Как строить принципиальные электрические схемы
Перейти к содержимому

Как строить принципиальные электрические схемы

  • автор:

 

Десять правил составления электрических принципиальных схем

Принципиальная схема — это схема электрических соединений, выполненная в развернутом виде. Она является основной схемой проекта электрооборудования производственного механизма и дает общее представление об электрооборудовании данного механизма, отражает работу системы автоматического управления механизмом, служит источником для составления схем соединений и подключений, разработки конструктивных узлов и оформления перечня элементов.

По принципиальной схеме осуществляется проверка правильности электрических соединений при монтаже и наладке электрооборудования. От качества разработки принципиальной схемы зависит четкость работы производственного механизма, его производительность и надежность в эксплуатации.

Десять правил составления электрических принципиальных схем

1. Составление принципиальной электросхемы производственного механизма проводится на основании требований технического задания . В процессе составления принципиальной схемы уточняются также типы, исполнения и технические данные электродвигателей, электромагнитов, конечных выключателей, контакторов, реле и т. п.

Напомним, что на принципиальной схеме все элементы каждого электрического устройства, аппарата или прибора показываются отдельно и размещаются для удобства чтения схемы в различных местах ее в зависимости от выполняемых функций. Все элементы одного и того же устройства, машины, аппарата и т. п. снабжаются одинаковым буквенно-цифровым обозначением, на пример: KM1 — контактор линейный первый, KT — реле времени и т. п.

2. На электрической принципиальной схеме показываются все электрические связи между входящими в нее элементами электрооборудования производственного механизма. На принципиальных схемах силовые цепи обычно размещают слева и изображают их толстыми линиями, а цепи управления помещают справа и чертят тонкими линиями.

Принципиальная схема проектируется с использованием существующих типовых узлов и схем автоматического управления электропроводами(например, схем магнитных контроллеров и защитных панелей — для кранов, схем узлов перехода от наладочного режима к автоматическому при помощи раздельных кнопок управления или переключателя режимов — для металлорежущих станков и т. д.).

3. Релейно-контактные схемы необходимо составлять с учетом минимальной загрузки контактов реле, контакторов, путевых выключателей и т. д., применяя для снижения коммутируемой ими мощности усилительные устройства: электромагнитные, полупроводниковые усилители и др.

4. Для повышения надежности работы схемы нужно выбрать наиболее простой вариант, имеющий наименьшее количество органов управления, аппаратов и контактов. Для этой цели следует, например, применять общие аппараты защиты для электродвигателей, не работающих одновременно, а также осуществлять управление вспомогательными приводами от аппаратов главного привода, если они работают одновременно.

5. Цепи управления в сложных схемах следует присоединять к сети через трансформатор, понижающий напряжение до 110 В. Это исключает электрическую связь силовых цепей с цепями управления и устраняет возможность ложных срабатываний релейно-контактных аппаратов при замыканиях, на землю в цепях их катушек. Относительно простые схемы электрического управления допускается присоединять непосредственно к питающей сети.

6. Подача напряжения на силовые цепи и цепи управления должна производиться посредством вводного пакетного выключателя или автоматического выключателя. При применении на металлорежущих станках или других машинах только двигателей постоянного тока в схеме управления следует использовать также аппаратуру постоянного тока.

7. Различные контакты одного и того же электромагнитного аппарата (контактора, реле, командоконтроллера, путевого выключателя и др. рекомендуется по возможности подключать к одному полюсу или фазе сети. Это позволяет осуществить более надежную работу аппаратов (отсутствует вероятность пробоя и замыкания по поверхности изоляции между контактами). Из этого правила следует, что один вывод катушки всех электрических аппаратов по возможности нужно подключать к одному полюсу цепи управления.

8. Для обеспечения надежной работы электрооборудования должны быть предусмотрены средства электрической защиты и блокировки. Электрические машины и аппараты защищаются от возможных коротких замыканий. и недопустимых перегрузок. В схемах управления электроприводами станков, молотов, прессов, мостовых кранов обязательна нулевая защита для устранения возможности самозапуска электродвигателей при снятии и последующей подаче напряжения питания.

Электрическая схема должна быть построена так, чтобы при перегорании предохранителей, обрыве цепей катушек, приваривании контактов не возникало аварийных режимов работы электропривода. Кроме того, схемы управления должны иметь блокировочные связи для предотвращения аварийных режимов при ошибочных действиях оператора, а также для обеспечения заданной последовательности операций.

9. В сложных схемах управления необходимо предусмотреть сигнализацию и электроизмерительные приборы, позволяющие оператору (станочнику, крановщику) наблюдать за режимом работы электроприводов. Сигнальные лампы обычно включаются на пониженное напряжение: 6, 12, 24 или 48 В.

10. Для удобства эксплуатации и правильного монтажа электрооборудования зажимы всех элементов электроаппаратов, электрических машин (главные контакты, вспомогательные контакты, катушки, обмотки и др.) и провода на схемах маркируются.

Участки (зажимы элементов схемы и соединяющие их провода) цепей постоянного тока положительной полярности маркируются нечетными числами, а отрицательной полярности — четными числами. Цепи управления переменного тока маркируются аналогично, т. е. все зажимы и провода, присоединяемые к одной фазе, маркируются нечетными числами, а к другой фазе — четными.

Общие точки соединений нескольких элементов на схеме имеют один и тот же номер. После прохождения цепи через катушку, контакт, сигнальную лампу, резистор и т. п. номер изменяется. Для выделения отдельных видов цепей индексация производится так, чтобы цепи управления имели номера от 1 до 99, цепи сигнализации — от 101 до 191 и т. д.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

лабораторные / Лабораторная 2 / ЭЛЕКТРИЧЕСКИЕ ПРИНЦИПИАЛЬНЫЕ СХЕМЫ РАДИОТЕХНИЧЕСКИХ И ЭЛЕКТРОТЕХНИЧЕСКИХ

Процесс разработки электротехнической аппаратуры условно делят на несколько этапов: техническое предложение, эскизный проект, технический проект, рабочая конструкторская документация. Практически на каждом этапе проектирования возникает необходимость графически изобразить устройство какого-либо прибора или системы, показав только его составные части и связи между ними. Действительная геометрическая форма и размеры элементов, а также их действительное расположение в конструкции в этом случае для разработчика, не имеют существенного значения.

Стандартами ЕСКД предусмотрен графический конструкторский документ под названием «Схема» и разработаны правила его оформления. По ГОСТ 2.102-68 схема определяется как конструкторский документ, на котором в виде условных графических изображений или обозначений показаны составные части изделия и связи между ними. Разработанная таким образом схема становится директивой для конструирования изделия, его изготовления и контроля.

В эксплуатации по схемам изучают принцип действия изделия и протекающие в нем процессы. Поэтому значение условностей и правил графического оформления схем следует рассматривать как неотъемлемую часть общей подготовки специалиста в области инженерной графики.

Из всех видов схем при проектировании электротехнической аппаратуры наибольшее распространение имеют электрические схемы различных типов, прежде всего, электрические принципиальные схемы, основные правила выполнения чертежей которых излагаются в настоящих методических указаниях.

1. ЦЕЛЬ И СОДЕРЖАНИЕ РАБОТЫ

Цель работы – ознакомить студентов с правилами графического оформления конструкторского документа «Схема электрическая принципиальная».

Основные задачи работы:

1. Ознакомить студента с типами электрических схем (ГОСТ 2.- 2011).

2. Ознакомить студента с основными правилами выполнения электрических принципиальных схем (ГОСТ 2.701-2008).

3. Ознакомить студента с разделом ЕСКД «Обозначения условные графические в схемах» (ГОСТ 2.721-74 и др.)

Содержание работы. В качестве задания студенту выдается схема электрическая принципиальная, содержащая изображения электрических элементов и электрические связи между ними.

1. Выполнить схему с наименьшим количеством изломов и пересечений линий электрической связи.

2. Вычертить электрические элементы, показанные условно.

3. Обозначить схему, элементы схемы, входные и выходные цепи.

4.Обозначить последовательно или параллельно соединенные одинаковые элементы.

5. Выполнить перечень элементов.

Работу необходимо выполнить на формате A3 чертежной бумаги. Разрешается пользоваться трафаретами «Элементы электрических схем». Базой для выполнения работы являются теоретические знания, полученные при изучении инженерной графики; элементарные понятия из области электротехники, полученные в общеобразовательной школе; навыки пользования справочной литературой; графические навыки, приобретенные при изучении инженерной графики.

2. ОБЩИЕ СВЕДЕНИЯ О СХЕМАХ

Термины, определения. В основе построения схем лежит принцип разделения изделия и его схемы на структурные единицы, между которыми устанавливают взаимно однозначное соответствие, что достигается применением адекватных условных графических обозначений или изображений и указанием на схеме характеристик функциональных частей изделия и процессов.

Согласно ГОСТ 2.701-2008 структурными единицами изделия могут быть:

— элемент схемы – составная часть схемы, которая выполняет определенную функцию в изделии и не может быть разделена на части, имеющие самостоятельное назначение (резистор, трансформатор, насос, распределитель, муфта и т.п.);

— устройство – совокупность элементов, представляющая единую конструкцию (блок, плата, шкаф, механизм, разделительная панель и т. п.), которая может и не иметь определенного функционального назначения;

— функциональная группа – совокупность элементов, выполняющих в изделии определенную функции и не объединенных в одну конструкцию;

функциональная часть – элемент, устройство, функциональная группа;

функциональная цепь – линия, канал, тракт определенного назначения (канал звука, видео канал, тракт СВЧ и т. п.);

— установка – условное наименование объекта энергетических сооружениях, на который выпускается схема, например, главные цепи;

— линия взаимосвязи – отрезок линии, указывающий на наличие связи между функциональными участками изделий.

Каждую функциональную часть изделия характеризуют:

— наименование, указывающее на ее конкретную функцию в изделии и характер протекающих в ней процессов;

— параметры реализуемых физических процессов.

Элементы и устройства, кроме того, характеризуют тип и технические данные, определяющие их конкретные конструктивные (форму, размеры, способы крепления и подключения и т. п.) и эксплуатационные (допустимые токи, напряжения, давление и т.п.) свойства.

Виды и типы схем. В соответствии с ГОСТ 2.701-84 все схемы в зависимости от видов элементов и связей, входящих в состав изделия, подразделяют на виды, представленные в табл. 1. В зависимости от основного назначения схемы подразделяют на типы, представленные в табл. 2.

Схемы структурные разрабатывают при проектировании изделий (установок), предшествующих разработке схем других типов, и пользуются ими для общего ознакомления с изделием (установкой).

Схемами функциональными пользуются для изменения принципов работы изделий (установок), а также при их наладке контроле и ремонте.

Схемы принципиальные применяют для изучения принципов работы изделий (установок), а также при их наладке контроле и ремонте. Они служат основанием для разработки других конструкторских документов, например, схем соединений (монтажных) и чертежей.

Схемами соединений (монтажными) пользуются при разработке других конструкторских документов, в первую очередь чертежей, определяющих прокладку и способы крепления проводов, жгутов, кабелей или трубопроводов в изделии (установке), а также для осуществления присоединений и при контроле, эксплуатации и ремонте изделий (установок).

Схемы подключения используют при разработке других конструкторских документов, а также для осуществления подключений изделий и при их эксплуатации.

Схемы общие служат для ознакомления с комплексами, а также при их контроле и эксплуатации. Схему общую на сборочную единицу допускается разрабатывать при необходимости.

Схемами расположения пользуются при разработке других конструкторских документов, а также при эксплуатации и ремонте изделий (установок).

Обозначение схем. Каждой схеме присваивают шифр, состоящий из буквы, определяющей вид схемы, и цифры, обозначающей тип схемы. Например, схема электрическая принципиальная обозначается ЭЗ, схема гидравлическая принципиальная – ГЗ, схема электрическая соединений – Э4 и т.д.

Некоторые общие требования к выполнению схем. Комплект (номенклатура) схем на изделие (установку) должен быть минимальным, но содержать сведения в объеме, достаточном для проектирования, изготовления, эксплуатации и ремонта изделия (установки).

Форматы листов схем выбирают в соответствии с требованиями, установленными ГОСТ 2.301-68 и ГОСТ 2.004-79; при этом основные форматы являются предпочтительными. Выбранный формат должен обеспечить компактное выполнение схемы, не нарушая ее наглядности и удобства пользования ею.

Схемы выполняются без соблюдения масштаба, действительное пространственное расположение составных частей изделий (установки) не учитывают или учитывают приближенно.

Графические обозначения элементов (устройств, функциональных групп) и соединяющие их линии связи располагают на схеме таким образом, чтобы обеспечить наилучшее представление о структуре изделия и взаимодействии его составных частей.

Расстояние (просвет) между двумя соседними линиями графического обозначения, должно быть не менее 1,0 мм. Расстояние между соседними параллельными линиями связи должно быть не менее 3,0 мм. Расстояние между отдельными условными графическими обозначениями должно быть не менее 2,0 мм.

При выполнении схем применяют, как правило, условные графические обозначения, установленные стандартами ЕСКД, а также обозначения, построенные на их основе. При необходимости применяют нестандартные условные графические обозначения.

Условные графические обозначения элементов изображают в размерах, установленных в стандартах условных графических обозначений.

При необходимости все размеры графических обозначений допускается пропорционально изменять.

Графические обозначения на схемах выполняют линиями той же толщины, что и линия связи.

Условные графические обозначения элементов на схеме в положении, в котором они приведены в соответствующих стандартах, или повернутыми на угол, кратный 90о, если в соответствующих стандартах отсутствуют специальные указания. Допускается условные графические обозначения – поворачивать на угол, кратный 45°, или изображать зеркально повернутыми. В последнем случае не должен нарушаться смысл или удобочитаемость обозначения.

Условные графические обозначения, содержащие цифровые или буквенно-цифровые обозначения, допускается поворачивать против часовой стрелки только на угол 90о или 45°.

Линии связи выполняют толщиной от 0,2 до 1,0 мм в зависимости от форматов схемы и размеров графических обозначений. Рекомендуемая толщина линий от 0,3 до 0,4 мм.

Линии связи должны состоять из горизонтальных и вертикальных отрезков и иметь наименьшее количество углов и взаимных пересечений. В отдельных случаях допускается применять наклонные отрезки линий связи, длину которых следует по возможности ограничивать.

Перечень элементов помещают на первом листе схемы или выполняют в виде самостоятельного документа. На схемах допускается, помещать различную текстовую информацию (технические данные элементов и устройств, диаграммы, таблицы, необходимые технические указания и т. п.). Такая информация может быть расположена:

— рядом с графическими обозначениями;

— внутри графических обозначений;

— над линиями связи;

— в разрыве линий связи;

— рядом с концами линий связи;

— на свободном поле схемы (по возможности над основной надписью).

3. ПРАВИЛА ВЫПОЛНЕНИЯ ЭЛЕКТРИЧЕСКИХ ПРИНЦИПИАЛЬНЫХ СХЕМ

Общие сведения. Схема электрическая принципиальная конструкторский документ, на котором в виде условных графических изображений или обозначений показаны все электрические элементы или устройства, необходимые для осуществления и контроля в изделии заданных электрических процессов, все электрические связи между ними, а также электрические элементы разъемы, зажимы и т. п.), которыми заканчиваются входные и выходные цепи.

Условные графические изображения некоторых электрических и радиоэлементов приведены в приложении.

Принципиальная схема отражает полный состав частей изделия и все связи между ними, поэтому она дает детальное представление о принципе работы изделия. Принципиальная схема – самая важная среди всех типов схем.

Являясь результатом теоретической и исследовательской разработки изделия, она служит заданием для его конструирования, а также используется при изготовлении изделия, его наладке, контроле и ремонте.

Выполнение принципиальной схемы. При выполнении электрических принципиальных схем следует, прежде всего, руководствоваться общими требованиями к выполнению схем, некоторые из них изложены выше. Здесь приводятся дополнительные правила и рекомендации для выполнения электрических принципиальных схем.

Принципиальные схемы выполняют для изделий, находящихся в отключенном положении. В технически обоснованных случаях допускается отдельные элементы схемы изображать в выбранном рабочем положении с указанием на поле схемы режима, для которого изображены эти элементы.

Элементы и устройства изображают на схемах совмещенным или разнесенным способом.

При совмещенном способе составные части элементов или устройств изображают на схеме в непосредственной близости друг к другу. На рис. 1 изображен совмещенным способом электрический элемент «реле», включающий в себя катушку и контакты.

Рис. 1. Совмещенный способ изображения электрического элемента.

При разнесенном способе составные части элементов и устройств изображают на схеме в разных местах таким образом, чтобы отдельные цепи изделия были изображены наиболее наглядно (рис. 2).

Рис. 2. Разнесенный способ изображения электрических элементов

Разнесенным способом допускается изображать все и отдельные элементы или устройства.

Позиционные обозначения элементов. Каждый элемент или устройство, входящие в изделие и изображенные на схеме, должны иметь позиционное обозначение в соответствии с требованиями ГОСТ 2.710-81. Позиционные обозначения элементам (устройствам) следует присваивать в пределах изделия (установки).

Позиционное обозначение элемента (устройства) состоит из одной или двух букв, присвоенных группе элементов (устройств) изделия, и порядкового номера, присваиваемого каждому элементу (устройству) в пределах группы, например C1, С2 и т.д.; KM1, КМ2 и т. д., начиная с единицы.

Буквенные коды элементов устанавливает ГОСТ 2.710-81. Коды некоторых элементов приведены в приложении А.

Порядковые номера элементов присваивают в соответствии с последовательностью их расположения на схеме сверху вниз в направлении слева направо (рис. 3). Если в изделии имеется только один элемент с данным кодом, то его порядковый номер в позиционное обозначение этого элемента не включают.

В случае, когда изделие содержит только один вид элемента, принадлежащего к некоторой группе, для его обозначения используют только первую (обязательную) букву кода, присвоенного данной группе элементов.

Позиционные обозначения проставляют на схеме рядом с условными графическими обозначениями элементов (устройств) с правой стороны или над ними.

Рис. 3.Фрагмент электрической принципиальной схемы

Нельзя отделять позиционное обозначение от условного графического обозначения элемента линиями взаимосвязи.

Характеристики элементов схемы. В некоторых случаях (например, в принципиальных схемах на полупроводниковую интегральную микросхему) около условных графических и позиционных обозначений указывают номиналы резисторов и конденсаторов. При этом допускается применять упрощенный способ обозначения единиц измерений (рис. 4):

от 0 до 999 Ом – без указания единиц измерения (3,6; 10; 180 и т.д.);

от 1 ∙ 10 3 до 999 ∙ 10 3 Ом в килоомах с обозначением единицы измерения строчной буквой к (12к; 180к и т.д.)

от 1 ∙ 10 6 до 999 ∙ 10 6 0м в мегаомах с обозначением единицы измерения прописной буквой М (2,7М; 100М и т.д.);

свыше 1 ∙ 10 9 Ом – в гигаомах с обозначением единицы измерения прописной буквой Г(1Г; 2,7Г и т.д.);

от 0 до 9999 ∙ 10 -12 Ф – в пикофарадах без указания единиц измерения;

от 1 ∙ 10 -8 до 9999 ∙ 10 -6 Ф – в микрофарадах без указания единиц измерения. При этом емкость записывают либо в виде десятичной дроби (0,05; 0,15; 0,5 и т.д.), либо в виде целого числа с нулем через запятую (1,0; 10,0; 500,0 и т.д.).

Рис. 4.Упрощенный способ обозначения единиц измерений около условных графических обозначений

Важным параметром резистора является номинальная рассеиваемая мощность, т.е. мощность, которая рассеивается на резисторе длительное время без вреда для его работоспособности. Номинальную рассеиваемую мощность указывают на схемах условными знаками внутри символа резистора. Например, мощность 62 мВт обозначают тремя наклонными чертами; 0,125 Вт – двумя; 0,25 Вт – одной; 0,5 Вт – чертой, параллельной большим сторонам прямоугольника; а мощности 1, 2,5 Вт и более – соответствующими римскими цифрами (рис. 5)

Рис. 5.Условное обозначение мощности рассеивания резисторов

Для электролитических и оксидно-полупроводниковых конденсаторов, кроме номинального значения емкости, указывают также допустимое напряжение в вольтах (рис. 3). Значение напряжения проставляется после значения емкости через знак «×» (умножения) с указанием единицы измерения, например 10,0×6В – конденсатор емкостью 10 микрофарад с допустимы напряжением 6 вольт.

Полные данные об элементах приводят в перечне элементов, связь которого со схемой обеспечивается с помощью позиционных обозначений элементов.

Таблица входных (выходных) данных. Характеристики входных и выходных цепей изделия (частоту, напряжение, силу тока и др.) рекомендуется записывать в таблицы, помещаемые взамен условных графических обозначений входных и выходных элементов – разъемов, плат и т.д. На рис. 6 (а) приведены размеры таблицы входных (выходных) данных и пример заполнения. В графе «Конт» указываются номера контактов разъема, в графе «Цепь» записываются характеристики электрических цепей изделий. Для удобства изображения схемы таблицу можно выполнять зеркально повернутой, как это показано на рис. 6 (б).

Каждой таблице присваивают позиционное обозначение элемента, взамен условного графического обозначения которого она помещена.

Над таблицей допускается указывать условное графическое обозначение контакта – гнезда или штыря.

Условности и упрощения выполнения схем. При наличии в изделии нескольких одинаковых (по наименованию типу и номиналу) элементов, соединенных параллельно, рекомендуется вместо изображения всех элементов параллельного соединения (рис. 7, а) изображать только одну ветвь, указав

количество ветвей при помощи обозначения ответвления (рис. 7, б, в). Около графических обозначений элементов, изображенных условно в одной ветви, проставляют их позиционные обозначения, при этом должны быть учтены все элементы, входящие в это параллельное соединение.

При наличии в изделии трех и более одинаковых (по наименованию, типу и номиналу) элементов, соединенных последовательно, рекомендуется вместо изображения всех последовательно соединенных элементов (рис. 8, а) изображать только первый и последний элементы, показывая электрические связи между ними штриховыми линиями. При присвоении элементам позиционных обозначений должны быть учтены элементы, не изображенные на схеме.

Рис. 6.Таблица входных (выходных) данных: а – пример заполнения таблицы;

б – вариант зеркально отраженной таблицы

Рис. 7. Изображение нескольких одинаковых элементов, соединенных параллельно:

а) действительное; б) условное; в) размеры условного обозначения

Над штриховой линией при этом указывают общее количество одинаковых элементов. Например, пять одинаковых резисторов, соединенных последовательно, изобразятся так, как показано на рис. 8, б.

Перечень элементов. Все сведения об элементах, входящих в состав изделия и изображенных на схеме, записывают в перечень элементов, который помещают на первом листе схемы или выполняют в виде самостоятельного документа.

Рис. 8. Изображение нескольких одинаковых элементов, соединенных

последовательно: а – действительное, б – условное

Продолжение перечня элементов помещают слева от основной надписи, повторяя головку таблицы.

При выпуске перечня элементов в виде самостоятельного документа его шифр должен состоять из буквы П (перечень) и шифра схемы к которой выпускают перечень. Например, шифр перечня элементов к электрической принципиальной схеме будет ПЭЗ. Перечень элементов в этом случае выполняют на формате А4 с основной надписью по ГОСТ 2.104-68 (форма 2 и 2а).

Рис. 9. Форма таблицы перечня элементов

В графах перечня указывают следующие данные:

в графе «Поз. обозначение» – позиционное обозначение элемента, устройства или обозначение функциональной группы;

в графе «Наименование» – наименование элемента (устройства) в соответствии с документом, на основании которого этот элемент (устройство) применен, и обозначение этого документа (основной конструкторский документ, государственный стандарт, технические условия), например, резистор МЛТ-0,5-300 кОм ±5% ГОСТ 7113-76;

в графе «Примечание» – технические данные, не содержащиеся в его наименовании (при необходимости).

Перечень элементов заполняется сверху вниз группами в алфавитном порядке буквенных позиционных обозначений. Если на схеме применяют позиционные обозначения, составленные из букв латинского и русского алфавитов, то в перечень вначале записывают элементы с позиционными обозначениями, составленными из букв латинского алфавита, а затем из русского алфавита.

В пределах каждой группы, имеющей одинаковые позиционные обозначения, элементы располагают по возрастанию порядковых номеров.

Элементы одного типа, имеющие одинаковые электрические параметры, записывают в перечень одной строкой, если они имеют последовательные порядковые номера. Если таких элементов два, то в графу «Поз. обозначение» записывают позиционные обозначения этих элементов. Если таких элементов больше двух, то записывают только позиционные обозначения с наименьшим и

наибольшим порядковыми номерами, разделяя их многоточием, например Р 1, Р 2; C1. C5. В графе «Кол.» указывают при этом общее количество элементов.

Если в группу входит несколько элементов с одинаковым наименованием, то его не записывают на каждой строке, а выносят в виде заголовка. Заголовок записывают в графу «Наименование» и подчеркивают. Между заголовком и началом перечисления оставляют одну свободную строку, между группами элементов – одну-две строки (рис. 10).

Рис. 10. Пример оформления группы элементов в перечне элементов

В заголовок может быть внесено обозначение документа, если на его основании применены все перечисляемые элементы (рис. 11). Пример заполнения перечня элементов показан на рис. 12.

Рис. 11. Пример оформления заголовка группы элементов

Рис. 12. Фрагмент перечня элементов

4. УКАЗАНИЯ К ВЫПОЛНЕНИЮ ГРАФИЧЕСКОЙ РАБОТЫ

Задание. В качестве задания студент получает схему электрическую принципиальную изделия, которая правильно отражает составные части изделия, электрические процессы, протекающие в нем, но требует оформления в соответствии с ГОСТ ЕСКД.

Вычерчивание схемы по предложенному заданию рекомендуется выполнять в такой последовательности:

1. Компоновка листа. На формате A3 чертежной бумаги, расположенном горизонтально, провести рамку, выделить место для основной надписи и перечня элементов.

На оставшемся поле формата расположить схему так, чтобы расстояния от ее границ до рамки формата были одинаковыми. Условные графические изображения элементов должны быть равномерно распределены в пределах схемы.

2. Вычертить схему с наименьшим количеством изломов и пересечений линий электрической связи.

3. Вычертить последовательно или параллельно соединенные одинаковые элементы.

4. Присвоить элементам буквенно-цифровые обозначения.

5. Выполнить таблицу входных и выходных цепей.

6. Выполнить таблицу перечня элементов.

7. Заполнить основную надпись.

8. Схему, выполненную в тонких линиях, представить преподавателю для проверки. При правильном выполнении схемы преподаватель дает разрешение на оформление схемы, ставит подпись в графе «Провер.».

9. Оформление схемы. Исправить ошибки и обвести схему. После этого представить схему преподавателю для окончательной проверки.

Условные обозначения в различных электрических схемах

Чтение электрических схем необходимый навык для представления работы электрических сетей, узлов, а также различного оборудования. Ни один специалист не приступит к монтажу оборудования, до ознакомления с нормативными сопровождающими документами.

Принципиальные электрические схемы позволяют разработчику донести полный доклад об изделии в сжатом виде до пользователя, используя условно графические обозначения (УГО). Чтобы избежать путаницы и брака при сборке по чертежам, буквенно-графические обозначения занесены в единую систему конструкторской документации (ЕСКД). Все принципиальные схемы разрабатываются, и применяются в полном соответствии с ГОСТами (21.614, 2.722-68, 2.763-68, 2.729-68, 2.755-87). В ГОСТе описываются элементы, приводится расшифровка значений.

Схема

Чтение чертежей

Принципиальная электрическая схема показывает все элементы, детали и сети, входящие в состав чертежа, электрические и механические связи. Раскрывает полную функциональность системы. Всем элементам любой электрической схемы соответствуют обозначения, позиционированные в ГОСТе.

К чертежу прилагается перечень документов, в котором прописываются все элементы, их параметры. Компоненты указываются в алфавитном порядке, с учетом цифровой сортировки. Перечень документов (спецификация) указывается на самом чертеже, либо выносится отдельными листами.

Порядок изучения чертежей

Как читать электрические схемы правильно и понимать представленную на чертеже информацию? Достаточно уметь ориентироваться в условно-графических обозначениях ГОСТа, это основа каждого разработанного проекта.

Сначала определяют тип чертежа. Согласно по ГОСТ 2.702-75, каждому графическому документу соответствует индивидуальный код. Все электрические чертежи имеют буквенное обозначение «Э» и соответствующее цифровое значение от 0 до 7. Электрической принципиальной схеме соответствует код «Э3».

Схема 2

Чтение принципиальной схемы:

  • Визуально ознакомится с представленным чертежом, обратить внимание на указанные примечания и технические требования.
  • Найти на схематическом изображении все компоненты, указанные в перечне документа;
  • Определить источник питания системы и род тока (однофазный, трехфазный);
  • Найти основные узлы, и определить их источник электропитания;
  • Ознакомится с элементами и устройствами защиты;
  • Изучить способ управления, обозначенный на документе, его задачи и алгоритм действий. Понять последовательность действий устройства при запуске, остановке, коротком замыкании;
  • Анализировать работу каждого участка цепи, определить основные составляющие, вспомогательные элементы, изучить техническую документацию перечисленных деталей;
  • На основе изученных данных документа, сделать вывод о процессах, протекающих в каждом звене цепи, представленной на чертеже.

Зная последовательность действий, буквенно-графические обозначения, можно прочитать любую электрическую схему.

Буквенные обозначения

Графические обозначения

Принципиальная схема имеет две разновидности — однолинейная и полная. На однолинейной чертят только силовой провод со всеми элементами, если основная сеть не отличается индивидуальными дополнениями от стандартно принятой. Нанесенные на линию провода две или три косые черты, обозначают однофазную или трехфазную сеть, соответственно. На полной чертят всю сеть и проставляют общепринятые условные обозначения в электрических схемах.

Однолинейная электрическая принципиальная схема, однофазная сеть

Однолинейная принципиальная электрическая схема

Виды и значение линий

  1. Тонкая и толстая сплошные линии — на чертежах изображает линии электрической, групповой связи, линии на элементах УГО.
  2. Штриховая линия — указывает на экранирование провода или устройств; обозначает механическую связь (мотор — редуктор).
  3. Тонкая штрихпунктирная линия — предназначается для выделения групп из нескольких компонентов, составляющих частей устройства, либо систему управления.
  4. Штрихпунктирная с двумя точками — линия разъединительная. Показывает развертку важных элементов. Указывает на удаленный от устройства объект, связанный с системой механической или электрической связью.

Линии

Сетевые соединительные линии показывают полностью, но согласно стандартам, их допускается обрывать, если они являются помехой для нормального понимания схемы. Обрыв обозначают стрелками, рядом указывают основные параметры и характеристики электрических цепей.

Жирная точка на линиях указывает на соединение, спайку проводов.

Электромеханические составляющие

Схематическое изображение электромеханических звеньев и контактов

Контактные соединения

А — УГО катушки электромеханического элемента (магнитный пускатель, реле)

В — тепловое реле

С — катушка прибора с механической блокировкой

D — контакты замыкающие (1), размыкающие (2), переключающие (3)

F — обозначение выключателя (рубильника)на электрической схеме УГО некоторых измерительных приборов. Полный список этих элементов приведен в ГОСТе 2.729 68 и 2.730 73.

Элементы электрических цепей, приборы

Измерительные приборы

Номер на рисунке Описание Номер на рисунке Описание
1 Счетчик учета электроэнергии 8 Электролитический конденсатор
2 Амперметр 9 Диод
3 Вольтметр 10 Светодиод
4 Датчик температуры 11 Диодная оптопара
5 Резистор 12 Изображение транзистора npn
6 Реостат (переменный резистор) 13 Плавкий предохранитель
7 Конденсатор

УГО реле времени, кнопки, выключатели, концевые выключатели, часто используют при разработке схем электропривода.

Реле

Схематическое изображение плавкого предохранителя. При чтении электрической схемы следует внимательно учитывать все линии и параметры чертежа, чтобы не спутать назначение элемента. Например, предохранитель и резистор имеют незначительные отличия. На схемах силовая линия изображается проходящей через предохранитель, резистор чертится без внутренних элементов.

Предохранитель

Изображение автоматического выключателя на полной схеме

Контактный коммутационный аппарат. Служит автоматической защитой электрической сети от аварий, короткого замыкания. Приводится в действие механическим, либо электрическим способом.

Автоматический выключатель полная схема

Автоматический выключатель на однолинейной схеме

Автоматический выключатель

Трансформатор представляет собой стальной сердечник с двумя обмотками. Бывает одно и трехфазный, повышающий и понижающий. Также подразделяется на сухой и масляный, в зависимости от способа охлаждения. Мощность варьируется от 0.1 МВА до 630 МВА (в России).

Трансформатор

 

Обозначение трансформаторов тока на полной (а) и однолинейной (в) схеме

Трансформатор полной и однолинейной схемы

Графическое обозначение электрических машин (ЭМ)

Электрические моторы, зависит от вида, способны не только потреблять энергию. При разработке промышленных систем, используют моторы, которые при отсутствии нагрузки генерируют энергию в сеть, тем самым сокращая затраты.

А — Трехфазные электродвигатели:

1 — Асинхронный с короткозамкнутым ротором

2 — Асинхронный с короткозамкнутым ротором, двухскоростной

3 — Асинхронный с фазным ротором

4 — Синхронные электродвигатели; генераторы.

В — Коллекторные электродвигатели постоянного тока:

1 — с возбуждением обмотки от постоянного магнита

2 — Электрическая машина с катушкой возбуждения

В связке с электромоторами, на схемах показаны магнитные пускатели, устройства мягкого пуска, частотный преобразователь. Эти устройства служат для запуска электрических моторов, бесперебойной работы системы. Последние два элемента уберегают сеть от «просадки» напряжения в сети.

УГО магнитного пускателя на схеме

Схема 3

Переключатели выполняют функцию коммутационного оборудования. Отключают и включают в работу определенные участки сети, по мере необходимости.

Графические обозначения в электрических схемах механических переключателей

Переключатели

Условные графические обозначения розеток и выключателей в электрических схемах. Включают в разработанные чертежи электрификации домов, квартир, производств.

Розетки

Обозначения одноклавишных и двухклавишных выключателей

Звонок на электрической схеме по стандартам УГО с обозначенным размером

Размер кнопки звонка

Размеры УГО в электрических схемах

На схемах наносят параметры элементов, включенных в чертеж. Прописывается полная информация об элементе, емкость, если это конденсатор, номинальное напряжение, сопротивление для резистора. Делается это для удобства, чтобы при монтаже не допустить ошибку, не тратить время на вычисление и подборку составляющих устройства.

Иногда номинальные данные не указывают, в этом случае параметры элемента не имеют значения, можно выбрать и установить звено с минимальным значением.

Принятые размеры УГО прописаны в ГОСТах стандарта ЕСКД.

Размер 1 Размер 2 Размер 3 Размер 4
Размер 5 Размер кнопки звонка Размер 6 Размер 7

Размеры в ЕСКД

Размеры графических и буквенных изображений на чертеже, толщина линий не должны отличаться, но допустимо их пропорционально изменять в чертеже. Если в условных обозначениях на различных электрических схемах ГОСТ, присутствуют элементы, не имеющие информации о размерах, то эти составляющие выполняют в размерах, соответствующих стандартному изображению УГО всей схемы.

УГО элементов, входящих в состав основного изделия (устройства) допускается чертить меньшим размером в сравнении с другими элементами.

Буквенные обозначения

Наряду с УГО для более точного определения названия и назначения элементов, на схемы наносят буквенное обозначение. Это обозначение используют для ссылок в текстовых документах и для нанесения на объект. С помощью буквенного обозначения определяют название элемента, если этого не понятно из чертежа, технические параметры, количество.

Дополнительно с буквенным обозначением указывается одна или несколько цифр, обычно они поясняют параметры. Дополнительный буквенный код, указывающий номинал, модель, дополнительные данные прописывается в сопутствующих документах, либо выносится в таблицу на чертеже.

Чтобы научиться читать электрические схемы не обязательно знать наизусть все буквенные обозначения, графические изображения различных элементов, достаточно ориентироваться в соответствующих ГОСТах ЕСКД. Стандарт включает в себя 64 документа ГОСТ, которые раскрывают основные положения, правила, требования и обозначения.

Основные обозначения, применяемые на схемах согласно стандарту ЕСКД, приведены в Таблице 1 и 2.

Как начертить электрическую схему в компасе

КОМПАС-3D — любимый инструмент сотен тысяч инженеров- конструкторов и проектировщиков в России и многих других странах. Всенародное признание ему обеспечили мощный функционал, простота освоения и работы, поддержка российских стандартов, широчайший набор отраслевых приложений. В данной статье мы научимся рисовать электрические схемы в этой программе. Прежде всего, Вам нужно скачать саму программу и библиотеки к ней. На данный момент версий программы не мало, я по старинке, пользуюсь 10 версией, уже давно вышла 13я. Библиотеки можете скачать сами, какие хотите, но в конце статьи в архиве прикреплена та версия библиотеки, с которой мы и будем работать, папка эта называется ESKW.

Часть 1. Запуск и настройка программы.

После того как установили программу, запустим ее, выйдет окно приветствия, а затем следующее окно, где нам нужно будет выбрать тип документа, в котором и будем работать:

Выбираем создать «Чертеж», откроется документ по умолчанию формата А4.

Если схема, которую Вы будете рисовать объемная, то лучше поменять формат листа, скажем на А3 и лист расположить горизонтально. Для этого идем в меню СЕРВИС -> МЕНЕДЖЕР ДОКУМЕНТА, меняем настройки, затем сохраняем и закрываем окошко.

Для комфортной работы, советую проделать еще следующие настройки, заходим в меню СЕРВИС -> ПАРАМЕТРЫ -> ТЕКУЩЕЕ ОКНО -> ЛИНЕЙКА ПРОКРУТКИ. Ставим галочки на горизонтальной и вертикальной линейках:

Далее, загружаем библиотеку ESKW, качаем архив в конце статьи, распаковываем, и копируем ее в корень папки, куда установлена программа КОМПАС. Затем жмем СЕРВИС -> МЕНЕДЖЕР БИБЛИОТЕК, на нижней части программы появятся столбцы, на одной из папок нажимаем правую кнопку мыши и выбираем ДОБАВИТЬ ОПИСАНИЕ -> ПРИКЛАДНОЙ БИБЛИОТЕКИ.

В появившемся окошке, находим папку ESKW, которую Вы распаковали и скопировали в корень папки с программой, заходим в эту папку и выбираем файл с названием «eskw», жмем ОТКРЫТЬ.

В списке библиотек внизу программы появится новая библиотека, ставим галочку на ней и открываем эту библиотеку, при запуске библиотеки выйдет сообщение, не читая ее нажимаем ОК.

Выйдет вот такое окошко, где мы и будет выбирать нужные нам радиодетали: резисторы, конденсаторы, диоды и пр. Это окошко не закрываем, можно просто свернуть.

На этом настройка и подготовка программы к работе завершены, теперь можно приступать к рисованию схемы.

Часть 2. Рисование схемы.

Итак, готовое для работы окно программы должно выглядеть следующим образом:

Давайте нарисуем схему простого блока питания, начнем с трансформатора, в библиотеке выбираем нужный нам элемент, а именно трансформатор (магнитоэлектрический), далее кликаем появившимся символом на лист, чтобы закрепить его. Масштабировать (увеличивать или уменьшать размер) лист можно колесиком мышки, отменить действие можно кнопкой ESC на клавиатуре. Чтобы удалить закрепленный элемент с листа, просто кликаем на него и нажимаем на клавиатуре кнопку Delete.

Далее, нам нужно нарисовать диодный мост, и соединить его с трансформатором, закрываем окошко библиотеки с трансформаторами, т.к. оно нам больше не понадобится, и кликаем в библиотеке на символ диода, в списке диодов выбираем диодный мост. Кстати, когда мы выбираем элемент, над элементом появляется еще одно окошко (Параметры отрисовки), где можно выбранный элемент поворачивать, зеркалить и т.д.

После того как закрепили диодный мост, нам нужно соединить его с трансформатором, для этого с левой стороны программы нажимаем на символ ГЕОМЕТРИЯ (кружочек с треугольником), находится на самом верху, и ниже выбираем символ ОТРЕЗОК . Соединяем от точки к точке, должно получиться нечто подобное:

После, в окошке с библиотекой выбираем конденсатор электролитический полярный, поворачиваем его нужным образом и закрепляем на листе. Затем соединяем эти элементы линиями, для этого снова нажимаем на кнопку ОТРЕЗОК. Чтобы точнее состыковывать две линии между собой, масштаб лучше увеличить, кстати, закрепленную на листе линию можно удлинять и укорачивать, так же, как например в программе Sprint Layout.

У большинства элементов из библиотеки вывода короткие, их нужно удлинять с помощью кнопки ОТРЕЗОК. Элементы из библиотеки можно разрушать и объединять в макроэлемент, то есть группировать. После того как закрепили конденсатор, и соединили все элементы между собой линиями, можно нарисовать соединители, а к трансформатору, последовательно одной из первичных обмоток, можно нарисовать предохранитель, а после соединительную вилку.

Что касается соединительный линий, тип линии можно выбирать в нижней части программы, естественно при нажатой кнопке ОТРЕЗОК.

Выбираем пунктирную линию и дорисовываем вилку после трансформатора.

После того как нарисовали схему, можно приступить к узлам соединения, это такие круглые точки, на местах соединения элементов. В библиотеке нажимаем на элемент КОРПУС – ЗАЗЕМЛЕНИЕ. СОЕДИНЕНИЯ -> УЗЕЛ СОЕДИНЕНИЯ.

И приступаем к расставлению точек, точки в этой схеме нам нужно поставить только на выводах конденсатора.

Ну вот и все, наша схема почти готова, только вот чего то не хватает, все верно — надписей! Чтобы писать слова и обозначения на схеме, находим слева в столбике кнопку ОБОЗНАЧЕНИЯ , она обычно третья сверху и нажимаем на нее, чуть ниже в этом же столбике обновятся кнопки, находим там кнопку с рисунком Т , после того как нажали на кнопку Т, кликаем на лист, и пишем текст. После закрепления все символы, в том числе и текст легко перетаскивается в любое место.

Шрифт как Вы наверное уже поняли, меняется в нижней части программы при нажатой кнопке Т (ввод текста).

Схема готова, теперь можно ее распечатать!

Вообще говоря, программа не сложная, интуитивно понятная и легко осваиваемая. Если вы когда нибудь работали скажем с программой Sprint Layout, то и с этой програмой вы очень быстро разберетесь.

Что касается сохранений документов, рекомендую сохранять через кнопку «СОХРАНИТЬ КАК» и в списке выбрать программу компас 9 версии, потому что с другими форматами могут возникнуть проблемы, а если сохраните файл в виде картинки, пропадет возможность редактирования файла, и схему придется рисовать заного.

Перед тем как выйти из программы, нужно закрыть библиотеку, иначе будет программа ругаться:

Когда осваивал программу, я не понимал из за чего выходила эта ошибка, оказалось что я свернул окошко с библиотекой и не заметил его.

2.2Проектирование электрической схемы

При построении нового чертежа необходимо перейти по вкладкам Файл


Создать
и в появившемся окне «Новый документ», показанном на рисунке 1, выбрать команду
Чертеж

Рисунок 2 – Вид окна «Новый документ»

В рабочей области появится окно с листом и рамкой формата А4, показанное на рисунке 2.

Рисунок 3 – Вид окна с листом и рамкой, формата А4

Если схема, которую Вы будете рисовать объемная, то лучше поменять формат листа, скажем на А3 и лист расположить горизонтально. Для этого идем в меню СЕРВИС -> МЕНЕДЖЕР ДОКУМЕНТА, меняем настройки, затем сохраняем и закрываем окошко.

Рисунок 4-Выбор формата листа

После нажатия кнопки Ok, формат и положение листа изменятся.

Открываем программу Компас 3D, находим во вкладке

Библитека -> Библиотека проектирования схем ЭС ->Каталог->Элементы электротехнических устройств ,затем выбираем нужный нам элемент и вставляем в лист .Аналогичное действие повторяем для всех элементов.

Конденса́тор

— двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

Рисунок 5 – Конденсатор

Дроссель электрический

— катушка индуктивности, обладающая высоким сопротивлением переменному току и малым сопротивлением постоянному. Обычно включается в электрическую цепь постоянного тока для подавления или ограничения переменной составляющей и пульсаций тока. Дроссели обычно имеют сердечник (электротехническая сталь или феррит). Применяются преимущественно в фильтрах узлов электропитания.

Рисунок 6 – Дроссель электрический

Разъединитель

– это аппарат, предназначенный для создания видимого разрыва между частями электроустановки, оставшимися под напряжением и аппаратами, выведенными в ремонт, а также заземления отключенных участков при помощи заземляющих ножей.

Разъединитель способен размыкать и замыкать цепь при малом токе или малом изменении напряжения на выводах каждого из его полюсов. Он также способен проводить токи при нормальных условиях в цепи и проводить в течение нормированного времени токи при ненормальных условиях, таких как короткое замыкание.

Малые токи — это такие токи, как емкостные токи вводов, шин, соединений, очень коротких кабелей, токи постоянно соединенных ступенчатых сопротивлений выключателей и токи трансформаторов напряжения и делителей. Для номинальных напряжений до 330 кВ включительно ток, не превышающий 0,5 А, считается малым током по этому определению; для номинального напряжения от 500 кВ и выше и токов, превышающих 0,5 А, необходимо проконсультироваться с изготовителем, если нет особых указаний в руководствах по эксплуатации разъединителей.

К малым изменениям напряжения относятся изменения напряжения, возникающие при шунтировании регуляторов индуктивного напряжения или выключателей.

Для разъединителей номинальным напряжением от 110 кВ и выше может быть установлена коммутация уравнительных токов.

Рисунок 7 — Разъединитель

Трансформатор (измеритель) тока

имеет высокую точность, отличную термостабильность и стандартный двухпроводной аналоговый выход 4-20 мА с винтовым клеммным подсоединением.

Провод с измеряемым током пропускается (желательно перпендикулярно) через отверстие бесконтактного трансформатора. Для увеличения чувствительности допускается пропускать провод несколько раз (витками) , при этом чувствительность увеличивается во столько раз, сколько раз провод проходит через отверстие — так, например, полный виток дает увеличение чувствительности в два раза.

Рисунок 8 – Трансформатор измерителя тока(в общем виде)

Выключатель

— это электротехническое устройство, предназначенное для ограничения силы тока в электрических цепях. Выключатель защищает устройства, подключенные последовательно к нему от повреждения электрическим током, при этом, устройством является всякое электротехническое изделие, через которое, последовательно c выключателем автоматическим, протекает электрический ток. Защищаемыми электротехническими изделиями являются как бытовые приборы и другие устройства защиты, так и сами провода и кабели, на бытовом уровне называемые электропроводкой. В основном выключатели служат для защиты электрических цепей от перегрузок и короткого замыкания.

Рисунок 9 – Выключатель

Рисунок 10- Повторение элементов схемы

— электрический аппарат, предназначенный для ограничения перенапряжений в электротехнических установках и электрических сетях. Первоначально разрядником называли устройство для защиты от перенапряжений, основанный на технологии искрового промежутка. Затем, с развитием технологий, для ограничения перенапряжений начали применять устройства на основе полупроводников и металл-оксидных варисторов, применительно к которым продолжают употреблять термин «разрядник».

Черчение схем в программе КОМПАС-3D

КОМПАС-3D — любимый инструмент сотен тысяч инженеров- конструкторов и проектировщиков в России и многих других странах. Всенародное признание ему обеспечили мощный функционал, простота освоения и работы, поддержка российских стандартов, широчайший набор отраслевых приложений. В данной статье мы научимся рисовать электрические схемы в этой программе. Прежде всего, Вам нужно скачать саму программу и библиотеки к ней. На данный момент версий программы не мало, я по старинке, пользуюсь 10 версией, уже давно вышла 13я. Библиотеки можете скачать сами, какие хотите, но в конце статьи в архиве прикреплена та версия библиотеки, с которой мы и будем работать, папка эта называется ESKW.
Часть 1. Запуск и настройка программы.

После того как установили программу, запустим ее, выйдет окно приветствия, а затем следующее окно, где нам нужно будет выбрать тип документа, в котором и будем работать:

Выбираем создать «Чертеж», откроется документ по умолчанию формата А4.

Если схема, которую Вы будете рисовать объемная, то лучше поменять формат листа, скажем на А3 и лист расположить горизонтально. Для этого идем в меню СЕРВИС -> МЕНЕДЖЕР ДОКУМЕНТА, меняем настройки, затем сохраняем и закрываем окошко.

Для комфортной работы, советую проделать еще следующие настройки, заходим в меню СЕРВИС -> ПАРАМЕТРЫ -> ТЕКУЩЕЕ ОКНО -> ЛИНЕЙКА ПРОКРУТКИ. Ставим галочки на горизонтальной и вертикальной линейках:

Далее, загружаем библиотеку ESKW, качаем архив в конце статьи, распаковываем, и копируем ее в корень папки, куда установлена программа КОМПАС. Затем жмем СЕРВИС -> МЕНЕДЖЕР БИБЛИОТЕК, на нижней части программы появятся столбцы, на одной из папок нажимаем правую кнопку мыши и выбираем ДОБАВИТЬ ОПИСАНИЕ -> ПРИКЛАДНОЙ БИБЛИОТЕКИ.

В появившемся окошке, находим папку ESKW, которую Вы распаковали и скопировали в корень папки с программой, заходим в эту папку и выбираем файл с названием «eskw», жмем ОТКРЫТЬ.

В списке библиотек внизу программы появится новая библиотека, ставим галочку на ней и открываем эту библиотеку, при запуске библиотеки выйдет сообщение, не читая ее нажимаем ОК.

Выйдет вот такое окошко, где мы и будет выбирать нужные нам радиодетали: резисторы, конденсаторы, диоды и пр. Это окошко не закрываем, можно просто свернуть.

На этом настройка и подготовка программы к работе завершены, теперь можно приступать к рисованию схемы.

Часть 2. Рисование схемы.

Итак, готовое для работы окно программы должно выглядеть следующим образом:

Давайте нарисуем схему простого блока питания, начнем с трансформатора, в библиотеке выбираем нужный нам элемент, а именно трансформатор (магнитоэлектрический), далее кликаем появившимся символом на лист, чтобы закрепить его. Масштабировать (увеличивать или уменьшать размер) лист можно колесиком мышки, отменить действие можно кнопкой ESC на клавиатуре. Чтобы удалить закрепленный элемент с листа, просто кликаем на него и нажимаем на клавиатуре кнопку Delete.

Далее, нам нужно нарисовать диодный мост, и соединить его с трансформатором, закрываем окошко библиотеки с трансформаторами, т.к. оно нам больше не понадобится, и кликаем в библиотеке на символ диода, в списке диодов выбираем диодный мост. Кстати, когда мы выбираем элемент, над элементом появляется еще одно окошко (Параметры отрисовки), где можно выбранный элемент поворачивать, зеркалить и т.д.

После того как закрепили диодный мост, нам нужно соединить его с трансформатором, для этого с левой стороны программы нажимаем на символ ГЕОМЕТРИЯ

(кружочек с треугольником), находится на самом верху, и ниже выбираем символ ОТРЕЗОК . Соединяем от точки к точке, должно получиться нечто подобное:

После, в окошке с библиотекой выбираем конденсатор электролитический полярный, поворачиваем его нужным образом и закрепляем на листе. Затем соединяем эти элементы линиями, для этого снова нажимаем на кнопку ОТРЕЗОК. Чтобы точнее состыковывать две линии между собой, масштаб лучше увеличить, кстати, закрепленную на листе линию можно удлинять и укорачивать, так же, как например в программе Sprint Layout.

Начинаем проектирование в КОМПАС-Электрик

Сегодня неотъемлемой частью комплекса КОМПАС является специализированное приложение для автоматизированного проектирования электрооборудования КОМПАС-Электрик . Оно работает под управлением системы КОМПАС-3D и применяется при разработке любых объектов, в которых для выполнения электрических связей используется проводной монтаж. Это и низковольтные комплектные устройства (НКУ), и системы релейной защиты и автоматики (РЗА), и АСУ технологических процессов, и многое другое. Систему можно применять в проектных институтах, конструкторских бюро и отделах, которые проектируют электроприводы и различное нестандартное оборудование.

По нашему мнению, процесс проектирования электрооборудования «сверху вниз», то есть «от принципиальной электрической схемы», является наиболее правильным. Такой порядок действий позволяет автоматически получать все «нижестоящие» документы: таблицы и схемы соединений, перечни элементов, ведомости покупных изделий, спецификации и другие отчеты. При этом в системе КОМПАС-Электрик можно вести проектирование не только в вышеуказанной последовательности, но и в свободном порядке. Правда, степень автоматизации в таком случае существенно снижается.

Компоновка стандартных элементов на панели с использованием команд создания массивов

Выбор стандартных крепежных элементов из библиотеки

Электрические устройства чаще всего состоят из стандартных элементов, применяемых во множестве изделий. Создание и накопление базы по таким элементам — одна из первоочередных задач, поскольку наличие такой базы существенно ускоряет процесс проектирования. Стандартные средства КОМПАС-Электрик и КОМПАС-3D позволяют создавать собственные базы данных (библиотеки компонентов) без использования программирования.

Библиотечные элементы, в качестве которых могут использоваться как отдельные детали, так и сборки, можно делать параметрическими. Параметризация совместно с механизмом работы с переменными дает возможность создавать группы однотипных деталей, различающихся определенными параметрами. При создании библиотеки средствами КОМПАС-3D очень полезно сразу же, непосредственно в файле детали (подсборки), создать соответствующий объект спецификации .

Это несложное действие решает сразу несколько проблем — при вставке компонента в сборку не надо помнить, включили мы его в спецификацию или нет, а также то, сколько раз этот компонент использован (при вставке других точно таких же изделий КОМПАС-3D просто просуммирует их количество). Заполнение баз данных в приложении КОМПАС-Электрик ведется с помощью специальных помощников — Мастеров сохранения.

Полученная трехмерная модель платы (и панель с командами конвертора)

Размещение печатной платы в устройстве

Ход выполнения проекта электротехнической части изделия оптимизируется с помощью специального Менеджера проектов . При этом в состав проекта можно включать не только документы, созданные непосредственно в КОМПАС-Электрик, но и любые другие документы КОМПАС-3D. По завершении проектирования всех схем и таблиц, а также предварительного размещения компонентов на рабочих поверхностях будущего изделия можно приступить к трехмерной компоновке.

КОМПАС-Электрик — изучаем вместе

Анатолий Астратов, Лев Теверовский

В предыдущей части статьи (№ 8’2004) мы рассматривали основные функции построения принципиальных схем. В этой статье мы познакомимся с процедурами выпуска остальных документов проекта.

Итак, после разработки принципиальной схемы или же сразу после определения исходных данных проекта (комплектующих изделий) в системе КОМПАС-Электрик можно сформировать перечень элементов (ПЭ), причем этот перечень элементов можно выпустить как на все комплектующие изделия проекта, так и на те, которые присутствуют в конкретной схеме проекта, то есть ПЭ может формироваться к любой электрической схеме проекта (рис. 1).

Рис. 1. Фрагмент перечня элементов

Перечень элементов создается в автоматическом режиме и не требует участия пользователя в этом процессе. Все данные для его заполнения система получает из проекта и базы данных комплектующих (БДК). Одинаковые типы комплектующих изделий автоматически суммируются или группируются.

Ведомость покупных изделий (ВП) (как и перечень элементов), формируется в автоматическом режиме (рис. 2). ВП создается на весь проект, и в нее попадают только те изделия, которые в базе данных имеют соответствующий признак — «покупной».

Рис. 2. Фрагмент ведомости покупных изделий

Электрическая схема расположения (Э7) показывает относительное расположение электротехнических изделий на несущих поверхностях. Проектировщики иногда называют ее общим видом. Все изображения каждого типа аппаратов (проекционные виды) прочитываются из базы данных, а пользователю остается всего лишь указать их месторасположение на несущей конструкции. Оформление чертежа (простановка размеров, нанесение технических требований и т.п.) осуществляется мощными средствами системы КОМПАС-График. В результате этого конструктор может получить не просто схему расположения аппаратов на поверхности, а полноценный сборочный чертеж, оформленный по всем правилам соответствующих стандартов (рис. 3).

Рис. 3. Фрагмент сборочного чертежа панели пульта управления

КОМПАС-Электрик позволяет сформировать спецификацию на сборочный чертеж — схему расположения, что осуществляется следующим образом:

• указываем на чертеже аппарат, а затем вызываем команду формирования записи спецификации, которая автоматически формирует запись спецификации, составленную по рекомендации базы данных системы;

• выполняем необходимые корректировки записи и подтверждаем завершение ее формирования. Записи спецификации для объектов, которые не являются электротехническими изделиями, формируются средствами КОМПАС-График;

• после подготовки данных спецификация для сборочной единицы формируется автоматически.

По схеме расположения КОМПАС-Электрик автоматически формирует чертеж разметки поверхности, на котором показываются отверстия для установки и крепления аппаратов, обрабатываемые на несущих поверхностях: плитах, щитах, панелях, крышках и т.п. (рис. 4). Шаблоны крепежа для этих аппаратов система получает из базы данных.

Рис. 4. Фрагмент чертежа доработки панели пульта под установку кнопок

Имея в наличии принципиальную схему (Э3) и схему расположения (Э7), система предоставляет возможность сформировать в автоматическом режиме схему соединений (Э4) (рис. 5). Таким образом, система вставляет монтажный вид аппарата, взятый из базы данных, в реальные координаты, полученные из схемы расположения. Возле выводов обозначений отображаются адресные ссылки.

Рис. 5. Фрагмент схемы соединений панели пульта

При необходимости на схему можно нанести линии электрической связи, показав тем самым трассы прокладки проводов. Во время построения линий связи система в динамическом режиме подсвечивает точки подключения на монтажном виде аппарата. При этом, в зависимости от ситуации, цвет точки изменяется (красный/зеленый), что в значительной мере облегчает эту процедуру:

• сразу после вызова команды на монтажных видах подсвечиваются зеленым цветом те точки подключения, которые имеют подключение в принципиальной схеме, а красным — те, которые такого подключения не имеют;

• после того как начальная точка линии связи зафиксирована в точке подключения, на монтажных видах подсвечиваются зеленым цветом только те точки подключения, которые подключаются к этому же потенциальному узлу.

При отсутствии схемы расположения расстановка монтажных видов в схеме соединений может выполняться в ручном режиме: пользователь выбирает из перечня позиционных обозначений аппаратов то, которое нужно вставить в чертеж, а система подгружает из базы данных монтажный вид аппарата, соответствующий конкретному примененному в проекте типу, и располагает его на поле чертежа.

Вместо схемы соединений (подключения (Э4), общей (Э6)) либо в дополнение к ней может быть выпущена таблица соединений (подключения — ТС4, общая — ТС6). Таблица формируется автоматически по исходным данным, хранящимся в проекте (рис. 6). Форма таблиц при необходимости может быть изменена.

Мы рассказали о рекомендуемой системой последовательности выпуска документов проекта, при соблюдении которой обеспечивается наивысший уровень автоматизации. Но это не означает, что на практике от этой последовательности нельзя отступать: в любой момент временно может выпускаться какой угодно документ проекта, но при этом пользователь теряет в скорости работы и в степени автоматизации.

Рис. 6. Фрагмент таблицы соединений панели пульта

Кроме того, здесь были приведены примеры документов для одной монтажной единицы проекта — панели пульта. В реальном же режиме работы на каждый электрический узел проектируемого изделия может быть выпущен соответствующий набор документов. Количество документов одного типа в проекте не ограничено.

Помимо перечисленных типов документов в проект КОМПАС-Электрик можно включать любые таблично-текстовые документы, фрагменты и чертежи, созданные средствами КОМПАС-График, что обеспечивает централизованное хранение всех документов проекта.

На этом мы завершаем описание работы пользователя в системе КОМПАС-Электрик. Однако в дальнейшем мы обещаем информировать читателей о новинках и о функциональном развитии этой системы.

«САПР и графика» 10’2004

Компоновка панелей

Трехмерная компоновка панелей производится с помощью стандартных функций по работе со сборками КОМПАС-3D. Созданные ранее стандартные детали извлекаются из библиотеки и с помощью механизма сопряжений размещаются на предварительно созданной несущей конструкции (панели, стойке, щите и т.п.).

В случае, если одинаковых элементов много и они расположены в определенном порядке, можно воспользоваться одной из команд создания массивов — по сетке , вдоль кривой, по образцу (образцом может служить любой из уже созданных массивов — в данном случае массив отверстий в плате).

С крепежными изделиями ситуация еще проще — при вставке из стандартной библиотеки крепежа нам достаточно указать отверстие, в котором размещается крепеж, и торцевую поверхность, по которой крепеж будет выровнен. Как уже отмечалось, спецификация в этот момент формируется автоматически.

Сборочный чертеж платы и спецификация на плату

Принципиальная электрическая схема и перечень элементов схемы

Рисуем принципиальную схему в редакторе MS Word

Нарисовать простую принципиальную электрическую схему просто. Для этого не надо устанавливать никаких дополнительных программ. Скачав шаблон для редактора MSOffice Word вы сможете с легкостью нарисовать свою схему прямо в редакторе Word.

Для начала рисования необходим выполнить небольшие настройки.

Скачайте архив шаблона . Скаченный архив необходимо разархивировать. Файл Normal.dot можно сохранить к шаблонам офиса или открывать из произвольного места.

Два раза кликните по файлу Normal.dot или откройте его в редакторе Word. В шаблоне используются макросы, поэтому если антивирус или сам редактор выдаст предупреждение, о том что в шаблоне есть макросы — их необходимо разрешить.

Меню НАДСТРОЙКА в редакторе.

Выбор элементов принципиальной схемы. В панели инструментов есть кнопка настройки сетки документа к которым можно «привязывать» элементы схемы.

Кто хоть уже умеет работать в текстовом редакторе Microsoft Word будет совсем не трудно нарисовать свою принципиальную электрическую схему. Для этого необходимо выбрать нужный элемент из библиотеки, кликнуть на него, после чего он появиться в нашем документе. Останется расположить нужные элементы на рабочем листе, добавить провода и соединить места соединения схемы и наша схема готова! Не забываете пользоваться стандартными инструментами программы: линии, точки, круги и прочее что уже предусмотрено было самой программой Word.

  • нет необходимости устанавливать специальную программу рисования электрических схем;
  • простота рисования несложных электрических схем;
  • возможность экспортирования схемы в форматы pdf, html.
  • сложность создания электрических схем по ГОСТ;
  • при открытии файла со схемой в других версиях Word возможно нарушения форматирования документа;
  • небольшой набор компонентов для рисования электрических схем.

Работа с печатными платами

Как указано на схеме состава изделия, в нем могут быть представлены не только отдельные электротехнические компоненты, но и встроенные устройства на базе плат печатного монтажа — например различные системы управления или контроля параметров, усилители, датчики и многое другое. Для их разработки предприятиям необходимо иметь и электронную САПР. Кроме того, необходимы программы-конверторы для передачи данных из одной системы проектирования в другую. Причем эти конверторы должны быть одновременно и достаточно простыми для пользователя, и достаточно «умными» для обеспечения высокого уровня интеграции используемых систем. АСКОН предлагает своим заказчикам (среди них — крупнейшие приборостроительные фирмы России и ближнего зарубежья, а также известные предприятия авиакосмического комплекса, разрабатывающие электронное оборудование) собственный модуль выпуска текстовой конструкторской документации и трехмерных моделей печатных плат на основе данных, получаемых из электронных САПР. На данный момент поддерживаются три системы: OrCAD от компании Cadence, P-CAD и Protel от компании Altium.

Трехмерная модель печатной платы создается на основе файлов, импортируемых из ECAD-систем. КОМПАС считывает данные и производит построение. Результатами работы конвертора являются трехмерная габаритная сборочная модель печатной платы и библиотека элементов, используемых в сборке.

Полученная плата — обычная 3D-сборка КОМПАС, и дальнейшие действия с ней ничем не отличаются от работы с изделием, созданным непосредственно в системе. Теперь и ее необходимо разместить в трехмерной модели проектируемого нами изделия.

Контур корпуса обрисовывается вокруг заранее созданной компоновки узла. Ассоциативные размеры позволяют корпусу изменять свою геометрию при изменении положения внутренних компонентов

Команда вычитания позволяет автоматически получать вырез в корпусе по форме пересекающего его выключателя

Исходной информацией для создания текстовой документации является отчет BOM (Bill of Materials), который формируют ECAD-системы. Для более полной интеграции с чертежом принципиальной электрической схемы или сборочным чертежом печатной платы необходимо предварительно передать эти чертежи из ECAD в КОМПАС-3D. Для системы P-CAD эта операция наиболее корректно выполняется через формат PDIF. В составе системы КОМПАС-3D для этих целей применяется Библиотека поддержки PDIF : она выполнена как стандартное приложение и запускается из Менеджера библиотек. Из систем OrCAD и Protel графическую информацию можно передавать через формат DXF. После получения чертежа платы и чертежа принципиальной электрической схемы необходимо запустить Текстовый конвертор , выбрать нужный BOM-файл, из которого конвертор считает данные и сформирует спецификацию или перечень элементов. Результатом работы конвертора являются два текстовых документа, причем каждый из них привязан к своему графическому документу: перечень элементов — к схеме электрической принципиальной, а спецификация — к сборочному чертежу платы.

  • для автоматизации проектирования и выпуска комплекта документов (схем и отчётов к ним) на электрооборудование объектов производства, в которых для выполнения электрических связей используется проводной монтаж (низковольтные комплектные устройства (НКУ), системы релейной защиты и автоматики (РЗА), АСУ технологических процессов и т. д.);
  • для автоматизации проектирования комплекта документов на электрооборудование объектов производства с применением программируемых логических контроллеров (ПЛК).

Систему можно применять в институтах, конструкторских бюро и отделах, которые проектируют электроприводы, нестандартное оборудование, разрабатывают проекты электроснабжения в промышленном и гражданском строительстве.

При использовании КОМПАС-Электрик достигаются следующие положительные эффекты:

  • повышается скорость создания и оформления документов проекта: система обладает функциями автоматического формирования большей части документов;
  • повышается качество оформления документов: все графические обозначения электроаппаратов во всех документах проекта приведены к единому представлению, элементы оформления чертежей полностью соответствуют требованиям ЕСКД.

Система состоит из двух основных модулей: Базы данных и Редактора схем и отчетов.

База данных системы содержит комплектующие изделия, применяемые в проектах, а также условные графические обозначения (УГО), используемые при создании схем электрического вида. База данных уже имеет первичное наполнение — около 6000 типоисполнений изделий и около 600 графических обозначений. В любой момент времени в нее можно добавлять новые комплектующие изделия и УГО. База может работать на платформе СУБД Microsoft SQL Server, Microsoft Access, Borland InterBase, Oracle. Также в состав системы входит база данных продукции фирмы Schneider Electric, которая содержит более 1800 комплектующих изделий и их описаний.

Скачать другие базы компонентов можно по ссылке https://sd.ascon.ru/otrs/public.pl?Action=PublicFAQZoom;ItemID=773

В Редакторе схем и отчётов создаются, редактируются, оформляются и выводятся на печать документы проекта. Среди них — Схема электрическая принципиальная (Э3), Схема соединений (Э4), Схема расположения (Э7), Перечни элементов, Спецификации, Таблицы соединений и подключений и многое другое. Для управления проектами и их документами в Редакторе предусмотрен Менеджер проектов. Редактор схем и отчётов функционирует в среде системы КОМПАС-График.

Основные функции КОМПАС-Электрик:

  • вставка УГО из библиотеки в схему, его обработка и выполнение контрольных операций;
  • построение и редактирование линий электрической связи, электрических шин, групповых линий связи;
  • ручная и автоматическая расстановка маркировки проводов;
  • автоматическая расстановка УГО на схеме электрической соединений, схеме подключений и схеме общей;
  • полуавтоматическое формирование технологической карты раскладки проводов;
  • экспорт документов проекта в КОМПАС-График;
  • добавление в проект 3D-моделей и текстовых документов системы КОМПАС;
  • вставка спецсимволов линий связи (экран, кабель, коаксиальный проводник, скрутка и т. п.);
  • оптимизация трасс прокладки проводов;
  • функция централизованной корректировки электрических связей в изделии;
  • автоматическое формирование клеммников по ходу работы над проектом.

Для проектирования эксплуатационной документации на ПЛК используются Редактор моделей и Редактор документации ПЛК. С их помощью осуществляется добавление либо редактирование моделей ПЛК, а также проектирование и расчет данных для эксплуатационной документации на ПЛК.

КОМПАС-Электрик позволяет создавать специфические виды документов для описания работы ПЛК:

  • программа работы ПЛК;
  • схема подключения модулей ПЛК (входов/выходов);
  • тактовая циклограмма;
  • ведомость комплектующих ПЛК;
  • таблица распределения памяти ПЛК;
  • список ошибок в программе работы;
  • журнал учета изменений.

Требует для работы: КОМПАС-3D или КОМПАС-График

Проектирование несущего корпуса

Проектирование корпусных деталей целесообразно осуществлять в контексте сборки, привязываясь к заранее размещенным в сборке компонентам. Очень часто корпуса многих электрических устройств представляют собой деталь, согнутую из листа (из стали или алюминиевых сплавов): для ее создания как нельзя лучше подходит модуль работы с листовым материалом (подробно новый модуль был описан в журнале «САПР и графика» № 7’2004).

Напомним, что создание листовой детали начинается с построения листового тела на основе эскиза с заданием толщины и коэффициента нейтрального слоя. К созданному таким образом телу затем можно добавлять другие элементы листового тела (сгиб, сгиб по линии, пластину, отверстия, замыкания углов) или обычные формообразующие элементы (в том числе фаски, скругления), команду вычитания объектов. Не забудем и о возможности показа листовой детали в развернутом виде. При создании чертежа можно одновременно задавать как развернутые, так и неразвернутые виды детали.

То, что получилось в итоге

Окно системы Интех-РАСКРОЙ W/L

После разработки — изготовление

Выше мы рассказали о проектировании корпуса нашего изделия с помощью модуля Гибка. Получение развертки корпуса — не самоцель. Одной из серьезных технологических задач, решаемых на производстве, является раскрой листов металла на заготовки для последующей гибки. Также очень важна задача разработки управляющих программ для систем ЧПУ раскройных станков. Здесь можно с успехом использовать Интех-РАСКРОЙ W/L — комплекс программ для автоматизированного проектирования карт раскроя, составления управляющих программ и формирования технологической документации. Благодаря этой системе можно повысить коэффициент использования имеющегося на складах листового металла до 95%, поскольку обеспечиваются оптимальное размещение деталей и оптимальные траектории движения инструмента, создаются оптимальные УП для обработки на лазерном, плазменном, кислородном и механическом оборудовании.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *