Как отключается двухцепные линии
Перейти к содержимому

Как отключается двухцепные линии

  • автор:

 

Виды и типы опор воздушных линий электропередачи

В зависимости от способа подвески проводов опоры воздушных линий (ВЛ) делятся на две основные группы:

Одноцепные и двухцепные опоры в чем разница

Одноцепные и двухцепные опоры в чем разница

Рис. 1. Схема анкерованного участка воздушной линии

Промежуточные прямые опоры устанавливаются на прямых участках линии. На промежуточных опорах с подвесными изоляторами провода закрепляются в поддерживающих гирляндах, висящих вертикально, на промежуточных опорах со штыревыми изоляторами закрепление проводов производится проволочной вязкой. В обоих случаях промежуточные опоры воспринимают горизонтальные нагрузки от давления ветра на провода и на опору и вертикальные — от веса проводов, изоляторов и собственного веса опоры.

При необорванных проводах и тросах промежуточные опоры, как правило, не воспринимают горизонтальной нагрузки от тяжения проводов и тросов в направлении линии и поэтому могут быть выполнены более легкой конструкции, чем опоры других типов, например концевые, воспринимающие тяжение проводов и тросов. Однако для обеспечения надежной работы линии промежуточные опоры должны выдерживать некоторые нагрузки в направлении линии. Одноцепные и двухцепные опоры в чем разница

Линия электопередачи высокого напряжения (рисунок из книги 1950 года)

Промежуточные угловые опоры устанавливаются на углах поворота линии с подвеской проводов в поддерживающих гирляндах. Помимо нагрузок, действующих на промежуточные прямые опоры, промежуточные и анкерные угловые опоры воспринимают также нагрузки от поперечных составляющих тяжения проводов и тросов.

Одноцепные и двухцепные опоры в чем разница

Рис. 2. Промежуточные опоры ВЛ

При установке анкерных опор на прямых участках трассы и подвеске проводов с обеих сторон от опоры с одинаковыми тяжениями горизонтальные продольные нагрузки от проводов уравновешиваются и анкерная опора работает так же, как и промежуточная, т. е. воспринимает только горизонтальные поперечные и вертикальные нагрузки.

Одноцепные и двухцепные опоры в чем разница

Рис. 3. Опоры ВЛ анкерного типа

В случае необходимости провода с одной и с другой стороны от анкерной опоры можно натягивать с различным тяжением, тогда анкерная опора будет воспринимать разность тяжения проводов. В этом случае, кроме горизонтальных поперечных и вертикальных нагрузок, на опору будет также воздействовать горизонтальная продольная нагрузка. При установке анкерных опор на углах (в точках поворота линии) анкерные угловые опоры воспринимают нагрузку также от поперечных составляющих тяжения проводов и тросов.

Концевые опоры устанавливаются на концах линии. От этих опор отходят провода, подвешиваемые на порталах подстанций. При подвеске проводов на линии до окончания сооружения подстанции концевые опоры воспринимают полное одностороннее тяжение проводов и тросов ВЛ.

Одноцепные и двухцепные опоры в чем разница

Одноцепные и двухцепные опоры в чем разница

Одноцепные и двухцепные опоры в чем разница

Не менее важным при реконструкции, модернизации и строительстве линий становятся и вопросы снижения транспортного веса опор, простота монтажа, высокая удельная прочность опор, долговечность, вандалоустойчивость, устойчивость к воздействию климатических нагрузок, экологичность. Поэтому, на современном этапе необходимо активно проводить работы по реализации внедрения новых форм опор и модификации существующих конструкций опор и их элементов с применением новых материалов и технологий.

Одноцепные и двухцепные опоры в чем разница

Композитные опоры ВЛ

Композитные опоры ВЛ представляют собой модульную конструкцию из последовательно собранных конусооборазних композитных модулей на основе стекловолокна (стеклоровинг) и применяются для одноцепных и двухцепных промежуточных опор линий электропередач классов напряжения 110 и 330 кВ. Для композитных опор рекомендуется применять изолированные траверсы.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Форум режимщиков

В чем отличие двухцепной ВЛ от одноцепных параллельных ВЛ

В чем отличие двухцепной ВЛ от одноцепных параллельных ВЛ

ребят кто поможет в вопросе, в котором я запутался в хлам.

1. Если две ПС допустим соединены двумя ВЛ 220 кВ

— каждая линия причем имеет свои опоры на протяжении всего пути.

— и имеют наименование допустим Сильная-1(2)

т.о. это я так понимаю две одноцепные параллельные линии?

2. То же самое только на протяжении всего пути имеют общую т.е. двухцепную опору?

т.о. это двухцепная линия?

3. А если опоры будут смешанными и вообще а опоры сдесь причем? Может если обе линии уходят с одной и той же ПС и приходят на одну и ту же ПС это автоматически означает что она двухцепная?)))

Одним словом, по каким признакам это можно определить глядя на схему ПС, энергоситемы, опорные схемы линий?

Re: В чем отличие двухцепной ВЛ от одноцепных параллельных ВЛ

На мой взгляд разница появляется при составлении детальных моделей для различных расчетов.

Например, при расчете надежности. Двухцепная ЛЭП при остальных равных условиях менее надежна чем две одноцепки. Если будет поврежедена опора (скажем трактором), то две ЛЭП отключатся.

Также при расчетах токов КЗ и УР. Если детализировать расчеты, то будут разные реактивные сопротивления, которые зависят от взаимного расположения фаз. Часто при расчетах токов КЗ необходимо учитывать взаимоиндукцию между ЛЕП, а она зависит от расстояния между проводами.

Re: В чем отличие двухцепной ВЛ от одноцепных параллельных ВЛ

Да расчеты то ладно.)))

У нас просто сетевая компания все линии которые имеют начало и конец на одной и той же ПС решила приравнять к двуцепным линиям и под это дело поменять их диспетчерское наименование, добавив слово «цепь» в конце прежнего наименования.

В итоге в диспетчерских переговорах получим наименование «ВЛ 220 кВ Сильная-1 цепь»

Re: В чем отличие двухцепной ВЛ от одноцепных параллельных ВЛ

Re: В чем отличие двухцепной ВЛ от одноцепных параллельных ВЛ

marz писал(а) Sat, 25 September 2010 22:27
У нас просто сетевая компания все линии которые имеют начало и конец на одной и той же ПС решила приравнять к двуцепным линиям и под это дело поменять их диспетчерское наименование, добавив слово «цепь» в конце прежнего наименования.

Если рассматриваемые ВЛ не являются объектами диспетчеризации, то называть их сетевая может, как ей заблагорассудится.

В противном случае, наименования присваивает системный оператор, а у него есть определённые требования, предписанные к исполнению самим НГШ.

Re: В чем отличие двухцепной ВЛ от одноцепных параллельных ВЛ

marz писал(а) Sat, 25 September 2010 22:27
Да расчеты то ладно.)))

У нас просто сетевая компания все линии которые имеют начало и конец на одной и той же ПС решила приравнять к двуцепным линиям и под это дело поменять их диспетчерское наименование, добавив слово «цепь» в конце прежнего наименования.

Если у каждой из цепей, подвешенных на одних опорах, свои коммутационные аппараты, защиты и т.п. то эт самостоятельные сетевые элементы. Хотя и менее надёжные с учётом лихих трактористов.

Какая разница, как называется линия? Номер цепи в наименовании может указывать на существование параллельных связей, а не не совмещение на опорах (и по мне в этом есть рациональное зерно).. Очень часто совмещение имеет место на заходах на ПС. Ну и что?

Словарь терминов

– система энергетического оборудования, предназначенного для передачи электрической энергии.

Воздушная линия (ВЛ)
– устройство для передачи электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным с помощью изоляторов и арматуры к опорам.

Опора ЛЭП
– опора воздушной линии электропередачи – сооружение для удержания проводов и при наличии грозозащитных тросов воздушной линии электропередачи и оптоволоконных линий связи на заданном расстоянии от поверхности земли и друг от друга.
Каталог опор ЛЭП ГК ЭЛСИ

Опора одноцепная
– опора воздушной линии электропередачи, несущая одну трёхфазную линию (три электропровода).

Опора двухцепная
– опора воздушной линии электропередачи, несущая две трёхфазные линии (шесть электропроводов).

Анкерная опора
– опора воздушной линии электропередачи, воспринимающая усилия от разности тяжения проводов, направленных вдоль ВЛ.

Анкерный пролет
– это расстояние между двумя анкерными опорами ВЛ, на которых жестко закреплены провода.

Угловая опора
– опора воздушной линии электропередачи, рассчитанная на тяжение проводов с усилиями, действующими по биссектрисе внутреннего угла, образуемого проводами в смежных пролётах.
Угловая опора в каталоге опор ЛЭП ГК ЭЛСИ: ВЛ 10 кВ, ВЛ 35 кВ, ВЛ 110 кВ

Концевая опора
– опора воздушной линии электропередачи, которая воспринимает направленные вдоль линии усилия, создаваемые нормальным односторонним тяжением проводов; концевые опоры устанавливают в начале и конце ВЛ.
Концевая опора в каталоге опор ЛЭП ГК ЭЛСИ: ВЛ 10 кВ, ВЛ 35 кВ

Промежуточная опора
– опора воздушной линии электропередачи, служащая для поддержания проводов на определенной высоте от земли и не рассчитанная на усилия со стороны проводов в продольном направлении или под углом.

Ответвительная опора и перекрёстная опора
– опоры воздушных линий эпектропередачи, на которых выполняются ответвления от ВЛ и пересечения ВЛ двух направлений.

Провод
– элемент ВЛ, предназначенный для передачи электрического тока.

Грозозащитный трос
– элемент ВЛ, предназначенный для защиты проводов ВЛ от прямых ударов молнии. Трос заземляется или изолируется от тела опоры (земли) и, как правило, располагается над проводами фаз.

Тяжение провода (троса)
– усилие, направленное по оси провода (троса), с которым он натягивается и закрепляется на анкерных опорах ВЛ.

Габарит воздушной линии
– расстояние от низшей точки провисания провода до поверхности земли.

Стрела провеса провода (f)
– расстояние по вертикали между прямой линией, соединяющей точки подвеса провода, и низшей точкой его провисания.

Габаритная стрела провеса провода (fгаб)
– наибольшая стрела провеса провода в габаритном пролете.

Пролет ВЛ
– расстояние между соседними опорами воздушных линий электропередачи.

Габаритный пролет (lгаб)
– пролет, длина которого определяется нормированным вертикальным расстоянием от проводов до земли при установке опор на идеально ровной поверхности.

Весовой пролет (lвес)
– длина участка ВЛ, вес проводов (тросов) которого воспринимается опорой.

Ветровой пролет (lветр)
– длина участка ВЛ, с которого давление ветра на провода и грозозащитные тросы воспринимается опорой.

Вибрация проводов (тросов)
– периодические колебания провода (троса) в пролете с частотой от 3 до 150 Гц, происходящие в вертикальной плоскости при ветре и образующие стоячие волны с размахом (двойной амплитудой), которая может превышать диаметр провода (троса).

Пляска проводов (тросов)
– устойчивые периодические низкочастотные (0,2 – 2 Гц) колебания провода (троса) в пролете с односторонним или асимметричным отложением гололеда (мокрого снега, изморози, смеси), вызываемые ветром скоростью 3 – 25 м/с и образующие стоячие волны (иногда в сочетании с бегущими) с числом полуволн от одной до двадцати и амплитудой 0,3.

Гирлянда изоляторов
– устройство, состоящее из нескольких подвесных изоляторов и линейной арматуры, подвижно соединенных между собой.

Линейная арматура для ВЛ
– это, в частности, элементы крепления изоляторов, средства защиты, зажимы, спиральные вязки.

Нормальный режим ВЛ
– состояние ВЛ при неповрежденных проводах или тросах.

Аварийный режим ВЛ
– состояние ВЛ при оборванных проводах или тросах.

Монтажный режим ВЛ
– состояние ВЛ при монтаже опор, проводов или тросов.

Населенная местность
– земли городов в границах их перспективного развития на 10 лет, пригородные и зеленые зоны, курорты, земли поселков городского типа в пределах поселковой черты и сельских населенных пунктов в пределах черты этих пунктов.

Ненаселенная местность
– земли единого государственного фонда, за исключением населенной и труднодоступной местности; незастроенная местность, хотя бы и часто посещаемая людьми, доступная для транспорта и сельскохозяйственных машин, огороды, сады, местность с отдельными редко стоящими строениями и временными сооружениями.

Труднодоступная местность
– местность, не доступная для транспорта и сельскохозяйственных машин.

Подвесной изолятор
– изолятор, предназначенный для подвижного крепления токоведущих элементов к опорам воздушных линий электропередачи, несущим конструкциям и различным элементам инженерных сооружений.

Усиленное крепление провода с защитной оболочкой
– крепление провода на штыревом изоляторе или к гирлянде изоляторов, которое не допускает проскальзывания проводов при возникновении разности тяжений в смежных пролетах в нормальном и аварийном режимах ВЛЗ.

Штыревой изолятор
– изолятор, состоящий из изоляционный детали, закрепляемой на штыре или крюке опоры воздушной линии электропередачи.

Траверса
– конструкция, расположенная на опоре воздушной линии электропередачи, к которой крепят изоляторы для проводов и др. арматуру. Служит для создания требуемого изолирующего воздушного промежутка и поддержки проводов.

Трасса ВЛ
– положение оси ВЛ на земной поверхности.

Тросовое крепление
– устройство для прикрепления грозозащитных тросов к опоре ВЛ, если в состав тросового крепления входит один или несколько изоляторов, то оно называется изолированным.

Электрическая сеть
– совокупность воздушных и кабельных линий электропередач и подстанций, работающих на определенной территории.

Классификация опор

Многообразие применяемых в электросетевом строительстве типов опор влечет за собой необходимость их классификации по целому ряду признаков. Они приведены в табл. 10.6, где также представлены соответствующие каждому признаку разновидности опор, а также некоторые краткие комментарии.

Классификация опор воздушных линий
Таблица 10.6 Признак Тип опоры Примечание
Количество трехфазных цепей Одноцепная Всех напряжений
Двухцепная 35—330 кВ
Многоцепная
Способ крепления проводов Промежуточная Зажимы поддерживающие
Анкерная Зажимы натяжные
Положение на трассе Угловая В точках поворота трассы
Конструктивное выполнение Свободностоящая
На оттяжках
Материал Деревянная До 220 кВ включительно
Железобетонная До 500 кВ включительно
Металлическая Всех напряжений
Специальное назначение Транспозиционная По концам участков цикла
Ответвительная Ответвления от магистрали
Переходная Переходы через реки и т. п.

Одноцепные и двухцепные опоры в чем разница

Итак, по количеству трехфазных цепей различают опоры:

· одноцепные, которые применяются при сооружении ВЛ любых номи­нальных напряжений;

· двухцепные, которые в России применяются для ВЛ 35—330 кВ, а за рубежом и на линиях 380—500 кВ;

· многоцепные, которые применяются за рубежом в густонаселенных районах с высокой стоимостью земли для экономии территории, отчуждаемой под трассу ВЛ. В качестве примера такой конструкции на рис. 10.4 показана металлическая шестицепноя опора комбинированной ВЛ, где на верхних двух ярусах расположены фазы двух цепей 380 кВ, под ними размещены две цепи 220 кВ, а на нижней траверсе подвешены две цепи 110 кВ. Вертикальный размер этой опоры составляет 63,4 м, зато горизонтальный габарит — только 34 м.

Основанием второго признака служит способ крепления проводов. Здесь в первую очередь выделяются промежуточные опоры, на которых провода закрепляются в поддерживающих зажимах. Это основной тип опор, составляющий около 90 % их общего числа. Кроме них выделяются анкерные опоры, на которых провода закрепляются в натяжных зажимах. Эти опоры расположены по концам анкерного пролета (анкерованного участка), эскиз которого был показан на рис. 10.2.

По положению на трассе различают опоры, расположенные на прямых ее участках, и угловые (или анкерные угловые), расположенные в точках изменения направления (поворота) трассы линии. В этих точках на опору действует сила тяжения проводов и тросов, направленная по биссектрисе внутреннего угла. Поэтому в отличие от обычной промежуточной опоры угловая должна иметь раскосы, противодействующие опрокидывающему моменту в направлении действия этой силы. При углах поворота, превышающих 20 °, устанавливают анкерные угловые опоры.

По конструктивному выполнению опоры делятся на свободностоящие и на оттяжках. Применение металлических тросовых оттяжек, которые крепятся с одной стороны к верхним частям опоры, а с другой стороны к анкерным плитам, заглубленным в грунт на 2—3 м, обеспечивает устойчивость опоры и по сравнению со свободностоящими опорами позволяет значительно сократить расход материала, из которого изготавливаются элементы опоры, а следовательно, и ее стоимость.

В качестве материала для изготовления опор используются древесина, железобетон и сталь. Деревянные опоры в России применяют на ВЛ с номинальным напряжением до 220 кВ включительно, хотя в США есть опыт строительства ВЛ 345 кВ на опорах из клееной древесины [10.7]. В качестве примера на рис. 10.5 показана одноцепная свободностоящая промежуточная деревянная опора ВЛ 110 кВ.

Нижние части опоры (пасынки) заглублены в землю на 2,5 м. Для повышения прочности заделки опор в грунте к пасынкам крепятся поперечные ригели. В настоящее время применяются опоры с железобетонными пасынками, что способствует увеличению срока службы опор. Последний определяется стойкостью древесины к гниению. Поэтому все остальные элементы — стойки, траверса и раскосы (или перекрестные ветровые связи) пропитываются антисептиком. Для их изготовления используется древесина лиственницы или сосны. Стойки соединяются с пасынками проволочными бандажами.

Одноцепные и двухцепные опоры в чем разница

Унифицированные железобетонные опоры в России применяются для сооружения ВЛ с номинальным напряжением до 500 кВ включительно. Они имеют металлические траверсы и тросостойки. Стойки изготовляют из вибрированного или центрифугированного железобетона. В первом случае они имеют двутавровое, квадратное или прямоугольное сечение. Стойки из центрифугированного железобетона имеют кольцевое сечение и цилиндрическую либо коническую форму. Двухцепные одностоечные железобетонные опоры применяют при напряжениях 110—220 кВ, одноцепные (одно- и двухстоечные) на линиях 35—500 кВ. В качестве примера на рис. 10.6 показана промежуточная одноцепная свободностоящая железобетонная опора ВЛ 220 кВ с треугольным расположением проводов (на рисунке не показаны). Ее стойка имеет длину 26 м и заглубляется в грунт на 3,3 м.

Металлические опоры применяются во всем диапазоне номинальных напряжений (35—1150 кВ). Их основными элементами являются ствол (у свободностоящих опор башенного типа) или стойки (у портальных и V-образных опор), траверсы в форме пространственных ферм, тросостойки и оттяжки, если они предусмотрены конструкцией. На рис. 10.7 представлены примеры промежуточных металлических опор перечисленных выше типов (башенного, портального и V-образного).

Одноцепные и двухцепные опоры в чем разница

Ствол башенной опоры состоит из четырех вертикальных поясов из стальных угольников, связывающих соседние пояса раскосов, образующих решетку, и диафрагм (горизонтальных крестообразных связей поясов), придающих опоре жесткость и устойчивость. По способу сборки металлические опоры могут быть сварными и болтовыми. Сварные опоры изготовляются на заводе секциями, размеры которых лимитируются условиями транспортировки на трассу, где эти секции сочленяются с помощью болтов. Болтовые опоры полностью собираются на трассе. Их преимуществами являются большее удобство транспортировки составных элементов и упрощение технологии защиты от коррозии (горячей оцинковки) этих элементов в заводских условиях. Примеры различных конструкций металлических опор читатель может видеть на рис. 10.8.

Одноцепные и двухцепные опоры в чем разница

Наряду с описанными выше металлическими решетчатыми опорами (МРО) перспективным направлением является применение многогранных металлических опор (ММО). В мировой практике опыт строительства ВЛ с использованием ММО насчитывает около 40 лет. Внешний вид таких опор аналогичен виду железобетонных опор (см. рис. 10.6). Отличие состоит в том, что стойки таких опор собираются из полых конусообраз­ных секций длиной 11 —12 м, каждая из которых в поперечном сечении имеет форму многогранника. Так, например, стойка ММО 110 кВ состоит из двух 12-гранных секций длиной 11,45 м каждая с толщиной стенки 6 мм [10.12]. Сопоставление ВЛ 35—220 кВ, сооружаемых с использова­нием упомянутых выше видов опор (ЖБО, МРО и ММО), показало эко­номическую эффективность ВЛ на ММО как по критерию минимума инвестиций (капиталовложений), так и по критерию минимума дисконти­рованных затрат. Однако в настоящее время в России существует лишь одно предприятие, оснащенное оборудованием для изготовления много­гранных стоек.

Помимо перечисленных выше выделяется группа опор специального назначения. К ним относятся транспозиционные, ответвительные и переходные опоры. Транспозиционные опоры устанавливаются по концам участков цикла транспозиции (рис. 10.9).

Одноцепные и двухцепные опоры в чем разница

Под транспозицией понимается циклическая перестановка фаз с целью снижения несимметрии систем векторов токов и напряжений в конце линии (при симметричных системах этих векторов в ее начале), вызываемой различием реактивных параметров фаз (индуктивностей и емкостей) вследствие несимметричного расположения проводов на опорах. На линиях длиной до 100 км обычно осуществляется один цикл транспозиции, если это допустимо по условиям влияния на проводные линии связи, прокладываемые параллельно ВЛ. Ответвительные опоры служат для выполнения ответвлений от основной линии, а переходные — для осуществления переходов через реки и другие водные пространства. Высота последних в ряде случаев достигает 100 м.

На одноцепных опорах в настоящее время применяют два расположения проводов — по вершинам треугольника (на ВЛ 35—330 кВ с железо­бетонными и стальными опорами) и горизонтальное (на всех ВЛ напряжением 220 кВ и выше и на ВЛ 35—110 кВ с деревянными опорами). На двухцепных опорах рекомендуется расположение проводов по вершинам шестиугольника (типа «бочка»).

Дата добавления: 2014-12-21 ; просмотров: 3895 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Как отключается двухцепные линии

В настоящее время при строительстве кабельных сетей 6–500 кВ активно используют однофазные кабели с изоляцией из сшитого полиэтилена. Наличие медных экранов в конструкции однофазных кабелей приводит к необходимости анализа токов и напряжений в этих экранах.

Сегодня наши петербургские авторы рассматривают область возможного применения транспозиции кабелей, а также ее связь с уже широко известной транспозицией экранов.

КАБЕЛЬНЫЕ ЛИНИИ 6–500 кВ
Транспозиция однофазных кабелей и их экранов

Михаил Дмитриев,
начальник отдела НТИ ЗАО «Завод энерго­защитных устройств»
Маргарита Кияткина, аспирант СПбГПУ
г. Санкт-Петербург

Простое двустороннее заземление экранов (рис. 1а) приводит к появлению в нормальном режиме паразитных токов IЭ промышленной частоты, вызывающих потери мощности PЭ в экранах, снижающих пропускную способность кабеля и увеличивающих ежегодные потери активной мощности в кабельной сети. Одностороннее заземление экранов (рис. 2а) или транспозиция экранов (рис. 3) позволяют исключить паразитные токи в экранах, но дают напряжение UА на экранах относительно земли.

До сих пор в [1, 2] понятие «транспозиция» вводилось только для экранов кабелей. Однако после серии расчетов токов и напряжений в экранах стало ясно, что иногда целесообразно делать транспозицию самих однофазных кабелей (рис. 1б; рис. 2б), необходимость которой находит различное объяснение в зависимости от числа цепей кабельной передачи.

Рис. 1. Двустороннее заземление экранов:
а) без транспозиции кабелей;
б) с транспозицией кабелей.
Рис. 2. Одностороннее заземление экранов:
а) без транспозиции кабелей;
б) с транспозицией кабелей.
Рис. 3. Транспозиция экранов кабелей без транспозиции кабелей
Крупнее Крупнее Крупнее

Методика расчета

Токи и напряжения в экранах трехфазных групп однофазных кабелей зависят от схемы соединения их экранов (рис. 1–3), а также от расстояния между фазами и их взаимного расположения (рис. 4–5). Ранее в [1, 2] расчеты токов и напряжений в экранах проводились с использованием среднегеометрического расстояния между осями кабелей А, В, С, так как это позволяло получить сравнительно простые аналитические выражения для токов и напряжений. Прокладка в ряд давала s = 1,26 · sAB, а в треугольник s = sAB, где sAB – расстояние между осями соседних фаз.

Рис. 4. Двухцепная кабельная линия с фазами, проложенными в ряд (расстояние в свету между фазными кабелями одной цепи принято равным 0,1 м)

Крупнее

Рис. 5. Двухцепная кабельная линия с фазами, проложенными треугольником

Крупнее

Очевидно, что в случае расположения однофазных кабелей А, В, С в ряд использование среднегеометрического расстояния между фазами приводит к потере специфических особенностей, присущих крайним и средней фазам.

Уравнения системы (1), приведенной в [1] для одноцепной кабельной линии (КЛ), несложно скорректировать с учетом уникальности взаимных сопротивлений для каждой пары однофазных кабелей (ранее ):

где – собственное сопротивление экрана;
– взаимное сопротивление между жилой и экраном одного и того же кабеля;
– взаимные сопротивления жил и экранов кабелей фаз А, В, С, которые в общем случае различны.

Для расчета напряжений в экранах при их транспозиции (схема рис. 3) систему (1) следует записать три раза – по числу участков трассы кабеля между узлами транспозиции.

Для расчета токов и напряжений в экранах при транспозиции самих кабелей (схемы рис. 1б и рис. 2б) система уравнений (1) заметно упрощается, поскольку взаимные сопротивления оказываются равны друг другу .

В случае многоцепных кабельных линий число уравнений в системе (1) возрастает соразмерно числу цепей.

Результаты расчетов

Проведем расчеты токов и напряжений экранов в нормальном симметричном установившемся режиме работы для одноцепной и двухцепной кабельных линий. Предположим, что линии выполнены кабелями 500/95 мм 2 напряжением 110 кВ с медной жилой и медным экраном.

Рассмотрим два способа расположения кабелей:

  • прокладка в ряд с расстоянием Δs = 0,1 м в свету между кабелями цепи (рис. 4);
  • прокладка сомкнутым треугольником (рис. 5).

Для двухцепных линий расстояние в свету между цепями обозначено Δs12 и в расчетах варьируется от 0,2 до 0,6 м.

Результаты расчетов для схем соединения экранов рис. 1–3 и взаимного расположения кабелей рис. 4–5 приведены в табл. 1–3. У двухцепных линий схемы соединения экранов принимались одинаковыми для работающей и отключенной цепей, хотя на практике это не обязательно будет так.

Токи (потери) в экранах прямо пропорциональны токам (потерям) в жилах, и для удобства в табл.1 они даны в соответствующих относительных единицах, но при известных токах (потерях) в жилах могут быть пересчитаны в А (Вт).

Напряжения в экранах прямо пропорциональны токам в жилах и длине кабеля – в табл. 2–3 для удобства они даны в расчете на ток жилы 1000 А и длину кабеля 1000 м, но при известных токах и длине могут быть пересчитаны.

Одноцепная кабельная линия

Рассмотрим выделенные жирным шрифтом в табл. 1–3 цифры, относящиеся к случаю «работающая цепь» при отсутствии второй цепи (когда не задано Δs12).

Согласно табл. 1а для одноцепной КЛ при заземлении экранов с двух сторон:

  • токи в экранах возрастают при увеличении расстояния между фазами (прокладка в ряд вместо сомкнутого треугольника), что пояснено в [2];
  • при прокладке в ряд токи в экранах различных фаз могут заметно отличаться (здесь – 0,592 / 0,415 ≈ 1,5);
  • в случае прокладки в ряд имеет смысл выполнять транспозицию кабелей, так как это выравнивает величины токов в экранах до некоторого среднего значения (здесь – 0,505), снижает токи в экранах по сравнению со случаем, когда нет транспозиции кабелей (0,505 вместо 0,592).

Выводы, которые можно сделать по потерям из табл. 1б, аналогичны выводам по токам из табл. 1а. Дополнительно следует отметить лишь то, что при прокладке в ряд потери в экранах, зависящие от квадрата тока, отличаются между фазами А, В, С сильнее, чем отличались токи из табл. 1а: при прокладке в ряд потери в экранах средней фазы В почти в 1,845 / 0,908 ≈ 2 раза меньше, чем в самой нагруженной из крайних фаз С.

Само по себе соотношение потерь РЭ / РЖ = 0,908÷1,845 является согласно [2] достаточно большим и свидетельствует о недопустимости простого двустороннего заземления экранов. Если по каким-то причинам все же принято именно двустороннее заземление экранов и при этом фазы проложены в ряд (а не треугольником), то согласно табл. 1а транспозиция кабелей будет полезна. Она выравнивает потери в экранах до некоторого среднего значения (здесь – до 1,343), позволив уйти от повышенных потерь (здесь – 1,845) в одной из крайних фаз, и, как следствие, снизит ежегодные потери в кабельной линии, а также теоретически продлит срок службы ее изоляции.

Согласно табл. 2 для одноцепной КЛ при заземлении экранов с одной из сторон:

  • напряжения на экранах возрастают при увеличении расстояния между фазами (прокладка в ряд вместо сомкнутого треугольника), что пояснено в [2];
  • при прокладке в ряд напряжения на экранах могут отличаться друг от друга (здесь – в 139 / 111 ≈ 1,25 раза), однако такое отличие не имеет значения, поскольку напряжения в десятки-сотни В не представляют опасности для оболочки кабеля;
  • по этим же причинам нет особого смысла выполнять транспозицию кабелей, хотя она и выравнивает напряжения на экранах до некоторого среднего значения (здесь – 126 В) по сравнению со случаем без транспозиции кабелей.

Транспозиция экранов и одновременно транспозиция самих кабелей – это сложное решение, затрудняющее обслуживание КЛ, идентификацию фаз и экранов. Поэтому в табл. 3 не рассмотрена транспозиция кабелей. Напряжения на экранах в узлах транспозиции возрастают при увеличении расстояния между фазами (прокладка в ряд вместо сомкнутого треугольника), что пояснено в [2], являются различными по фазам, однако остаются неопасными для оболочки кабеля.

Как видно из табл. 1–3, для одноцепных КЛ транспозиция фазных кабелей имеет смысл лишь при расположении кабелей в ряд, причем только в случае простого заземления их экранов с двух сторон, где за счет транспозиции кабелей достигается снижение тепловыделения в самой нагретой (крайней) фазе.

 

Двухцепная кабельная линия

В двухцепных (многоцепных) КЛ при определении токов и напряжений в экранах следует учитывать взаимное влияние цепей друг на друга, которое зависит от Δs12 между цепями.

Рассмотрим такой режим двухцепной кабельной линии, когда одна из цепей находится под током и напряжением, а другая отключена от сети и на ней персонал выполняет работы (монтаж, испытания, диагностика, поиск повреждений, ремонт).

Важность задачи в том, что в двухцепных (многоцепных) КЛ токи и напряжения наводятся не только в экранах работающей цепи, но и в экранах отключенной цепи. Иными словами, для обслуживающего персонала существует риск поражения током. Именно для его минимизации и требуется транспозиция кабелей внутри каждой из цепей. Поясним это.

Согласно табл. 1–3 для двухцепной КЛ в экранах отключенной цепи наводятся токи и напряжения. Наиболее заметны они в случае расположения кабелей в ряд, но легко могут быть минимизированы транспозицией кабелей внутри каждой из цепей.

Напряжение (табл. 2) фактически позволяет оценить степень опасности при работе на отключенной цепи многоцепных кабельных линий, так как представляет собой ЭДС, наводимую от работающей цепи на отключенную. Например, даже если экраны кабеля были заземлены с двух сторон (табл. 1), но по трассе кабеля идут ремонтные работы (установка соединительной муфты, предполагающая разрезание экрана), то напряжение в месте разрыва экрана видно из табл. 2.

Таблица 1а. Токи в экранах IЭ / IЖ при их двустороннем заземлении (рис. 1)

Крупнее

Таблица 1б. Потери в экранах РЭ / РЖ при их двустороннем заземлении (рис. 1)

Крупнее

Таблица 2. Напряжение на экранах UЭ (на 1000 м / 1000 А) при их одностороннем заземлении (рис. 2)

Крупнее

Таблица 3. Напряжение UЭ (на 1000 м / 1000 А) в первом узле транспозиции экранов (рис. 3)

Крупнее

Из данных табл. 2 ясно, что для многоцепных КЛ:

  • самая большая опасность для персонала будет в случае прокладки фазных кабелей в ряд; здесь транспозиция фазных кабелей оказывается незаменимой;
  • минимальная опасность будет при прокладке фазных кабелей сомкнутым треугольником; здесь транспозиция фазных кабелей не столь необходима.

Расчеты из табл. 3 показывают, что при наличии транспозиции экранов нет особых проблем с безопасностью работ на отключенной цепи многоцепных линий.

Заключение

Помимо транспозиции экранов в сетях, построенных с помощью однофазных кабелей, имеет смысл обсудить целесообразность транспозиции самих кабелей.

Транспозиция экранов кабелей – это способ радикальной борьбы с токами в экранах той цепи, для которой эта транспозиция сделана [1, 2].

Транспозиция фазных кабелей – это способ снижения:

  • температуры наиболее нагретой фазы (крайней) одноцепной кабельной линии, что может быть полезно при прокладке фазных кабелей в ряд и простом двустороннем заземлении их экранов;
  • наведенных токов и напряжений на экраны соседних цепей многоцепной кабельной линии, что весьма важно для безопасного монтажа, обслуживания, ремонта, особенно при прокладке фазных кабелей в ряд.

Необходимость в транспозиции фазных кабелей может быть подтверждена расчетами, аналогичными табл. 1–3, и зависит от взаимного расположения кабелей и схемы заземления их экранов, числа цепей и расстояния между ними, от длины кабеля и токов нагрузки.

Литература

  1. Дмитриев М.В., Евдокунин Г.А. Однофазные силовые кабели 6–500 кВ // Новости ЭлектроТехники. 2007. № 2(44).
  2. Дмитриев М.В. Заземление экранов однофазных силовых кабелей 6–500 кВ. СПб.: Изд-во Политехн. ун-та, 2010. – 152 с.

© ЗАО «Новости Электротехники»
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Двухцепная линия электропередачи

Двухцепная линия электропередачи

Изобретение относится к области электротехники, в частности к линиям электропередачи (ЛЭП). Двухцепная линия электропередачи высокого напряжения (ЛЭП) с вертикальным расположением фаз и с неодинаковой импульсной прочностью изолирующей конструкции подвески (ИКП) проводов на фазах ЛЭП, содержащая участки без тросовой защиты, а также участки с высоким удельным сопротивлением грунта, имеет на двух верхних фазах ИКП с более низкой импульсной прочностью, чем на других фазах. При этом фазы с пониженной импульсной прочностью ИКП проводов принадлежат одной цепи ЛЭП. Кроме того, ИКП проводов на двух верхних фазах ЛЭП могут быть выполнены в виде длинностержневых полимерных изоляторов, а на остальных — в виде гирлянды тарельчатых изоляторов одинаковой строительной длины и ИКП на двух верхних фазах ЛЭП могут быть выполнены с пониженной импульсной прочностью только на участках ЛЭП, не защищенных грозозащитным тросом, или на участках ЛЭП с высоким удельным сопротивлением грунта. Техническим результатом является повышение надежности электропередачи. 23 з.п. ф-лы, 1 ил.

Изобретение относится к области электротехники, в частности к линиям электропередачи (ЛЭП), и может быть использовано на двухцепных ЛЭП, трасса которых проходит по районам с грунтами повышенного удельного сопротивления, а также на участках ЛЭП без грозозащитного троса.

Известно техническое решение, в котором каждая из фаз двухцепной ЛЭП имеет одинаковые изолирующие конструкции подвески (ИКП) проводов, например, гирлянды изоляторов [1].

Недостаток данного технического решения состоит в том, что при больших удельных сопротивлениях грунта вдоль трассы ЛЭП ее грозозащита и надежность электроснабжения по ней снижаются, т.к. при повышении напряжения на опоре возможно перекрытие изоляции на обеих цепях ЛЭП и их отключение.

Известно также техническое решение по двухцепной ЛЭП с грозозащитными тросами и подвесными ОПН параллельно гирляндам изоляторов [2], принятое в качестве прототипа. Фазы этой ЛЭП имеют разную импульсную прочность ИКП проводов, чтобы обеспечить сохранение в работе при грозовом поражении ЛЭП одной из ее цепей.

Недостаток этого технического решения состоит, помимо сложности устройства и повышенной его стоимости, в том, что подвесной ОПН снижает напряжение только на гирлянде изоляторов, параллельно которой он присоединен, но не на опоре. Поэтому на других опорах (без ОПН) может произойти перекрытие изоляции фазы второй цепи и, следовательно, отключение обеих цепей двухцепной ЛЭП.

Целью данного изобретения является повышение надежности электропередачи, трасса которой проходит по районам с высокими значениями удельного сопротивления грунта или на отдельных участках без тросовой защиты.

Поставленная цель достигается тем, что двухцепная линия электропередачи высокого напряжения (ЛЭП) с вертикальным расположением фаз и с неодинаковой импульсной прочностью изолирующей конструкции подвески (ИКП) проводов на фазах ЛЭП, содержащая участки без тросовой защиты, а также участки с высоким удельным сопротивлением грунта, имеет на двух верхних фазах ИКП проводов с более низкой импульсной прочностью, чем на других фазах. При этом фазы с пониженной импульсной прочностью ИКП проводов принадлежат одной цепи ЛЭП. Кроме того, ИКП проводов на двух верхних фазах ЛЭП могут быть выполнены в виде длинностержневых полимерных изоляторов, а на остальных — в виде гирлянды тарельчатых изоляторов одинаковой строительной длины и ИКП на двух верхних фазах ЛЭП могут быть выполнены с пониженной импульсной прочностью только на участках ЛЭП, не защищенных грозозащитным тросом, или на участках ЛЭП с высоким удельным сопротивлением грунта.

На чертеже приведена принципиальная схема данного устройства. Опора двухцепной ЛЭП имеет стойку (1) и траверсы (2), к которым крепятся трос (3) и провода, причем ИКП проводов, размещенных вверху опоры (4), имеют более низкую импульсную прочность, чем ИКП проводов, размещенных ниже (5).

Сущность изобретения состоит в том, что при повышении напряжения при ударе молнии как в опору или трос, так и в провод и перекрытии ИКП одного из проводов перекрытие ИКП других проводов, если оно происходит, происходит или на другой фазе той же цепи той же опоры или на фазах той же цепи на другой опоре.

В случае удара молнии с большим током в опору при больших удельных сопротивлениях грунта напряжение на траверсах (2) повышается и, следовательно, повышается напряжение на ИКП проводов обеих цепей ЛЭП. Различие импульсной прочности ИКП разной конструкции одинакового номинального напряжения может составлять 20%. При этом вероятность отключения обеих цепей двухцепной линии по экспертной оценке снижается в 1,7-2,0 раза, а отключенное состояние одной цепи длится лишь в течение паузы АПВ или ОАПВ. Вторая цепь при этом остается в работе, что повышает надежность электропередачи.

На участках ЛЭП без тросовой защиты две верхних фазы ЛЭП должны принадлежать одной цепи. В этом случае они будут выполнять функции грозозащитного троса по защите от ударов молнии цепи, фазы которой размещены ниже. При ударе молнии в провод на участках без троса произойдет перекрытие ИКП пораженного провода, а при высоких значениях удельного сопротивления грунта — также повышение напряжения на ИКП соседних опор, перекрытие которых на цепи со сниженной импульсной прочностью будет происходить до тех пор, пока напряжение на пораженном молнией проводе не станет меньше импульсной прочности ИКП этого провода.

Следует отметить, что на двухцепных ЛЭП, которые подключены на каждом своем конце к одной ПС, для повышения надежности высокочастотная связь для релейной защиты осуществляется по параллельной цепи. Поэтому сохранение высокой импульсной прочности на третьей фазе необходимо для обеспечения релейной защиты другой цепи высокочастотной связью.

Применение данного технического решения возможно как при сооружении новой ЛЭП, так и при реконструкции или техперевооружении построенной ранее ЛЭП. При сооружении новой ЛЭП может возникнуть необходимость осуществления участков линии без троса, а учет увеличения расчетных сопротивлений заземления опор может потребоваться при реконструкции действующей ЛЭП.

1. Каталог унифицированных и типовых опор. МэиЭ СССР, ГлавНИИпроект, СЗО ЭСП, Ленинград, 1985. — № 5713тм-т3. Унифицированные стальные промежуточные опоры 220 кВ для горных районов, № 5713 тм т 3-43.

2. Могилевский Л.З., Юриков П.А. Грозозащита двухцепных линий электропередачи. //Электричество, 1973. № 4. — С.92-93.

1. Двухцепная линия электропередачи высокого напряжения (ЛЭП) с вертикальным расположением фаз и с неодинаковой импульсной прочностью изолирующей конструкции подвески (ИКП) проводов на фазах ЛЭП, содержащая участки без тросовой защиты, а также участки с высоким удельным сопротивлением грунта, отличающаяся тем, что ИКП проводов на двух верхних фазах указанных участков ЛЭП имеет более низкую импульсную прочность, чем на других фазах.

2. Устройство по п.1, отличающееся тем, что фазы с пониженной импульсной прочностью ИКП проводов принадлежат одной цепи ЛЭП.

3. Устройство по п.1 или 2, отличающееся тем, что ИКП проводов на двух верхних фазах ЛЭП выполнены в виде длинностержневых полимерных изоляторов, а на остальных — в виде гирлянды тарельчатых изоляторов одинаковой строительной длины.

Способы снижения уровня наведенного напряжения на ремонтируемой двухцепной линии электропередачи Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Данилин Аркадий Николаевич, Ефимов Борис Васильевич, Кизенков Александр Николаевич, Селиванов Василий Николаевич, Якубович Марина Викторовна

В статье представлены результаты численного моделирования наведенных напряжений на двухцепной линии, выведенной в ремонт. Предложены меры снижения риска поражения электрическим током при работе под наведенным напряжением .

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Данилин Аркадий Николаевич, Ефимов Борис Васильевич, Кизенков Александр Николаевич, Селиванов Василий Николаевич, Якубович Марина Викторовна

The ways to reduce induced voltages on a deenergized circuit in a double-circuit transmission line

The paper presents the results of numerical modeling of induced voltages on a de-energized circuit in a double-circuit transmission line . The measures to reduce the risk of electric shock under the induced voltage are proposed.

Текст научной работы на тему «Способы снижения уровня наведенного напряжения на ремонтируемой двухцепной линии электропередачи»

А.Н.Данилин, Б.В.Ефимов, А.Н.Кизенков, В.Н.Селиванов, М.В.Якубович СПОСОБЫ СНИЖЕНИЯ УРОВНЯ НАВЕДЕННОГО НАПРЯЖЕНИЯ НА РЕМОНТИРУЕМОЙ ДВУХЦЕПНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ

В статье представлены результаты численного моделирования наведенных напряжений на двухцепной линии, выведенной в ремонт. Предложены меры снижения риска поражения электрическим током при работе под наведенным напряжением.

наведенное напряжение, двухцепная линия электропередачи, схема заземления, безопасность ремонтных работ.

A.N.Danilin, B.V.Efimov, A.N.Kizenkov, V.N.Selivanov, M.V.Yakubovich THE WAYS TO REDUCE INDUCED VOLTAGES ON A DE-ENERGIZED CIRCUIT IN A DOUBLE-CIRCUIT TRANSMISSION LINE

The paper presents the results of numerical modeling of induced voltages on a de-energized circuit in a double-circuit transmission line. The measures to reduce the risk of electric shock under the induced voltage are proposed.

induced voltage, double-circuit transmission line, grounding scheme, safety repairs.

Проблема наведённых напряжений и обеспечения безопасности работы ремонтного персонала на отключённых ВЛ обсуждается долгое время, и всё же остаётся актуальной [1]. Трудность решения этой проблемы, оценки опасности или безопасности работ на конкретной линии заключается в том, что как расчётные, так и измеренные значения наведённых напряжений не являются однозначными, поскольку зависят от многих параметров (количества влияющих линий и схем их сближения с ремонтируемой линией, геометрии, нагрузок и режимов работы влияющих ВЛ, удельного сопротивления грунта по трассе линий, которое само зависит от сезона и погодных условий). В связи с этим, большое значение для обеспечения безопасной работы ремонтного персонала на отключённых линиях электропередачи приобретает расчётная оценка возможных величин наведённых напряжений.

Действующие с 2001 года «Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок ПОТ Р М-016-2001» (далее Правила) [2] определяют воздушную линию под наведённым напряжением как «ВЛ и ВЛС, которые проходят по всей длине или на отдельных участках вблизи действующих ВЛ или вблизи контактной сети электрифицированной железной дороги переменного тока и на отключённых проводах которых при различных схемах их заземления (а также при отсутствии заземлений) и наибольшем рабочем токе действующих ВЛ (контактной сети) наводится напряжение более 25 В».

Постановка задачи настоящей работы также связана с требованием пунктов 4.15.52, 4.15.53 и 4.15.54 Правил:

«Из числа ВЛ под наведённым напряжением организациям необходимо определить измерениями линии, при отключении и заземлении которых по концам (в РУ) на заземлённых проводах остаётся потенциал наведённого напряжения выше 25 В при наибольшем рабочем токе действующей ВЛ.

Все виды работ на этих ВЛ, связанные с прикосновением к проводу без применения основных электрозащитных средств, должны проводиться по технологическим картам или ППР, в которых должно быть указано размещение заземлений исходя из требований обеспечения на рабочих местах потенциала наведённого напряжения не выше 25 В.

Если на отключённой ВЛ (цепи), находящейся под наведённым напряжением, не удаётся снизить это напряжение до 25 В, необходимо работать только на одной опоре или на двух смежных. При этом заземлять ВЛ (цепь) в РУ запрещается. Допускается работа бригады только на опорах, на которых установлены заземления, и в пролёте между ними».

Далее, если наведённое напряжение превышает 25 В, рекомендуется применять дополнительные заземления в месте работ для снижения этих напряжений до безопасных значений. Как известно из литературы и подробно рассмотрено в [3], сопротивления таких заземлений должны иметь значения не более нескольких Ом. Для большинства промежуточных точек линии (удалённых от мощных контуров подстанций) такие сопротивления дополнительных заземлений в условиях высокоомных грунтов просто невозможно обеспечить. Единственным путём реального обеспечения требований безопасности работ в соответствии с Правилами остаётся заземление линии только в одной точке — месте работ. При этом создаются дополнительные организационные трудности при ремонтах в нескольких, удалённых друг от друга более чем на один пролёт, местах линии. Всегда существует вероятность (случайного) заземления отключённого участка линии во второй точке или по концам, что приводит к резкому росту наведённых напряжений. Кроме того, хотя максимально допустимое сопротивление заземления в месте работ для изолированной по концам линии обычно составляет несколько сот Ом, в ряде особо неблагоприятных случаев оно может снижаться до 100 и менее Ом. Это для особо высокоомных грунтов тоже может стать сложной задачей. Поэтому необходимо по возможности точно определить круг линий, на которых можно работать по обычной для энергосистем схеме — заземление отключённой ЛЭП по концам и дополнительное (контрольное) заземление этой линии в месте работ независимо от фактического наведённого напряжения, и, следовательно, от величины сопротивления этого заземления.

В Кольской энергосистеме определен перечень линий под наведенным напряжением, при работе на которых запрещено устанавливать заземления в РУ концевых подстанций. В частности, такой является двухцепная ВЛ 154 кВ Л-163/164 от Верхнее-Туломской ГЭС-12 до подстанции № 21 в г. Заполярный. Линия, введенная в эксплуатацию в 1964 г., имеет протяженность по трассе 117,5 км и размещена на 421 металлической опоре, среди которых преобладают промежуточные двухцепные опоры типа П-4; средняя длина пролета 300 м, марка провода АС-240. Подходы к подстанциям на расстояниях порядка 2 км защищены грозотросом, марка провода С-50. Трасса ВЛ проходит по тундровой местности с каменистым грунтом, удельное сопротивление грунта в среднем имеет величину порядка 10000 Ом.м. Сопротивление растеканию тока заземляющих устройств опор ВЛ имеет порядок десятков и сотен Ом, и во многих случаях значительно превышает нормируемые значения.

Наведенное напряжение на ремонтируемой цепи в основном определяется соседней цепью, находящейся под рабочим напряжением. Тем не менее, следует также учитывать возможное влияние от ВЛ, следующих в одном коридоре с исследуемой линией. Такой линией является Л-221, на протяжении 20 км от подстанции № 21 следующая в одном коридоре с Л-163/164, причем ширина сближения в среднем составляет 40 м по осям цепей.

Важным фактором, влияющим на величину наведенного напряжения, является наличие разнообразных неоднородностей по длине взаимодействующих линий: изменение ширины коридора, угла между осями цепей, транспозиции проводов, изменение числа влияющих линий и т.д. Так как длина исследуемой линии превышает 100 км, то на ней проведен полный цикл из четырех транспозиций, делящий линию на пять однородных участков в примерной пропорции 1/1/2/1/1. На рисунке 1 показана схема сближения Л-163/164 и соседней Л-221, которая не имеет транспозиций. Линия 35 кВ М-105/106 также показана на рисунке, но при расчетах ее влияние не учитывалось.

Рис.1. Схема сближения линии Л-163/164 и соседних линий

Таким образом, влияющими являются одна из цепей двухцепной линии Л-163/164 и Л-221. Расчет наведенных напряжений проводился при рабочих токах на момент проведения измерений; для Л-163/164 действующее значение тока принято равным 280 А, а для Л-221 — 150 А.

Расчеты проводились с использованием программы расчета переходных процессов ЕМТР-АТР. В библиотеке программы есть модуль ЬСС, который позволяет моделировать линии электропередачи и кабели на основе их физических параметров, в том числе многоцепные линии с числом фаз до 28, с транспозициями и изменением геометрии взаимного расположения. На рисунке 2 показаны диалоговые окна модели, описывающие один из участков коридора линий Л-163/164 и Л-221.

итЛ^ЫвРШл; 1163-1Н г

І ЫайН |ВвІй Ііоііе: “ ЇІГі^ЛіПГІСІ ИВ*1

Рис.2. Диалоговые окна модели ЬСС в программе ЕМТР-АТР

Модель линии в программе ЕМТР-АТР показана на рисунке 3. Модель выполнена в виде 12 однородных участков длиной около 10 км каждый. На первых двух участках от подстанции № 21 учтено влияние Л-221, остальные участки отличаются взаимным расположением фаз, соответствующим транспозиционным участкам Л-163/164. В использованном примере сопротивление заземляющих устройств (ЗУ) подстанций, за отсутствием реальных данных, выбрано в пределах нормируемого значения 0.5 Ом. Указаны точки с 0 по 12, в которых фиксировались значения напряжений, и которые далее используются при анализе результатов. Показан частный случай заземления в точке 4 на опору с сопротивлением 100 Ом. Для заземления трехфазных цепей использован сплиттер — компонент, позволяющий расщепить многофазную шину на провода отдельных фаз. В нашем примере это дает возможность моделировать обрыв заземляющих проводников.

Рис. 3. Модель линии в программе ЕМТР-АТР

Расчет производился для случая ремонта на цепи Л-163, которая расположена ближе к Л-221, Л-164 выступала как действующая влияющая линия. Если Л-163 не заземлена ни в одной точке, то основной вклад вносит емкостная составляющая влияния и наведенное напряжение на фазах в зависимости от точки измерения лежит в пределах от 2600 до 3100 В. Индуктивная составляющая от емкостных токов линии сравнительно мала.

При заземлении ремонтируемой линии в РУ подстанций емкостная составляющая исчезает, но увеличивается индуктивная составляющая за счет токов, замыкающихся через малое сопротивление ЗУ подстанций. Кривая распределения максимальных из наведенных на фазах линии Л-163 действующих значений напряжений представлена на рисунке 4. Как видно из рисунка, Л-163/164 попадает под определение линии под наведенным напряжением по пункту 4.15.52 Правил. На том же рисунке продемонстрирован вклад влияния Л-221 в наведенное напряжение на линии Л-163. Можно видеть, что это влияние распространяется не только на участок их совместного следования в одном коридоре, но и значительно дальше, практически на две трети длины линии.

Рис. 4. Кривая распределения наведенного напряжения по длине Л-163/164

В реальной ситуации ремонт на цепях Л-163/164 должен производиться в соответствии с пунктом 4.15.53 Правил и ремонтируемая цепь должна заземляться только в месте производства работ. В таблице 1 представлены варианты расчетов при заземлении цепи Л-163 в точках 1-11, где организована регистрация наведенных напряжений в модели линии, для различных режимов заземления и взаимного влияния. Сразу стоит сделать замечание, касающееся точности расчетов и их сравнения с экспериментальными данными. Модель линии является идеализированным объектом, в котором невозможно учесть все неоднородности и влияющие факторы, поэтому полученные результаты являются качественными и отличие от экспериментальных данных может быть значительным, иногда 50-70 %. Сравнение расчета с опытом будет обсуждаться далее.

Во втором столбце таблицы представлены результаты расчета напряжения на опоре относительно удаленной земли для случая, когда линия заземлена на опору и в РУ концевых подстанций. Из расчета видно, что напряжение будет ниже 25 В только в случае сопротивления ЗУ опоры порядка единиц Ом, что в условиях высокоомных скалистых грунтов недостижимо. На рисунке 5 показана кривая напряжения на ЗУ опоры в точке № 2 (20 км от подстанции № 21) в зависимости от его сопротивления. Интересно отметить, что, начиная с определенного значения сопротивления, напряжение на опоре перестает расти и стремится к значению, соответствующему закороченным, но не заземленным проводам.

Наведенные напряжения на Л-163

при различных режимах заземления и влияющих линии, В

Точка заземления Заземлена в РУ Заземлена в РУ, Л-221 отключена Не заземлена в РУ Провода фаз в РУ закорочены

1 35 / 35 / 28 21 / 21 / 16 128 / 9/1 127 / 9 / 1

2 71 / 69 / 44 42 / 41 / 26 141 / 10 / 1 140 / 10 / 1

3 66 / 63 / 35 39 / 37 / 21 128 / 9/1 127 / 9 / 1

4 64 / 62 / 30 42 / 40 / 20 114 / 8/1 114 / 8/1

5 48 / 46 / 21 28 / 26 / 12 120 / 9/1 120 / 9/1

6 31 / 30 / 13 13 / 13 / 7 129/9 / 1 130 / 9/1

7 17 / 16 / 7 8 / 7 / 3 141 / 10 / 1 142 / 10 / 1

8 18 / 17 / 8 23 / 22 / 11 153 / 11/ 1 153 / 11/ 1

9 11 /10 / 6 21 / 20 / 11 141 / 10 / 1 141 / 10 / 1

10 23 / 23 / 15 30 / 28 / 18 128 / 9/1 128 / 9/1

11 13 / 12 / 10 16 / 15 / 12 134 / 9/1 134/9/1

* В ячейках таблицы первое число значения наведенного напряжения при бесконечном сопротивлении опоры, второе при сопротивлении 100 Ом, третье при сопротивлении 10 Ом.

°0 10 20 30 40 50 60 70 80 90 100

Сопротивление ЗУ опоры, Ом

Рис. 5. Зависимость напряжения на опоре в точке № 2 от сопротивления ЗУ опоры линии, заземленной в РУ

В третьем столбце приведены результаты при тех же условиях, но при отключенной линии Л-221. Как уже отмечалось ранее, линия Л-221 вносит существенный вклад в наведенное напряжение на Л-163/164, и ее отключение на время выполнения ремонтных работ позволит снизить уровень наведенного напряжения.

В настоящее время ремонтные работы на Л-163/164 в соответствии с пунктом 4.15.53 Правил ведутся на линии, не заземленной в РУ концевых подстанций. В четвертом столбце таблицы 1 приведены результаты расчета напряжений для такого режима заземления. Видно, что при сопротивлении ЗУ опоры 100 Ом напряжение на ней меньше опасного значения 25 В. Однако, рассмотрим зависимость напряжения на опоре в точке № 2 от сопротивления заземления, как это сделано

ранее на рисунке 5. На рисунке 6 видно, что вид зависимости в области характерных для опор сопротивлений ЗУ иной, и если при сопротивлении 100 Ом напряжение на опоре всего 15 В, то при сопротивлениях выше 250 Ом напряжение будет превышать безопасный уровень. В районе точки № 2 — в 20 км от подстанции № 21 — были выполнены измерения сопротивлений ЗУ трех опор, и они составили величины 257, 495 и 657 Ом, т.е напряжение на опоре может превысить безопасный уровень 25 В даже при незаземленной в РУ ремонтируемой линии.

0 1000 2000 3000 4000 5000

Сопротивление ЗУ опоры, Ом

Рис. 6. Зависимость напряжения на опоре в точке № 2 от сопротивления ЗУ опоры линии, не заземленной в РУ

Расчеты показывают, что основная идея, на которой основан пункт 4.15.53 Правил, является верной: уменьшение индуктивной составляющей за счет разрыва цепи протекания тока между точкой заземления в месте проведения работ на линии и ЗУ подстанций значительно снижает уровень наведенного напряжения. Однако, как показал десятилетний опыт эксплуатации высоковольтных линий в соответствии с новыми правилами безопасности, уровень электротравматизма значительно вырос. Причина этого в том, что даже в случае строгого следования нормам правил всегда есть вероятность нештатной ситуации, когда происходит отсоединение одного из заземляющих проводников либо от фазного провода, либо от опоры, тем более это возможно при ошибочных действиях ремонтного персонала или преднамеренных нарушениях правил электробезопасности.

Опасность поражения персонала наведенным напряжением возникает в следующих случаях:

1. случайное прикосновение к проводам при установке заземлений;

2. обрыв заземляющего проводника при некачественной установке заземлителя или его отсоединение в процессе работы из-за сильных ветровых нагрузок;

3. ошибочное отключение заземлителя. Для предотвращения опасной ситуации по п.2 было дано распоряжение о дублировании заземлителей на опоре. При его снятии возможна ситуация, при которой от провода отключается один заземлитель, а от опоры — другой, дублирующий, при этом в руках у линейщика оказывается заземляющий проводник, подключенный к фазному проводу.

Если ремонтируемая линия заземлена в РУ подстанций, то напряжение на незаземленной фазе превысит безопасный уровень, но будет не выше значений, показанных на рисунке 4. На практике напряжения порядка сотни вольт при применении дополнительных средств защиты, или даже при работе в брезентовых рукавицах, вряд ли приведут к тяжелому поражению электрическим током. Но если линия, в соответствии с Правилами, не заземлена в РУ, то напряжение на фазе, потерявшей контакт с заземляющим устройством, станет равно напряжению на изолированном проводе, в нашем примере это порядка 3500 В, а в некоторых случаях это напряжение может превышать 10 кВ. От такого напряжения дополнительные средства уже не спасут, и вероятность поражения крайне высока.

Даже грубейшие нарушения правил безопасности не должны караться смертью, поэтому крайне необходимо изыскать организационные или технические мероприятия, которые позволят снизить риск поражения при работе под наведенным напряжением на разземленных в РУ подстанций линиях.

Одним из наиболее опасных видов работ при подготовке рабочего места на выведенной в ремонт линии под наведенным напряжением является процесс наложения заземлителей. В этот момент наиболее высока вероятность прикосновения к незаземленным проводам. Мы считаем, что установку и снятие заземлений на провода линии в месте производства ремонтных работ следует выполнять при заземленных в концевых РУ линиях. Это не противоречит Правилам, так как их требования распространяются на уже заземленную в месте производства работ линию.

На рисунке 7 показаны результаты расчета наведенного напряжения на линии, фазы которой не заземлены в РУ, но закорочены между собой. Такой режим работы линии не противоречит Правилам, но в тоже время более чем на порядок снижает уровень напряжения на незаземленной линии. При обрыве заземляющего проводника напряжение на разземленной фазе не превысит 300 В, что, несомненно является опасным значением, но вряд ли такой уровень приведет к пробою изоляции дополнительных средств защиты, и риск поражения электрическим током снизится.

О 20 40 60 30 100 120

Расстояние от ПС-21, км

Рис. 7. Кривая распределения наведенного напряжения по длине Л-163/164 при закороченных в РУ фазных проводах

В пятом столбце таблицы 1 представлены результаты расчета наведенного напряжения на заземленных на опору проводах при таком режиме заземления линии. Результат в точности совпадает с четвертым столбцом, где показаны результаты при режиме заземления, соответствующем Правилам.

Полученный результат объясняется тем, что индуктивная составляющая наведенного напряжения за счет фазных токов в проводах отсутствует, а емкостные составляющие фазных напряжений образуют прямую последовательность, близкую к симметричной. При объединении проводов напряжения складываются и дают сумму, равную несимметрии фаз.

Таким образом, предложенный способ не противоречит пункту 4.15.53 Правил, линия не заземляется в РУ подстанций, наведенное напряжение в месте проведения работ не превышает 25 В, а при обрыве заземлителя значительно снижается риск поражения ремонтного персонала.

Результаты расчетов подтверждаются проведенными измерениями наведенного напряжения на Л-163/164 при различных режимах заземления ремонтируемой линии [4]. Как уже отмечалось выше, в некоторых случаях данные экспериментов значительно отличаются от расчетных значений. Наибольшее расхождение имеет место при расчете индуктивной составляющей наведенного напряжения. Это связано с особенностями моделирования линии в программе ЕМТР-АТР. Емкостная составляющая рассчитывается через матрицу потенциальных коэффициентов, расчет которой не представляет особых сложностей даже в случае линии сложной конфигурации. Несколько хуже обстоит дело с расчетом взаимного влияния токов в проводах линии и земле. Даже небольшое изменение параметров схемы иногда приводит к значительным отличиям в полученных результатах. Так, первоначально длины транспозиционных участков были округлены кратно 10 км, то есть отличие от реальных длин не превышало 5 %. Это привело к двукратной разнице между расчетными и экспериментальными данными. Дело в том, что на уровень напряжения на заземленной линии сильное влияние оказывает несимметрия напряжений на фазных проводах, которая, в свою очередь, сильно зависит от физических параметров модели линии: длины участков, порядка чередования фаз и их взаимного расположения и т.д.

Кроме того, эксперименты выявили еще один аспект, который необходимо учитывать при расчете наведенного напряжения. На рисунке 8 представлена осциллограмма напряжения на заземленных на опору проводах Л-163. Линия заземлена в РУ, сопротивление опоры порядка 350 Ом.

1 О 0.01 0.02 0.03 0.04

Рис. 8. Осциллограмма наведенного напряжения

На рисунке 9 представлен спектр этого сигнала. Оказывается, в индуктивной составляющей наведенного напряжения уровень высших гармоник может превышать составляющую промышленной частоты. В приведенном примере действующее значение первой гармоники меньше 15 В, и это та величина, которая будет получена при расчете наведенного напряжения по модели, не учитывающей гармонический состав напряжения в сети; в реальности действующее значение в два раза выше.

Рис. 9. Спектр наведенного напряжения

На линии, не заземленной в РУ, гармоники практически не оказывают влияния на уровень наведенного напряжения, это означает, что в емкостной составляющей они пренебрежимо малы.

1. Установка и снятие заземления на рабочем месте ВЛ под наведённым напряжением должна осуществляться после её заземления в РУ стационарными заземляющими ножами.

2. Соединение между собой изолированных фазных проводов в концевых РУ в случаях превышения наведенного напряжения на отключенных линиях выше допустимой величины 25 В, значительно снижает опасность тяжелого поражения ремонтного персонала электрическим током при возникновении аварийных ситуаций, связанных с обрывами заземляющих проводов в местах проведения ремонтов на линии.

3. При расчете наведенного напряжения на ремонтируемой линии необходимо учитывать гармонический состав напряжений и токов во влияющей линии.

1. Целебровский Ю.В. Нормативные основы безопасности работ под наведённым напряжением // Энергетик. 2010. № 5. — С. 34-36.

2. Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок. ПОТ РМ-16-2001, РД 153-34.0-03.150-00. М.: Изд-во НЦ ЭНАС, 2001. — 192 с.

3. Костенко М.В., Кадомская К.П., Левинштейн М.Л., Ефремов И.А. Перенапряжения и защита от них в воздушных и кабельных электропередачах высокого напряжения. Л.: Наука. 1998. — 303 с.

4. Данилин А.Н., Ефимов Б.В., Залесова О.В., Селиванов В.Н., Якубович М.В. Повышение безопасности работ на линиях под наведенным напряжением // Труды КНЦ РАН. Энергетика. — Апатиты: Изд-во Кольского научного центра РАН, 2010. — С. 91-102.

Сведения об авторах

Данилин Аркадий Николаевич,

заведующий лабораторией высоковольтной электроэнергетики и технологии Центра физико-технических проблем энергетики Севера КНЦ РАН, к.т.н.

Россия, 184209, Мурманская область, г.Апатиты, мкр.Академгородок, д.21А Эл. почта: danilin@ien.kolasc.net.ru

Ефимов Борис Васильевич,

директор Центра физико-технических проблем энергетики Севера КНЦ РАН, д.т.н. Россия, 184209, Мурманская область, г.Апатиты, мкр.Академгородок, д.21А Эл. почта: efimov@ien.kolasc.net.ru

Кизенков Александр Николаевич,

начальник производственной службы линий Северных электрических сетей филиала ОАО «МРСК Северо-Запада» «Колэнерго»

Россия, 184355, Мурманская область, Кольский район, пгт Мурмаши, ул.Кирова, д.2 Селиванов Василий Николаевич,

ведущий научный сотрудник лаборатории высоковольтной электроэнергетики и технологии Центра физико-технических проблем энергетики Севера КНЦ РАН, к.т.н.

Россия, 184209, Мурманская область, г.Апатиты, мкр.Академгородок, д.21А Эл. почта: selivanov@ien.kolasc.net.ru

Якубович Марина Викторовна,

научный сотрудник лаборатории высоковольтной электроэнергетики и технологии Центра физико-технических проблем энергетики Севера КНЦ РАН, к.т.н.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *