКН

Коэффициент стабилизации — это отношение относительного изменения напряжения на входе стабилизатора к соответствующему относительному изменению напряжения на его выходе (при этом Rн считаем постоянным).

Чем больше коэффициент стабилизации, тем меньше изменяется выходное напряжение при изменении входного.

Выходное сопротивление [Ом] — это отношение изменения напряжения на выходе стабилизатора к изменению выходного тока (тока нагрузки), которое вызвало изменение выходного напряжения (при этом Uвх считаем постоянным).

Чем меньше выходное сопротивление, тем меньше изменяется выходное напряжение при изменении тока нагрузки.

Коэффициент полезного действия (КПД) [%] — это отношение мощности, отдаваемой в нагрузку, к мощности, потребляемой от источника питания.

Если учесть, что Pвх=Pн+Pст, где Pн — мощность, рассеиваемая нагрузкой, а Pст — мощность, рассеиваемая стабилизатором, то можно записать эту формулу по другому:

Температурный коэффициент (ТКН) [%/ 0 C] — это отношение относительного изменения выходного напряжения стабилизатора к вызвавшему его изменению температуры окружающей среды.

4.2. Стабилизаторы напряжения

Стабилизаторы напряжения — это устройства, которые поддерживают с заданной точностью напряжение на нагрузке при изменении дестабилизирующих факторов: изменении входного напряжения, тока нагрузки и т.д.

Основными параметрами, характеризующими работу стабилизатора, являются [2]:

Коэффициент стабилизации, представляющий собой отношение относительного изменения напряжения на входе к относительному изменению напряжения на выходе стабилизатора.

,

где и— номинальные напряжения на входе и выходе стабилизатора;и— абсолютные изменения напряжения на входе и выходе стабилизатора.

Коэффициент стабилизации служит основным критерием для выбора схемы стабилизатора и оценки ее параметров.

Выходное сопротивление, характеризующее изменение выходного напряжения при изменении тока нагрузки и неизменном входном напряжении.

,

Коэффициент полезного действия, равный отношению мощности в нагрузке и номинальной входной мощности,

.

Относительная нестабильность выходного напряжения, характеризующая допустимое относительное отклонение стабилизированного напряжения от его номинального значения при воздействии различных дестабилизирующих факторов,

.

По принципу действия стабилизаторы напряжений подразделяют на параметрические, компенсационные и импульсные.

4.3. Параметрические стабилизаторы

В параметрических стабилизаторах напряжения используются нелинейные элементы, напряжения на которых в пределах некоторого участка вольт-амперной характеристики не зависит от тока, протекающего через элемент. Такую вольт-амперную характеристику имеет полупроводниковый стабилитрон. На рис.4.3приведена вольт-амперная характеристика стабилитрона. Прямая ветвь характеристики стабилитрона (UАК>0) такая же, как и у обычного диода и особого интереса не представляет. Для стабилизации напряжения используется обратная ветвь (UАК < 0) характеристики стабилитрона. При достижении некоторого отрицательного напряжения UАКпроисходит пробой стабилитрона и в пределах изменения тока от Iminдо Imaxнапряжение на стабилитроне практически остается неизменным. Это напряжение называется напряжением стабилизации Uст. При превышении тока Imax стабилитрон выходит из строя. Изменение напряжения стабилитрона при изменении тока через него характеризуется динамическим сопротивлением стабилитрона rст =Uст/Iст. Стабилитроны выпускаются на различные номинальные напряжения стабилизации и мощности. Параметры стабилитронов малой мощности приведены в приложении А.

На рис.4.4. приведена схема параметрического стабилизатора. Обратите внимание на включение стабилитрона: катод подключается к плюсу источника входного напряжения, а анод к минусу. Нагрузка подключается параллельно стабилитрону. Напряжение на нагрузке будет равно напряжению стабилизации UСТстабилитрона пока ток стабилитрона находится между Iminи Imax. Допустим, что ток стабилитрона равен Iст = (Iст max+Iст min)/2. При увеличении входного напряжения увеличивается ток через балластное сопротивление Rб. Ток нагрузки остается неизменным, так как напряжение на нем не меняется, оно остается равным Uст. Изменяется (увеличивается в нашем случае) ток стабилитрона.

При изменении сопротивления нагрузки, например при уменьшении Rн, увеличивается ток нагрузки за счет уменьшения тока стабилитрона. Напряжение на стабилитроне, а, следовательно, и на нагрузке, остается практически неизменным.

При холостом ходе весь ток нагрузки протекает через стабилитрон и может вывести прибор из строя — это надо учитывать при расчете схемы.

Резистор Rбограничивает величину тока стабилитрона и определяет стабильность выходного напряжения. С ростом Rбувеличивается коэффициент стабилизации, но падает к.п.д. схемы.

Величина резистора Rбвыбирается из условия

,

где Iст ном = (Iст max+Iст min)/2 — номинальный ток, Iст max, Iст min– максимальный и минимальный токи стабилитрона в режиме стабилизации.

Выходное сопротивление стабилизатора определяется дифференциальным сопротивлением стабилитрона.

Для определения коэффициента стабилизации найдем зависимость изменения выходного напряжения стабилизатора от изменения входного напряжения. Так как динамическое сопротивление стабилитрона rст намного меньше сопротивления нагрузки Rнизменение напряжения на выходе стабилизатора будет равноUн= rстIст. Ток стабилитрона определяется из выраженияIст= (Uвх-Uн)/Rб, тогдаUн= rст (Uвх-Uн)/Rб.

.

Для изменений напряжений стабилизатор ведет себя как делитель напряжения. Изменение напряжения на выходе стабилизатора будет тем меньше, чем больше будет величина сопротивления Rб.

Коэффициент стабилизации будет равен

.

Обычно коэффициент стабилизации не превышает 20 50.

На стабилитроне рассеивается мощность

.

Мощность, рассеиваемую стабилитроном, нужно рассчитывать для худшего случая, т.е. для Uвх max, Iвых min.

Параметрический стабилизатор на стабилитроне имеет ряд недостатков, которые ограничивают его применение:

Выходное напряжение нельзя отрегулировать или установить на заданное напряжение.

Стабилитроны имеют конечное динамическое сопротивление, следовательно, они не всегда достаточно хорошо сглаживают пульсации входного напряжения и влияние изменения нагрузки.

При широком диапазоне изменения токов нагрузки приходится выбирать диод с большой мощностью рассеяния, так как при малом токе нагрузки, через стабилитрон протекает большой ток и он рассеивает большую мощность.

Параметрический стабилизатор на стабилитроне используют в схемах, где потребляемый ток небольшой, например, для задания опорных напряжений.

Уменьшить ток стабилитрона, а, следовательно, и рассеиваемую мощность, можно с помощью эмиттерного повторителя. Такая схема показана на рис.4.5а. Опорное напряжение со стабилитрона подается на базу транзистора. Выходное напряжение будет меньше опорного на величину падения напряжения на переходе база-эмиттер, т.е. на 0,6 В. Ток стабилитрона почти не зависит от тока нагрузки, из-за малого тока базы транзистора. Резистор Rкпредохраняет транзистор от короткого замыкания нагрузки за счет ограничения тока. Величина резистораRквыбирается таким, чтобы падение напряжения на нем было меньше, чем на резистореRб, иначе транзистор перейдет в режим насыщения.

Если необходимо регулировать выходное напряжение, а это может понадобиться для более точной установки напряжения на нагрузке, то опорное напряжение на базу транзистора подается с выхода потенциометра, как показано на рис.4.5б. Сопротивление потенциометра должно быть мало по сравнению с величиной rбэ, чтобы не повышать выходное сопротивление стабилизатора.

Параметрические стабилизаторы имеют ограниченное применение. Более широко используются стабилизаторы с обратной связью.

Коэффициент стабилизации стабилизатора определение

Стабилизатор — это устройство, предназначенное для автоматического поддержания в заданных пределах напряжения или тока при изменении входного напряжения, тока нагрузки, температуры, давления, влажности, вибрации и других дестабилизирующих факторов.
Основными параметрами стабилизаторов являются:

  1. Коэффициент стабилизации
  2. Нестабильность выходного напряжения
  3. Внутреннее сопротивление стабилизатора
  4. Температурная нестабильность
  5. Коэффициент сглаживания пульсаций
  6. Коэффициент полезного действия

Коэффициент стабилизации

выходного напряжения можно определить как отношение нестабильности выходного напряжения к нестабильности входного напряжения:

Нестабильность выходного напряжения

(статическая ошибка) измеряется как отношение изменения выходного напряжения к его номинальному значению:

Измерение нестабильности выходного напряжения производится при постоянной нагрузке (ток нагрузки не должен изменяться).

Внутреннее сопротивление стабилизатора

можно определить как

Измерение внутреннего сопротивления стабилизатора производится при неизменном входном напряжении ().

Нестабильность выходного напряжения

в зависимости от тока нагрузки. Этот параметр применяется вместо внутреннего сопротивления.

Температурная нестабильность

Для выходного напряжения она определяется следующим образом:

Коэффициент сглаживания пульсаций

вычисляется следующим образом:

Коэффициент полезного действия

определяется как отношение выходной мощности к мощности, потребляемой стабилизатором:

Следует отметить, что мы перечилили только основные параметры стабилизаторов. Для стабилизаторов переменного тока дополнительно оговариваются требования по стабильности частоты сети переменного тока, нестабильность входного импеданса и его реактивной составляющей, коэффициент мощности. Кроме того важными параметрами являются габариты, масса и надежность стабилизатора, но эти требования относятся уже к любому радиоэлектронному устройству.

Наибольший вклад в общую нестабильность выходного напряжения вносят нестабильности по напряжению, току и температуре и, в зависимости от этого, получается результирующая нестабильность стабилизатора:

Cтабилизаторы классифицируются в зависимости от стабильности на стабилизаторы:

  • низкой точности δ = 2 . 5%
  • средней точности δ = 0,5 . 2%
  • высокой точности δ = 0,1 . 0,5%
  • прецизионные δ Дата последнего обновления файла 07.06.2015
  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 5-е издание, стереотипное. – М.: ИП РадиоСофт, 2010. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Денисов А.И., Зволинский В.М., Руденко Ю.В. Вентильные преобразователи в системах точной стабилизации. – К.: Наукова думка, 1997. – 250 с.

Вместе со статьей «Параметры стабилизаторов» читают:

Коэффициент стабилизации стабилизатора определение

Хочешь узнать ответ

Стабилизатор применяется для обеспечения нагрузки стабильным, заданным напряжением, независимо от скачков и колебаний напряжения питания.

Основными параметрами стабилизатора напряжения являются следующие:

— коэффициент стабилизации Кст

— выходное сопротивление Rвых

— коэффициент полезного действия h

— температурный коэффициент ТКН

Коэффициент стабилизации

— это отношение относительного изменения напряжения на входе стабилизатора к соответствующему относительному изменению напряжения на его выходе (при этом Rн считаем постоянным).

Чем больше коэффициент стабилизации, тем меньше изменяется выходное напряжение при изменении входного.

Выходное сопротивление

[Ом] — это отношение изменения напряжения на выходе стабилизатора к изменению выходного тока (тока нагрузки), которое вызвало изменение выходного напряжения (при этом Uвх считаем постоянным).

Чем меньше выходное сопротивление, тем меньше изменяется выходное напряжение при изменении тока нагрузки.

Коэффициент полезного действия (КПД)

[%] — это отношение мощности, отдаваемой в нагрузку, к мощности, потребляемой от источника питания.

Если учесть, что Pвх=Pн+Pст, где Pн — мощность, рассеиваемая нагрузкой, а Pст — мощность, рассеиваемая стабилизатором, то можно записать эту формулу по другому:

Температурный коэффициент (ТКН)

[%/ 0 C] — это отношение относительного изменения выходного напряжения стабилизатора к вызвавшему его изменению температуры окружающей среды.

Компенсационный стабилизатор параллельного типа

В схеме параллельного стабилизатора при отклонении напряжения на выходе от номинального выделяется сигнал рассогласования, равный разности опорного и выходного напряжений. Далее он усиливается и воздействуя на регулирующий элемент, включённый параллельно нагрузке. Ток регулирующего элемента IP изменяется, на сопротивлении резистора R1 изменяется падение напряжения, а на напряжение на выходе U1 = U0 – IBXR1 = const остаётся стабильным.

Типовая схема компенсационного стабилизатора напряжения параллельного типа приведена ниже. В качестве гасящего устройства в этих стабилизаторах применяются резисторы (R1 на схеме) или при высоких требованиях с стабильности выходного напряжения стабилизатора применяется стабилизатор тока описанный выше, имеющий большое внутреннее сопротивление.

Компенсационный стабилизатор напряжения с параллельно подключённым транзистором

Схема простого компенсационного стабилизатора напряжения параллельного типа

В основном расчёт элементов компенсационного стабилизатора параллельного типа производится аналогично стабилизатору последовательного типа.

Стабилизаторы параллельного типа имеют невысокий КПД и применяются сравнительно редко, в случае стабилизации повышенных напряжений и токов, а также при переменных нагрузках в отличие от стабилизаторов последовательного типа. Их недостатком является то, что при возможном резком увеличении тока нагрузки (например, при коротком замыкании на выходе) к регулирующему элементу будет прикладываться повышенное напряжение, величина которого может превысить допустимое значение. Это обстоятельство необходимо учитывать при эксплуатации стабилизатора.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Параметры стабилизаторов напряжения

Важнейшими параметрами стабилизатора напряжения являются коэффициент стабилизации K ст, выходное сопротивление R вых и коэффициент полезного действия η.

Коэффициент стабилизации определяют из выражения K ст= [ ∆u вх/ u вх] / [ ∆u вых/ u вых]

где u вх, u вых — постоянные напряжения соответственно на входе и выходе стабилизатора; ∆u вх — изменение напряжения u вх; ∆u вых — изменение напряжения u вых, соответствующее изменению напряжения ∆u вх.

Чем больше коэффициент стабилизации, тем меньше изменяется выходное напряжение при изменении входного. У простейших стабилизаторов величина K ст составляет единицы, а у более сложных — сотни и тысячи.

Васильев Дмитрий Петрович Профессор электротехники СПбГПУ

Таким образом, коэффициент стабилизации — это отношение относительного изменения напряжения на входе к соответствующему относительному изменению напряжения на выходе стабилизатора.

Выходное сопротивление стабилизатора определяется выражением R вых= | ∆u вых/ ∆i вых|

где ∆u вых— изменение постоянного напряжения на выходе стабилизатора; ∆i вых— изменение постоянного выходного тока стабилизатора, которое вызвало изменение выходного напряжения.

Выходное сопротивление стабилизатора является величиной, аналогичной выходному сопротивлению выпрямителя с фильтром. Чем меньше выходное сопротивление, тем меньше изменяется выходное напряжение при изменении тока нагрузки. У простейших стабилизаторов величина R вых составляет единицы Ом, а у более совершенных — сотые и тысячные доли Ома. Необходимо отметить, что стабилизатор напряжения обычно резко уменьшает пульсации напряжения.

Коэффициент полезного действия стабилизатора η ст — это отношение мощности, отдаваемой в нагрузку Р н, к мощности, потребляемой от входного источника напряжения Р вх: η ст = Р н / Р вх

Традиционно стабилизаторы разделяют на параметрические и компенсационные.

Интересное видео о стабилизаторах напряжения:

Параметрические стабилизаторы

Являются простейшими устройствами, в которых малые изменения выходного напряжения достигаются за счет применения электронных приборов с двумя выводами, характеризующихся ярко выраженной нелинейностью вольт-амперной характеристики. Рассмотрим схему параметрического стабилизатора на основе стабилитрона (рис. 2.82).

Проанализируем данную схему (рис. 2.82, а), для чего вначале ее преобразуем, используя теорему об эквивалентном генераторе (рис. 2.82, б). Проанализируем графически работу схемы, построив на вольт-амперной характеристике стабилитрона линии нагрузки для различных значений эквивалентного напряжения, соответствующих различным значениям входного напряжения (рис. 2.82, в).

Из графических построений очевидно, что при значительном изменении эквивалентного напряжения u э (на ∆u э), а значит, и входного напряжения u вх, выходное напряжение изменяется на незначительную величину ∆u вых.

Абрамян Евгений Павлович Доцент кафедры электротехники СПбГПУ

Причем, чем меньше дифференциальное сопротивление стабилитрона (т. е. чем более горизонтально идет характеристика стабилитрона), тем меньше ∆uвых.

Определим основные параметры такого стабилизатора, для чего в исходной схеме стабилитрон заменим его эквивалентной схемой и введем во входную цепь (рис. 2.82, г) источник напряжения, соответствующий изменению входного напряжения ∆u вх (на схеме пунктир):

K ст= ( ∆u вх/ u вх) : ( ∆u вых/ u вых) Так как обычно R н>> r д Следовательно, K ст≈ u вых / u вх· [ ( r д+ R 0) / r д]

Обычно параметрические стабилизаторы используют для нагрузок от нескольких единиц до десятков миллиампер. Наиболее часто они используются как источники опорного напряжения в компенсационных стабилизаторах напряжения.

Импульсный

Электроэнергия с нестабильными показателями с помощью коротких импульсов передается в накопительный механизм стабилизатора, роль которого выполняет индуктивная катушка либо конденсатор. Накопленное электричество выходит в качестве нагрузки с иными параметрами.

Можно выделить два типа стабилизации напряжения:

1. С помощью работы с длительными импульсами и паузами между ними. Этот этап работы называется принципом широтно-импульсной модуляции; 2. С помощью сравнения выходного напряжения, которое имеет минимальные и максимальные показатели.

Если эти показатели выше максимально допустимых, то накопитель прекращает выполнять свою непосредственную функцию – накапливать электроэнергию и начинает разряжаться. В таком случае выходное напряжение падает до минимума. При таких условиях накопитель снова начинает выполнять свою функцию. Этот процесс получил название — принцип двухпозиционного управления.

Импульсный выравниватель тока могут преобразовать напряжение до необходимых показателей.

Выделяют такие разновидности:

• Понижающий – когда выходное напряжение ниже, чем входное, но имеет такую же полярность; • Повышающий — когда выходное напряжение выше, чем входное, но имеет такую же полярность; • Понижающе-повышающий – выходное напряжение может быть как выше, так и ниже входного, однако, иметь такую же полярность. Оборудование необходимо использовать, когда входное и выходное U сильно разнится, однако входное напряжение может иметь отклонения в разные стороны; • Инвертирующий – выходное напряжение выше либо ниже входного. Полярность входного и выходного напряжения может быть разной.

Основные достоинства:

— энергопотери практически равны нулю.

Основные недостатки:

— выходное напряжение имеет импульсные помехи.

Стабилизаторы переменного напряжения

Основное предназначение стабилизатора переменного входного напряжения, не влияет, какие показатели оно имеет на входе. Выходное напряжение должно иметь идеальную синусоиду, даже если наблюдаются скачки либо обрывы на линии.

Существуют такие виды стабилизаторов:

1. Накопительные; 2. Корректирующие.

Стабилизаторы-накопители

Данные приборы изначально копят в себе электричество, которое получают от сторонних источников. После этого электроэнергия начинает генерироваться, обретает постоянные характеристики и выходит.

Система «двигатель – генератор»

Основное предназначение стабилизатора – превращение электроэнергии в кинетическую при помощи электрического двигателя. После этого генератор превращает ее обратно в обычную электроэнергию, при этом ток имеет постоянные параметры.

Клюевой элемент системы – это маховик, в котором накапливается кинетическая энергия и происходит стабилизация напряжения. Маховик имеет плотное соединение с двигающимися частями двигателя и генератором. Маховик имеет достаточно большие габариты и высокий уровень инерции и сохраняет скорость, на которую оказывает влияние лишь частота фаз. Исходя из того, что маховик вращается на постоянной скорости и с постоянным напряжением.

Стабилизаторы напряжения и тока

Стабилизатором называют устройство, автоматически поддерживающее с заданной точностью напряжение или ток в нагрузке при изменении питающего напряжения или сопротивления нагрузки в обусловленных пределах.

Основным параметром стабилизатора напряжения является коэффициент стабилизации напряжения, а стабилизатора тока — коэффициент стабилизации тока

Kст U=; Kст I= при Rн=const,

где Uвх, Uвых, Iвых — номинальные напряжения на входе и выходе стабилизатора и номинальный ток нагрузки;

DUвх, DUвых, D Iвых — изменения напряжений на входе и выходе стабилизатора и изменение тока нагрузки.

Влияние нагрузки Rн оценивается по внешним характеристикам Uвых(Iвых) и Iвых(Rн) или выходным (внутренним) сопротивлением стабилизатора

Rвых= при Uвх=const.

Рекомендуемые материалы

Для стабилизатора напряжения Rвых << Rн, а для стабилизатора тока — Rвых>>Rн.

Применяют два типа стабилизаторов: параметрические и компенсационные.

В параметрических стабилизаторах используются элементы с нелинейной вольтамперной характеристикой (ВАХ), обеспечивающие постоянство напряжения при значительных изменениях тока для стабилизаторов напряжения и постоянство тока при изменении напряжения в стабилизаторах тока. Такими элементами могут быть стабилитроны, бареттеры или транзисторы.

Вопрос 2. Компенсационные стабилизаторы напряжения.

Компенсационные стабилизаторы напряжения имеют большие коэффициенты стабилизации и меньшее Rвых при более высоком КПД. Структурная схема такого стабилизатора приведена на рис.6.1. Стабилизатор состоит из источника эталонного напряжения (1), измерительного элемента (2) и регулирующего элемента (3).

На входы измерительного элемента подаются эталонное напряжение U0 и Uвых. Если Uвых не равно U0 появляется сигнал рассогласования, который поступает на вход регулирующего элемента. Под действием этого сигнала падение напряжения на регулирующем элементе меняется таким образом, чтобы Uвых оставалось постоянным

Uвых=UвхDU=const.

В качестве источника эталонного напряжения чаще всего используется стабилитрон, а роль регулирующего элемента выполняет транзистор или составной транзистор. В большинстве современных стабилизаторов измерительный элемент выполняется на операционном усилителе.

Kcm U=h21/(h11+R1); Rвых=.

В настоящее время широко применяются стабилизаторы в интегральном исполнении. Например, микросхема К142ЕН1 представляет собой регулируемый стабилизатор с выходным напряжением 3-12 В на ток до 150 мА. В схеме предусмотрена защита от перегрузки и коротких замыканий на выходе.

Вопрос 3. Стабилизатор тока.

Схема стабилизатора тока показана на рис.6.3. На базе транзистора VT поддерживается постоянный потенциал, задаваемый параметрическим стабилизатором на стабилитроне VD. Нагрузка Rн включена в коллекторную цепь транзистора VT, который работает по схеме ОБ, где Iк=aIэ.

Ток эмиттера Iэ определяется напряжением Uэб=U0R2Iэ

Благодаря этому устанавливается режим работы

У современных транзисторов a®1, таким образом, получается устройство, выходной ток которого Iвых=Iк » Iэ, не зависит от Rн, а определяется только U0 и R2. Режим стабилизации поддерживается до тех пор, пока транзистор VT работает в активном режиме, т.е. Uвх>DU+IвыхRн, где DU — напряжение насыщения транзистора.

Отсюда максимальное значение сопротивления нагрузки, при котором сохраняется рабочий режим стабилизатора

Rн max=.

Коэффициент стабилизации тока

Выходное сопротивление стабилизатора

Rвых=.

1. Каково назначение электронных стабилизаторов?

2. Как устроен и как работает параметрический стабилизатор напряжения и тока?

3. Поясните назначение элементов схемы компенсационного стабилизатора напряжения?

4. От каких элементов зависит коэффициент стабилизации?

5. Как можно осуществить регулирование Uвых стабилизатора напряжения?

6. Поясните принцип действия стабилизатора тока.

7. Как можно изменить выходной ток стабилизатора?

8. Почему стабилизатор тока может работать только на нагрузку с R меньше Rнmax?

9. Почему стабилизатор тока и стабилизатор напряжения имеют разные выходные сопротивления?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *