Какая шкала измерения температуры существует
Перейти к содержимому

Какая шкала измерения температуры существует

  • автор:

Температурные шкалы ⁠ ⁠

Все элементарное просто, но все простое не всегда элементарно. Все мы слышали про различные температурные шкалы, но не все мы знаем, что их на самом деле несколько больше, чем те три, что у всех на слуху. Итак, начнем с самым распространенных, а закончим рассолом.

Шкала Цельсия (Цельсий, Celsius, °C)

Используется в быту, но не везде (вспомним Фаренгейта). 0° — точка замерзания воды, 100° — точка кипения воды при нормальном атмосферном давлении. Придумана Андерсом Цельсием аж в 1742 году.

Шкала Фаренгейта (Фаренгейт, Fahrenheit, °F)

Используется в быту, но не везде, а в основном в Англии и США. Определение ее такое (из Википедии) — это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при нормальном атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Придумал Габриэль Фаренгейт в 1724 году.

Формула перевода в градусы Цельсия:

Температурные шкалы Интересное, Цельсий, Фаренгейт, Температура, Длиннопост, Кельвины

Шкала Кельвина (Кельвин, Kelvin, K)

В быту как-то не очень. Родилась от желания получить шкалу с абсолютным нулем (отсутствием термодинамической энергии).

Названа в честь Уильяма Томсона. Казалось бы — причем здесь Кельвин. А вот Уильям Томсон был Lord Kelvin, вот так вот.

Определил он абсолютный ноль теоретическим путем и было это -273°C. Ну а за один градус был принят градус Цельсия, что сделало перевод между этими двумя шкалами тривиальным. Случилось это в 1848 году.

А в 1954 году на десятой главной конференции мер и весов (Conférence Générale des Poids et Mesures, CGPM) решили, что фиксированной точкой шкалы Кельвина будет тройная точка воды (нашел старенький пост @Chemicat, ), и температура ее будет 273.16K.

Кстати, K пишется без значка градуса с 1968 года после 13 главной конференции, и градус после этой конференции стал 1/273.16 температуры тройной точки воды (ну как бы все равно тот же один градус как у Цельсия получился, только теперь научно).

Шкала Ранкина (Ранкин, Rankine, °Ra)

Абсолютная температурная шкала, тоже самое, что и шкала Кельвина для Цельсия, только для Фаренгейта. То есть размер одного градуса Ранкина совпадает с размером одного градуса Фаренгейта. Была предложена в 1859 году Уильямом Ранкином. Ноль градусов Ранкина это -459.67°F и 0K (ноль градусов Кельвина). Мало что градуируют в абсолютной температурной шкале, и все больше в Кельвинах, конечно. Так англичане (Кельвин) победили шотландцев (Ранкин).

Шкала Делиля (Делиль, Delisle, °De)

Уже давно не используется, но была когда-то. Придумал в 1732 году Жозеф Николя Делиль. Ноль — температура кипения воды, а один градус это минус две трети градуса Цельсия (потому что температура замерзания воды по этой шкале 150°De).

Отсчет положительных значений идет в противоположном направлении таковому у Цельсия.

Вообще, это не очень удивительно — у Цельсия все тоже было сначала наоборот, но производители термометров развернули. А до Делиля руки не добрались — быстро как-то эта шкала зачахла.

Формула перевода в градусы Цельсия:

Температурные шкалы Интересное, Цельсий, Фаренгейт, Температура, Длиннопост, Кельвины

Шкала Реомюра (Реомюр, Réaumur, °Ré, °Re)

Предложил Рене Антуан Реомюр в 1730 году. Собственно точка замерзания воды — 0°Re, точка кипения воды 80°Re.

Почему 80 — потому что 80 можно было делить пополам 4 раза, и все время получать целое число. Очень было модно у французов.

Формула перевода в градусы Цельсия:

Температурные шкалы Интересное, Цельсий, Фаренгейт, Температура, Длиннопост, Кельвины

Шкала Рёмера (Рёмер, Rømer, °Rø)

Предложена датчанином Оле Кристенсеном Рёмером в 1701 году. Ноль градусов по этой шкале — температура замерзания рассола . Ох уж эти датчане. Потом правда Оле одумался и назначил 7.5°Rø температуре замерзания воды. Ну а температура кипения воды — 60°Rø.

Температурные шкалы Интересное, Цельсий, Фаренгейт, Температура, Длиннопост, Кельвины

Почему же все эти забавные шкалы (ну, кроме верхних трех, с натяжкой, четырех) отвалились? Потому что французы, когда изобретали метрическую систему, решили что десятки — это то, что нам надо, и приняли судьбоносное решение использовать шкалу Цельсия. Так метрическая система, в лице Цельсия, заборола всех остальных.

-17℃, а за 100℉ — температуру своей больной жены

Такую историю я слышал в школе.

В той шкале, что Андерс Цельсий придумал, 0° ― был точкой кипения, а 100° ― тройная точка воды.

То что сейчас используется ― это шкала Цельсия-Линнея от 1745-го.

До сих пор не понимаю, почему наглосаксы не перешли на Цельсия и ед. измерения СИ

Продолжение поста «ТЕМПЕРАТУРА в БАНЕ»⁠ ⁠

Фаренгейт и Цельсий⁠ ⁠

Фаренгейт и Цельсий Фаренгейт, Цельсий, Разница, Тупость, Картинка с текстом, Мемы, One Piece

Канадские дети носят шорты при +10С

Австралийские дети носят кофты при +30С

Американские дети ничего не понимают в этот меме, потому что не знают, что такое С

Воздействие низкой температуры на олово — при сильном морозе этот металл превращается в порошок⁠ ⁠

Правда ли, что Фаренгейт принял за 100 градусов температуру тела своей больной жены?⁠ ⁠

Правда ли, что Фаренгейт принял за 100 градусов температуру тела своей больной жены? Познавательно, Интересное, Наука, Научпоп, Шкала, Температура, Фаренгейт, Фаренгейт vs Цельсий, Ученые, Исследования, Эксперимент, Проверка, Борьба с лженаукой, Разрушители мифов, Физика, Длиннопост

Согласно распространённой версии, немецкий естествоиспытатель собирался зафиксировать важную отметку на своей шкале на уровне нормальной температуры человеческого тела. Однако у его супруги в этот момент был жар, из-за чего сегодня 100 °F соответствует 37,8 °C. Мы проверили, насколько правдоподобна эта легенда и разобрались в истории появления температурных делений.

(Спойлер для ЛЛ: неправда)

Если воспользоваться онлайн-калькулятором для перевода градусов Фаренгейта в более привычные нам градусы Цельсия, то получим следующий результат:

Правда ли, что Фаренгейт принял за 100 градусов температуру тела своей больной жены? Познавательно, Интересное, Наука, Научпоп, Шкала, Температура, Фаренгейт, Фаренгейт vs Цельсий, Ученые, Исследования, Эксперимент, Проверка, Борьба с лженаукой, Разрушители мифов, Физика, Длиннопост

То есть, действительно, если версия с температурой тела как мотивом истинна, то эталоном для Фаренгейта должен был послужить не совсем здоровый человек. Ознакомимся с историей появления его изобретения поподробнее.

Даниэль Габриэль Фаренгейт родился в 1686 году в Данциге (нынешнем Гданьске) в немецкой семье. С юных лет он проявил интерес к естественнонаучным экспериментам, и позднее, когда уже обосновался в Нидерландах, изготовил термометр и барометр. Сначала термоскопической жидкостью ему служил спирт, однако около 1714 года он заменил спирт ртутью, чем достиг гораздо большей точности измерений. Наконец, в 1724 году он предложил принципиально новую шкалу, которая станет стандартом в англоязычных странах для метеорологических, промышленных и медицинских целей на следующие два с половиной века. Для перевода температуры по этой шкале в градусы Цельсия и обратно используются следующие формулы:

Правда ли, что Фаренгейт принял за 100 градусов температуру тела своей больной жены? Познавательно, Интересное, Наука, Научпоп, Шкала, Температура, Фаренгейт, Фаренгейт vs Цельсий, Ученые, Исследования, Эксперимент, Проверка, Борьба с лженаукой, Разрушители мифов, Физика, Длиннопост

Многие люди, впервые сталкивающиеся с ними, сетуют на неудобство подобного преобразования. Однако шкала Цельсия была предложена на 18 лет позже, в 1742 году, то есть вопросы в данном случае должны быть обращены не к Фаренгейту.

Итак, что мы знаем сегодня о трёх калибровочных точках шкалы Фаренгейта?

Задумавшись о подходящей разметке для своего будущего термометра, Фаренгейт в 1708 году посетил пожилого датского астронома Оле Рёмера (не путать с Реомюром), который разработал собственную шкалу. Следует отметить, что у Рёмера температура кипения воды равнялась 60 градусам, за ноль была взята температура очень холодной зимы в Дании, вода замерзала при 7,5 градуса, а нормальная температура тела составляла 22,5 градуса.

Много лет спустя в письме к другому физику Фаренгейт расскажет об этом своём визите:

Таким образом, за базу своей шкалы Фаренгейт взял разработку Оле Рёмера, однако для удобства умножил некоторые (но не все, как мы убедимся далее) числа на 4. При этом уже в описании шкалы датчанина упоминается некая «температура тела». Однако это не даёт точного ответа на вопрос о калибровочных точках. В своей публикации 1724 года Фаренгейт пишет, что в его шкале таковых используется три: максимально низкая температура смеси льда, воды и нашатыря или даже морской соли» (0 °F), температура таяния льда (32 °F) и температура тела (96 °F). Однако это не совсем корректное сообщение. Как отмечают современные учёные, в первом случае можно получить +5 °F или даже –8 °F (в случае морской соли), то есть это даже не одна и та же величина, не говоря уже о несоответствии нулю. Возможно, права легенда о том, что за ноль было взято положение столбика в аномально холодную зиму 1708–1709 годов в Данциге (а не в Дании).

После смерти Фаренгейта его шкала немного поменялась. В 1776 году комиссия Лондонского Королевского общества во главе с Генри Кавендишем приняла решение откалибровать шкалу так, чтобы вода замерзала ровно при 32 °F, а кипела, соответственно, при 212 °F (расстояние в 180 градусов — круглое число, особенно для градусов). Так что сегодня «нормальная температура тела» составляет не 96 °F, как при Фаренгейте (сейчас это было бы равно 35,56 °С), а 97,88 °F (в подмышечной впадине) и 98,6 °F (во рту).

Да, и, наконец, о жене Даниэля Фаренгейта. Увы, увлечённый своими опытами, за всю свою жизнь он так ни разу и не женился.

Правда ли, что Фаренгейт принял за 100 градусов температуру тела своей больной жены? Познавательно, Интересное, Наука, Научпоп, Шкала, Температура, Фаренгейт, Фаренгейт vs Цельсий, Ученые, Исследования, Эксперимент, Проверка, Борьба с лженаукой, Разрушители мифов, Физика, Длиннопост

Ещё нас можно читать в Телеграме, в Фейсбуке и в Вконтакте.

В сообществах отсутствуют спам, реклама и пропаганда чего-либо (за исключением здравого смысла), а в день обычно публикуем не больше двух постов.

Правда ли, что Фаренгейт принял за 100 градусов температуру тела своей больной жены? Познавательно, Интересное, Наука, Научпоп, Шкала, Температура, Фаренгейт, Фаренгейт vs Цельсий, Ученые, Исследования, Эксперимент, Проверка, Борьба с лженаукой, Разрушители мифов, Физика, Длиннопост

Праздники градусов⁠ ⁠

Предыстория: утром появился пост То же самое . Я решила посчитать в каком году возраст Фаренгейта можно было перевести в возраст Цельсия по формуле перевода соответствующих градусов, чтобы шутка была верной. Посчитала с точностью до года. @yumi.salt предложил добавить расчеты в Лигу Упоротых Расчетов. Я решила, что это недостаточно упорото и пересчитала с точностью до дня.

Фаренгейт родился 24 мая 1686 года. Представим это как 1686 целых и 144/365, в десятичных дробях 1686,39452. Возраст Фаренгейта представим как (Х — 1686,39452) где Х — искомая дата.

Цельсий родился 27 ноября 1701. Представим как 1701 и 331/365 = 1701,90685. Возраст Цельсия будет равен (Х — 1701,90685).

Подставим в формулу:

(Х — 1686,39452 — 32) * 5 = (Х — 1701,90685) * 9

5х — (5 * 1718,39452) = 9х — (9 * 1701,90685)

4х = 15 317,16165 — 8 591,9726 = 6 725,18905

х = 1 681,2972625 = 1681 год, 19 апреля.

В это время ни один из этих ученых еще не родился. Фаренгейту было минус 5 лет и 35 дней, Цельсию минус 20 лет и 222 дня.

После этого решено было посчитать такую же дату для Фаренгейта/Кельвина.

Уильям Томсон, граф Кельвин родился 26 июня 1824 года. Представим это как 1824 целых и 178/366 (год ведь високосный) = 1824,48634. Возраст Кельвина равен (Х — 1824,48634).

Подставим в формулу:

(Ф — 32) * 5 / 9 = К — 273,15

(Х — 1686,39452 — 32) * 5 = (Х — 1824,48634 — 273,15) * 9

5х — (5 * 1718,39452) = 9х — (9 * 2 097,63634)

4х = 18 878,72706 — 8 591,9726 = 10 286,75446

х = 2 571,688615 = 2571 год, 8е сентября.

Наши далекие потомки смогут отпраздновать этот день, когда Фаренгейту исполнится 885 лет и 107 дней, а Кельвину — 747 лет и 73 дня, что в сущности одно и то же.

Добавление дней в расчеты сместило праздничную дату на 1 год.

Все, упоротый расчет закончен.

То же самое⁠ ⁠

То же самое

Как зубы чувствуют холод⁠ ⁠

Как зубы чувствуют холод Зубы, Холод, Чувствительность, Чувствительность зубов, Наука и жизнь, Интересное, Познавательно, Рецепторы, Боль, Длиннопост, Температура, Эмаль, Повреждения

Зубы болят от холода потому, что у них повреждена эмаль – из-за бактерий ли, или из-за пищевых кислот. В эмали образуются впадины, полости, выемки, которые делают зубы сверхчувствительными к низкой температуре. Связь между повреждениями эмали и повышенной чувствительностью к холоду была известна давно, но как именно зубы его чувствуют, долгое время оставалось загадкой.

Предполагалось, что здесь всё дело в крохотных каналах с жидкостью, которые пронизывают зуб: от перепада температуры жидкость двигается, и вот это движение жидкости воспринимается как холодовая боль. Но всё упирается в то, где у зубов холодовые рецепторы. Всё-таки зубы – не кожа, обычных терморецепторов на эмали у них нет, и в дентине, который лежит под эмалью, тоже нет. Но где-то они должны быть.

Любой рецептор – это белок (или комплекс белков), который встроен в мембрану сенсорной клетки и который работает как ионный канал. Рецептор реагирует на определённые воздействия – например, на понижение температуры. Когда становится холодно, белок-рецептор открывает поток ионов между наружной и внутренней стороной мембраны. Электрические параметры мембраны из-за этого мгновенно меняются, и возникает электрохимический импульс, который бежит к мозгу.

Около пятнадцати лет назад сотрудники Медицинского института Говарда Хьюза обнаружили ионный канал TRPC5, который оказался сверхчувствителен к холоду. Но обнаружили его как ген и соответствующий ему белок. Где в теле находится TRPC5, было неясно. Точно не в коже: мыши, у которых выключали ген TRPC5, продолжали чувствовать холод. Но тут кто-то вспомнил, что есть ещё один орган, который чувствует холод – это зубы.

Дальнейшие эксперименты на мышах показали, что TRPC5 действительно находится в зубах: у животных с отключённым геном TRPC5 никаких болевых сигналов в ответ на холод от зубов не передавалось. Точно также не было болевых сигналов, если ионный канал TRPC5 блокировали химически, чтобы он не работал. Кстати, вещества, что блокируют канал TRPC5, содержатся в гвоздичном масле – в старые (да и не в очень старые) времена его широко использовали, чтобы снять зубную боль.

Вместе с коллегами из Университета Эрлангена – Нюрнберга и других научных центров исследователи опубликовали статью в Science Advances, в которой говорится, что рецептор TRPC5 несут на себе клетки одонтобласты. Они сидят не границе между пульпой зуба и дентином; собственно, одонтобласты дентин и производят. У них есть длинные отростки, которые заполняет канальцы внутри дентина – те самые канальцы, о которых шла речь выше. Канальцы вместе с отростками одонтобластов могут достигать эмали. И если эмаль повреждена, отросток клетки легко почувствует резкий холод с помощью рецептора TRPC5. Одонтобласты соединены с нейронами, и потому сразу отправляют болевой импульс в мозг.

Конечно, лучше всего, когда сам следишь за зубами и не допускаешь, чтобы бактерии и кислота разрушали их эмаль. Но зубы у всех разные, и у кого-то они всю жизнь остаются плохими, несмотря на все усилия. Может быть, с новыми данными об одонтобластах и их рецепторах у нас появятся эффективные средства, которые позволят людям с холодочувствительными зубами спокойно есть мороженое.

Автор: Кирилл Стасевич

90 градусов⁠ ⁠

90 градусов Star Wars, Энакин Скайуокер, Люк Скайуокер, Цельсий, Фаренгейт, Перевел сам, Картинка с текстом, Кельвины

Дорожный знак во время жары в Юте⁠ ⁠

Дорожный знак во время жары в Юте Жара, Дорожный знак, Юта, Забавное, Дорога, Авто, Температура, Фаренгейт

Это температура воздуха, а не лимит скорости

Даже в Кельвинах проще⁠ ⁠

Даже в Кельвинах проще Властелин колец, Фродо Бэггинс, Цельсий, Фаренгейт, Перевел сам, Картинка с текстом

Высокий интеллект⁠ ⁠

Высокий интеллект Юмор, Интеллект, Температура, Картинка с текстом, Мемы, IQ, Цельсий, Уильям Томсон (лорд Кельвин), Кельвины

Градусы⁠ ⁠

Градусы Спанч Боб, Цельсий, Фаренгейт, Картинка с текстом, Юмор, Reddit, Кельвины

Такие разные градусы⁠ ⁠

Сколько сегодня градусов? Как часто вы задаетесь этим вопросом, особенно перед тем как выйти из дома. Температура воздуха (наряду с наличием или отсутствием осадков) стала для нас ключевым параметром текущей погоды, а термометр – привычной частью быта. Но еще несколько столетий назад люди вообще не заботились измерением температуры воздуха, а термометры встречались лишь в немногочисленных научных лабораториях (да и то с XVI века). В этом плане, термометр и телескоп практически ровесники, но сравните, как часто вы пользуетесь телескопом и термометром…И редко задумываемся о том, что термометр имеет свою весьма занимательную историю.

Такие разные градусы История вещей, Температура, Фаренгейт, Длиннопост

Отличать тепло от холода умеет большинство живых организмов, это мы не можем записать в «актив» достижений человеческого разума. Но еще в древности люди заметили, что при нагревании воздух расширяется. Используя это свойство, александрийский математик и инженер Герон еще во II веке до н.э. построил систему поднятия воды путем нагревания.

Очевидным следующим шагом было научиться измерять степень нагревания/охлаждения воздуха. И, полтысячелетия спустя, другой математик, Филон Византийский якобы сконструировал некий прибор для измерения температуры воздуха и воды. По крайней мере, об этом есть упоминания в некоторых трактатах того времени. Но ни прибор, ни его чертежи так и не найдены, равно как нет информации о попытках повторить работу Филона. Поэтому эту попытку создания термометра мы не засчитываем. Пока не будет доказано иное.

Тысячу лет с лишним подвижек к решению этой задачи (измерения температуры) не было, а затем просто понеслось. Понеслось не случайно: в позднем Средневековье естествознание переживает очередной расцвет, растут университеты, открываются научные лаборатории. И им позарез нужна приборная база. В частности, инструмент, который мог бы точно измерить, как меняется температура (воздуха, растворов и проч.). Над созданием такого инструмента работали многие и сегодня лавры создателя термометра приписывают сразу нескольким ученым.

Перечислю лишь некоторых.

Ян Баптиста ван Гельмонт, уроженец Брюсселя, представитель движения т.н. «ятрохимиков» (наиболее известный из них — Парацельс), стремившихся выделить из алхимических трактатов рациональное зерно и применить его в медицине. Считается, что он первым описал, как должен быть устроен прибор для измерения температуры, но сам его так и не сконструировал.

Итальянский физик Галилео Галилей. Сам он такой прибор не описывал, но его ученики засвидетельствовали, что в 1597 году он создал термоскоп.

Такие разные градусы История вещей, Температура, Фаренгейт, Длиннопост

Он представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой, которая помещалась в жидкость. Воздух в стеклянном шаре посредством горелки или простым растиранием ладонями нагревался, в результате чего он начинал вытеснять жидкость в стеклянной трубке, показывая тем самым степень увеличения температуры: чем тоньше была трубка, тем выше была «точность» прибора. Считается, что на эти изыскания Галилея вдохновили описания устройств Герона.

Итальянский же врач Санторио, много лет занимавшийся изучением анатомии и физиологии. Кстати, он преподавал в Падуанском университете примерно в те же годы, когда там обучался Уильям Гарвей, человек, объяснивший, как работает сердце. Для своих опытов Санторио сам придумывал и изготавливал оборудование. Так в 1626 году он построил ртутный термометр, который мог измерять температуру человеческого тела. Прибор мало напоминал современные градусники: имело форму шара и продолговатую извилистую трубку, на которой были нарисованы деления, свободный конец трубки заполняли подкрашенной жидкостью. Измерения были грубыми, но, с точки зрения медицины, главным достижением Санторио было то, что он установил: у здорового человека должна быть постоянная температура тела. Нам это кажется очевидным, но до Санторио врачи об этом не задумывались.

Были и другие претенденты. На протяжении определенного времени, усовершенствования термометров касались их формы и содержимого, но не точности. Голландец Ван-Дребель доработал термоскоп, сделав его более чувствительным и окрасил воду, что облегчило работу с ним. В Флорентийской академии научились делать термометры, не зависящие от атмосферного давления: вместо воды, термометры стали заполнять подкрашенным спиртом, а верх стеклянной трубки запаивать. Но чем больше становилось термометров, тем острее вставал вопрос их «стандартизации», появления общепринятых единиц измерения температуры.

В 1672 году немецкий физик и, по совместительству, бургомистр города Марбурга Отто фон Герике создал семиметровый прибор измерения температуры с восемью делениями, от «великого холода» до «великой жары».

Такие разные градусы История вещей, Температура, Фаренгейт, Длиннопост

Термометр Герике. Иллюстрация из книги Otto von Guericke’s Experimenta Nova Magdeburgica.

Текущую температуру на шкале указывала подвижная фигурка ангела, а в качестве начальной точки (того самого «великого холода») он взял температуру первых осенних заморозков. Проблема в том, это была величина переменная, а приборам в качестве «точки отсчета» требуется константа.

Примерно в те же годы известный физик Роберт Бойль (1627—1691) предложил принять за исходную точку температуру замерзания воды. Однако вскоре обнаружили, что для построения шкалы одной исходной точки недостаточно. Сначала, с подачи Гюйгенса в качестве второй точки стали брать температуру кипения воды. Далее Ньютон сделал еще более подробную шкалу с шестью температурными отметками: 1° – тающего льда, 2° – человеческой крови, 3° – плавления воска, 4° – кипения воды, 5° – плавления сплава свинца, висмута и олова и 6° – плавления чисто свинца.

Но и такая шкала не была достаточно точной, чтобы продержаться в качестве эталона сколь-нибудь долгое время. Потому уже через четверть века было предложено новое решение, работающее, кстати, до сих пор. Автором его стал немецкий физик (согласно другой версии – голландец) Габриэль Фаренгейт (1686 — 1736).

Такие разные градусы История вещей, Температура, Фаренгейт, Длиннопост

Подобно многим ученым того времени, он сам изготавливал приборы (часть для себя, часть на продажу). Были в их числе и термометры, которые отличались высокой точностью, благодаря использованию нескольких фиксированных точек.По поводу того, как он выбрал температуру для нулевой отметки, известна следующая история. Когда, зимой 1709 года он делал свой первый спиртовой термометр, в его родном Данциге была необычно суровая зима. И Фаренгейт решил взять за начало шкалы нижнюю степень морозов того года. Точнее ее аналог, который можно было бы воспроизвести в лаборатории. Таковой оказалась температура соляного раствора (из льда, поваренной соли и нашатыря в равном соотношении), что равно —17.78 °C. Это и есть ноль на широко известной сейчас шкале Фаренгейта.

Вторая точка 32 °F была точкой плавления льда, т.е. температурой смеси льда и воды в соотношении 1:1 (0 °C). Третья точка – это нормальная температура человеческого тела, которой он приписал 96 °F (позже ее уточнили и теперь она составляет 98 °F). Опираясь на эти точки, Фаренгейт и построил шкалу своего градусника, добавив туда затем еще и четвертую константу — температуру кипения воды (212 °F). Правда, наука к тому времени уже знала, что температура кипения воды может меняться в зависимости от атмосферного давления, поэтому Фаренгейт эту точку к основным не относил.

Есть и криптоисторическая версия о том, что Фаренгейт был масоном и имел в ложе степень посвящения «32 градуса». Отсюда, дескать, и взята разница в 32 градуса между нулем на его шкале и точкой таяния льда, ставшая отправной для определения всех последующих констант.

Что там было на самом деле с масонами, история темная. Но достоверно известно, что достижения Фаренгейта были отмечены принятием в члены Лондонского королевского общества (одной из первых европейских Академий наук), а его шкала используется по сей день (главным образом в Великобритании и США). Есть относительно несложный способ перевести температуру по Фаренгейту в привычные нам градусы по Цельсию: следует от данного числа отнять предварительно 32, а затем полученный остаток помножить на 5/9. Соответственно, если требуется обратный перевод («из Цельсия в Фаренгейта»), градусы их следует помножить на 9/5 и к произведению прибавить 32.

Система Фаренгейта оказалась не единственной. В 1730 году французский ученый Рене Антуан Реомюр предложил свой вариант шкалы.

Такие разные градусы История вещей, Температура, Фаренгейт, Длиннопост

Некоторые дореволюционные термометры Реомюра благополучно дожили до наших дней

Реомюр построил ее в соответствии с тепловым расширением жидкости. Обнаружив, что при нагревании смесь воды со спиртом между температурами замерзания и кипения воды расширяется на 80 тысячных своего объема (современное значение — 0,084), Реомюр разделил этот интервал на 80 градусов. Термометры Реомюра были весьма распространены вплоть до начала ХХ века, пока их не вытеснили приборы, работающие по шкале Цельсия.

Свой вариант температурной шкалы шведский астроном Андреас Цельсий предложил еще в 1742 году. Он поделил расстояние между точками на 100 интервалов, цифрой 100 была отмечена точка таяния льда, а 0 — точка кипения воды. И на сегодня это самый распространенный способ измерять температуру.

А дальше произошел своеобразный повтор ситуации времен Галилея и Санторио – термометры изготавливали повсеместно, но использовали при этом самые разные шкалы, помимо упомянутых Фаренгейта, Реомюра и Цельсия был еще с десяток вариантов. Использованию в быту это сильно не мешало, другое дело в науке или на производстве (а термометры к тому времени перестали быть исключительно научным прибором). Ведь для того, чтобы воспроизвести процесс по чьим-то записям, предварительно требовалось «перевести» градусы, которыми пользовался автор в те, что были на вашем термометре. Кроме того, вскоре выяснилось, что даже тщательно проградуированные приборы с разными жидкостями показывают разную температуру. При 50° С по ртутному термометру спиртовой показывал 43 ° С, термометр с оливковым маслом – 49 ° С, а с соленой водой – 45,4 ° С.

В общем, требовалось довести процесс стандартизации до конца. И это успешно проделал другой известный физик У. Томсон (лорд Кальвин). В 1848 году он предложил измерять не температуру, а количество тепла, которое в определенном процессе, называемом циклом Карно, передается от горячего тела к холодному: оно определяется только их температурами и совершенно не зависит от нагреваемого вещества. В термодинамической, или абсолютной, шкале температур, построенной на этом принципе, единица температуры называется кальвин.С точки зрения науки шкала Кальвина была оптимальным решением. Но с позиций повседневной практики, весьма неудобной, да и воспроизвести цикл Карно вне метрологической лаборатории было затруднительно. Поэтому шкала Кельвина (доработанная в прошлом веке) востребована в основном в науке, а в остальных сферах человечество обходится шкалами Фаренгейта и Цельсия (а кое-где и шкалой Реомюра).

Ну и напоследок, еще один интересный факт из истории термометров. Внедрение их в широкую терапевтическую практику в нашей стране связано с именем знаменитого врача Сергея Петровича Боткина. Ко времени начала его работы в Императорской медико-хирургической академии уже были созданы предпосылки для перехода от эмпирической терапии к научной, с обоснованными объективными методами диагностики и лечения больных. Но именно он стал «локомотивом» этого процесса в русской медицине. В частности, методологически обосновал необходимость измерения температуры пациента, как при первичном осмотре, так и в процессе лечения.

6 Измерения температуры

Температурой называют физическую величину, характеризующую степень нагретости тела. Практически все технологические процессы и различные свойства вещества зависят от температуры.

В отличие от таких физических величин, как длина, масса и др. температура является не экстенсивной (параметрической), а интенсивной (активной) величиной. Так, если разделить на две равные части гомогенное тело, то его масса делится пополам. Температура, являющаяся интенсивной величиной, таким свойством аддитивности не обладает, т. е. для системы, находящейся в термическом равновесии, любая микроскопическая часть системы имеет одинаковую температуру. Поэтому не представляется возможным создание эталона температуры, подобно тому, как создаются эталоны экстенсивных величин.

Измерять температуру можно только косвенным путем, основываясь на зависимости от температуры таких физических свойств тел, которые поддаются непосредственному измерению. Эти свойства тел называют термометрическими. К ним относят длину, объем, плотность, термоЭДС, электрическое сопротивление и т. д. Вещества, характеризующиеся термометрическими свойствами, называют термометрическими. Средство измерений температуры называют термометром. Для создания термометра необходимо иметь температурную шкалу.

§ 6.2. Температурные шкалы

Температурной шкалой называют конкретную функциональную числовую связь температуры со значениями измеряемого термометрического свойства. В этой связи представляется возможным построение температурной шкалы на основе выбора любого термометрического свойства. В то же время нет ни одного термометрического свойства, которое линейно изменяется с изменением температуры и не зависит от других факторов в широком интервале измерения температур.

Первые шкалы появились в XVIII в. Для построения их выбирались две опорные, или реперные точки t1 и t2. представляющие собой температуры фазового равновесия чистых веществ. Разность температур t2t1 называют основным температурным интервалом.

Фаренгейт (1715 г.), Реомюр (1776 г.) и Цельсий (1742 г.) при построении шкал основывались на допущении линейной связи между температурой t и термометрическим свойством, в качестве которого использовалось расширение объема жидкости V, т. е.

t = a+bV,

где а и b — постоянные коэффициенты.

Подставив в это уравнение V=V1 при t=t1 и V=V2 при t=t2, после преобразований получим уравнение температурной шкалы:

В шкалах Фаренгейта, Реомюра и Цельсия точке плавления льда t1 соответствовали +32, 0 и 0°, а точке кипения воды t2 — 212, 80 и 100°. Основной интервал t2t1 в этих шкалах делится соответственно на N= 180, 80 и 100 равных частей, и 1/N часть каждого из интервалов называют градусом Фаренгейта — t°F, градусом Реомюра— t°R и градусом Цельсия — t°C. Таким образом, для шкал, построенных по указанному принципу, градус не является единицей измерения, а, представляет собой единичный промежуток — масштаб шкалы.

Для пересчета температуры из одной указанной шкалы в другую используют соотношение

Позднее было выяснено, что показания термометров, имеющих разные термометрические вещества (например, ртуть, спирт и др.), использующих одно и то же термометрическое свойство и равномерную градусную шкалу, совпадают лишь в реперных точках, а в других точках показания расходятся. Последнее особенно заметно при измерении температур, значения которых расположены далеко от основного интервала.

Указанное обстоятельство объясняется тем, что связь между температурой и термометрическим свойством на самом деле нелинейна и эта нелинейность различна для различных термометрических веществ. В частности, в рассматриваемом случае нелинейность между температурой и изменением объема жидкости объясняется тем, что температурный коэффициент объемного расширения жидкости сам изменяется от температуры и это изменение различно для различных капельных жидкостей.

На основе описанного принципа построения может быть получено любое количество температурных шкал, значительно различающихся между собой. Такие шкалы называют условными, а масштабы этих шкал — условными градусами. Проблема создания температурной шкалы, не зависящей от термометрических свойств веществ, была решена в 1848 г. Кельвином, а предложенная им шкала была названа термодинамической. В отличие от условных температурных шкал термодинамическая температурная шкала является абсолютной.

Термодинамическая шкала температур основана на использовании второго закона термодинамики. В соответствии с этим законом коэффициент полезного действия η тепловой машины, работающей по обратимому циклу Карно, определяется только температурами нагревателя Тн и холодильника Тх и не зависит от свойств рабочего вещества, т. е.

где QH и Qx — соответственно количество теплоты, полученное рабочим веществом от нагревателя и отданное холодильнику.

Кельвином было предложено для определения температуры использовать равенство

Следовательно, используя один объект в качестве нагревателя, а другой — в качестве холодильника и проводя между ними цикл Карно, можно определить отношение температур объектов путем измерения отношения теплоты, взятой от одного объекта и отданной другому. Полученная шкала температур не зависит от свойств рабочего (термометрического) вещества и называется абсолютной шкалой температур. Чтобы абсолютная температура (а не только отношение) имела определенное значение, было предложено принять разность термодинамических температур между точками кипения воды Ткв и таяния льда Ттл, равной 100°. Принятие такого значения разности преследовало цель сохранения преемственности числового выражения термодинамической температурной шкалы от стоградусной температурной шкалы Цельсия. Таким образом, обозначая количество теплоты, полученной от нагревателя (кипящая вода) и отдаваемой холодильнику (тающий лед), соответственно через QKB и QTЛ и приняв Ткв— Ттл =100, используя (6.3), получим

Для любой температуры Т нагревателя при неизменном значении температуры Ттл холодильника и количества теплоты QTЛ, отдаваемой ему рабочим веществом машины Карно, будем иметь

Выражение (6.4) является уравнением стоградусной термодинамической шкалы температур и показывает, что значение температуры Т по данной шкале линейно связано с количеством теплоты Q, полученной рабочим веществом тепловой машины при совершении ею цикла Карно, и, как следствие, не зависит от свойств термометрического вещества. За один градус термодинамический температуры принимают такую разность между температурой тела и температурой таяния льда, при которой производимая по обратимому циклу Карно работа равна 1/100 части работы, совершаемой в цикле Карно между температурой кипения воды и таяния льда (при условии, что в обоих циклах количество теплоты, отдаваемой холодильнику, одинаково).

Из выражения (6.2) следует, что при максимальном значении η = 1 должна быть равна нулю Тх. Эта наименьшая температура была названа Кельвином абсолютным нулем. Температуру по термодинамической шкале обозначают Т К.

Если в выражение, описывающее газовый закон Гей-Люссака: Pt = Po(l+αt) = Poα(l/α+t) (где Ро давление при t=0°С; α — температурный коэффициент давления), подставить значение температуры, равное — l/α, то давление газа Pt станет равным нулю. Естественно предположить, что температура t=— l/α , при которой обеспечивается предельное минимальное давление газа, сама является минимально возможной, и по абсолютной шкале Кельвина принята за нуль. Следовательно, абсолютная температура T= l/α + t.

Из закона Бойля — Мариотта известно, что для газов температурный коэффициент давления α равен температурному коэффициенту объемного расширения β. Экспериментально было найдено, что для всех газов при давлениях, стремящихся к нулю, в интервале температур 0—100°С температурный коэффициент объемного расширения β == 1/273,15.

Таким образом, нулевое значение абсолютной температуры соответствует t= — l/α = — l/ β = —273,15°С. Температура таяния льда по абсолютной шкале составит Tо=273,15 К.

Любая температура в абсолютной шкале Кельвина может быть определена как T = 273,15К + t (t — температура в °С). Необходимо отметить, что один градус Кельвина (1К) соответствует одному градусу, Цельсия (1°С), так как обе шкалы базируются на одинаковых реперных точках.

Термодинамическая шкала температур, основанная на двух реперных точках (температура таяния льда и кипения воды), обладала недостаточной точностью измерения. Практически трудно воспроизвести температуры указанных точек, так как они зависят от изменения давления, а также от незначительных примесей в воде. Кельвин и независимо от него Д.И.Менделеев высказали соображения о целесообразности построения термодинамической шкалы температур по одной реперной точке.

Консультативный комитет по термометрии Международного комитета мер и весов в 1954 г. принял рекомендацию о переходе к определению термодинамической шкалы с использованием одной реперной точки — тройной точки воды (точки равновесия воды в твердой, жидкой и газообразной фазах), которая легко воспроизводится в специальных сосудах с погрешностью не более 0,0001 К. Температура этой точки принята равной 273,16 К, т. е. выше температуры точки таяния льда на 0,01 К. Такое число выбрано для того, чтобы значения температур по новой шкале практически не отличались от старой шкалы Цельсия с двумя реперными точками. Второй реперной точкой является абсолютный нуль, который экспериментально не реализуется, но имеет строго фиксированное положение.

В 1967 г. XIII Генеральная конференция по мерам и весам уточнила определение единицы термодинамической температуры в следующей редакции: «Кельвин—1/273,16 часть термодинамической температуры тройной точки воды». Термодинамическая температура может быть также выражена в градусах Цельсия: t = = T—273,15 К.

Использование второго закона термодинамики, предложенное Кельвином с целью установления понятия температуры и построения абсолютной термодинамической температурной шкалы, не зависящей от свойств термометрического вещества, имеет огромное теоретическое и принципиальное значение. Однако реализация указанной шкалы с использованием в качестве термометра тепловой машины, работающей по обратимому циклу Карно, практически неосуществима.

Термодинамическая температура эквивалентна газотермической, используемой в уравнениях, описывающих законы идеальных газов. Газотермическую температурную шкалу строят на основе газового термометра, в котором в качестве термометрического вещества используется газ, приближающийся по свойствам к идеальному газу. Таким образом, газовый термометр является реальным средством для воспроизведения термодинамической температурной шкалы.

Газовые термометры бывают трех типов: постоянного объема, постоянного давления и постоянной температуры.

Обычно применяют газовый термометр постоянного объема (рис. 6.1), в котором изменение температуры газа пропорционально изменению давления. Газовый термометр состоит из баллона 1 и соединительной трубки 2, заполненных через вентиль 3 водородом, гелием или азотом (для высоких температур). Соединительная трубка 2 подсоединена к трубке 4 двухтрубного манометра, у которого трубку 5 можно перемещать вверх или вниз благодаря гибкому соединительному шлангу 6. При изменении температуры объем системы, заполненной газом, изменяется, и для приведения его к первоначальному значение трубку 5 вертикально перемещают до тех пор, пока уровень ртути в трубке 4 не совпадет с осью XX. При этом столб ртути в трубке 5, отсчитанный от уровня XX, будет соответствовать давлению газа Р в баллоне. Обычно измеряемую температуру Т определяют относительно некоторой точки отсчета, например по отношению к температуре тройной точки воды То, при которой давление газа в баллоне будет Р0. Искомая температура T = T0 P/P0.

Рис. 6.1. Схема газового термометра

Газовые термометры используют в интервале

2—1300 К. Погрешность газовых термометров находится в пределах 3·10 -3 — 2·10 -2 К в зависимости от измеряемой температуры. Достижение такой высокой точности измерения — сложная задача, требующая учета многочисленных факторов: отклонения свойств реального газа от идеального, наличие примесей в газе, сорбцию и десорбцию газа стенками баллона, диффузию газа через стенки, изменение объема баллона от температуры, распределение температуры вдоль соединительной трубки.

В силу большой трудоемкости работы с газовыми термометрами предпринимались попытки изыскать более простые методы воспроизведения термодинамической температурной шкалы.

На основе проведенных в различных странах исследований на VII Генеральной конференции по мерам и весам в 1927 г. было принято термодинамическую шкалу заменить «практической» температурной шкалой и назвать ее международной температурной шкалой. Эта шкала была согласована со стоградусной термодинамической шкалой настолько тесно, насколько позволял уровень знаний того времени.

Для построения международной температурной шкалы было выбрано шесть воспроизводимых реперных точек, значения температуры которых по термодинамической шкале были тщательно измерены в различных странах с помощью газовых термометров и приняты наиболее достоверные результаты. С помощью реперных точек градуируются эталонные приборы для воспроизведения международной температурной шкалы. В интервалах между реперными точками значения температур рассчитывают по предлагаемым интерполяционным формулам, устанавливающим связь между показаниями эталонных приборов и температурой по международной шкале.

В 1948, 1960 и 1968 гг. в положения о международной температурной шкале был внесен ряд уточнений и дополнений, так как на основе усовершенствованных методов измерений были обнаружены отличия этой шкалы от термодинамической, особенно в области высоких температур, а также в связи с необходимостью продлить температурную шкалу до более низких температур. В настоящее время действует принятая на XIII конференции по мерам и весам усовершенствованная шкала под названием «международная практическая температурная шкала 1968» (МПТП—68). Определение «практическая» указывает, что эта температурная шкала в общем не совпадает с термодинамической. Температуры МПТШ—68 снабжаются индексом (T68 или t68).

МПТШ—68 базируется на 11 основных реперных точках, приведенных в табл. 6.1. Наряду с основными имеется 27 вторичных реперных точек, охватывающих диапазон температур от 13,956 до 3660 К (от —259,194 до 3387°С). Числовые значения температур, приведенные в таблице, соответствуют термодинамической шкале и определены с помощью газовых термометров.

Шкалы температур

Материал данной статьи дает представление о таком важном понятии как температура. Дадим определение, рассмотрим принцип изменения температуры и схему построения температурных шкал.

Что такое температура

Температура – это скалярная физическая величина, описывающая состояние термодинамического равновесия макроскопической системы тел.

Понятие температуры также применяют в качестве физической величины, определяющей степень нагретости тела, однако лишь такой трактовки для понимания смысла термина недостаточно. Все физические понятия находятся в связи с определенными фундаментальными законами и наделяются смыслом только в соответствии с этими законами. В данном случае термин температура связан с понятием теплового равновесия и с законом макроскопической необратимости.

Изменение температуры

Явление термодинамического равновесия тел, составляющих систему, говорит о наличии одинаковой температуры этих тел. Произвести замер температуры можно лишь косвенно, взяв за основу зависимость от температуры таких физических свойств тел, которые можно измерить непосредственно.

Вещества или тела, применяемые для получения значения температуры, называют термометрическими.

Допустим, два теплоизолированных тела приведены в тепловой контакт. Одно тело передаст другому поток энергии: запустится процесс теплопередачи. При этом тело, отдающее тепло, обладает соответственно большей температурой, чем тело, «принимающее» поток тепла. Очевидно, что через некоторое время процесс теплопередачи остановится и наступит тепловое равновесие: предполагается, что температуры тел выравниваются относительно друга, их значения будут находиться где-то в интервале между исходными значениями температур. Таким образом, температура служит некоторой меткой теплового равновесия. Получается, что любая величина t , удовлетворяющая требованиям:

  1. t 1 > t 2 , когда происходит теплопередача от первого тела ко второму;
  2. t 1 ‘ = t 2 ‘ = t , t 1 > t > t 2 , при установлении теплового равновесия может приниматься за температуру.

Также отметим, что тепловое равновесие тел подчинено закону транзитивности.

Закон транзитивности: когда два тела находятся в равновесии с третьим, то и между собой они пребывают в тепловом равновесии.

Важной чертой указанного определения температуры является его неоднозначность. Выбрав по-разному величины, отвечающие установленным требованиям (что отразится на способах измерения температуры), возможно получить несовпадающие шкалы температур.

Температурная шкала – это способ деления на части интервала температуры.

Общеизвестным устройством для измерения температуры является термометр. Для рассмотрения возьмем термометры различного устройства. Первый представлен ртутным столбиком в капилляре термометра, и значение температуры здесь определяется длиной этого столбика, отвечающей условиям 1 и 2 , указанным выше.

И еще один способ измерить температуру: используя термопару – электрическую цепь с гальванометром и двумя спаями разнородных металлов (рисунок 1 ).

Изменение температуры

Один спай находится в среде с фиксированной температурой (в нашем примере это тающий лед), другой – в среде, температуру которой необходимо определить. Здесь признаком температуры является ЭДС термопары.

Указанные способы измерения температуры не дадут одинаковых результатов. И для перехода одной температуры к другой следует построить градуировочную кривую, которая установит зависимость ЭДС термопары от длины ртутного столбика. В этом случае равномерная шкала ртутного термометра преобразуется в неравномерную шкалу термопары (или наоборот). Равномерные шкалы измерения температур ртутного термометра и термопары создают две абсолютно различные температурные шкалы, на которых тело в одном и том же состоянии будет иметь различные температуры. Также возможно рассмотреть одинаковые по устройству термометры, но имеющие разные «термические тела» (к примеру, ртуть и спирт): мы не будем наблюдать совпадения температурных шкал и в этом случае. График зависимости длины ртутного столбика от длины спиртового столбика не будет линейным.

Из вышесказанного можно сделать вывод, что понятие температуры, базирующееся на законах теплового равновесия, неоднозначно. Подобная температура является эмпирической, зависит от способа измерения. За «нуль» шкалы эмпирической температуры принимается произвольная точка. Согласно определению эмпирической температуры, физический смысл несет лишь разность температур или ее изменение. Любая эмпирическая температурная шкала приводится в вид термодинамической температурной шкалы при использовании поправок, которые учтут характер связи термометрического свойства с термодинамической температурой.

Температурные шкалы

Для того, чтобы построить температурную шкалу для измерения, двум числовым значениям температуры присваивают две фиксированные реперные точки. После этого разность числовых значений, присвоенных реперным точкам, делится на выбранное произвольным образом необходимое количество частей, получая в результате единицу измерения температуры.

За исходные значения, используемые в качестве начала отсчета и единицы измерения, принимают температуры перехода химически чистых веществ из одного агрегатного состояния в другое, к примеру, температуру плавления льда t 0 и кипения воды t k при нормальном атмосферном давлении ( П а ≈ 10 5 П а ) . Величины t 0 и t k имеют разные значения в различных видах шкал измерения температуры:

  • Согласно шкале Цельсия (стоградусная шкала): температура кипения воды t k = 100 ° C , температура плавления льда t 0 = 0 ° С . В шкале Цельсия температура тройной точки воды равна 0 , 01 ° С при давлении 0 , 06 а т м .

Тройная точка воды — такие температура и давление, при которых могут существовать в равновесии одновременно все три агрегатных состояния воды: жидкое, твердое (лед) и пар.

  • Согласно шкале Фаренгейта: температура кипения воды t k = 212 ° F ; температура плавления льда t 0 = 32 ° С .

Разница температур, выраженных в градусах по шкале Цельсия и шкале Фаренгейта, нивелируется согласно следующему выражению:

t ° C 100 = t ° F — 32 180 или t ° F = 1 , 8 ° C + 32 .

Ноль на этой шкале определен как температура замерзания смеси воды, нашатыря и соли, взятых в пропорции 1 : 1 : 1 .

  • Согласно шкале Кельвина: температура кипения воды t k = 373 К ; температура плавления льда t 0 = 273 К . Здесь температура отсчитывается от абсолютного нуля ( t = 273 , 15 ° С ) и ее называют термодинамической или абсолютной температурой. Т = 0 К – такому значению температуры соответствует абсолютное отсутствие тепловых колебаний.

Значения температур по шкале Цельсия и по шкале Кельвина связаны между собой согласно следующему выражению:

T ( K ) = t ° C + 273 , 15 ° C .

  • Согласно шкале Реомюра: температура кипения воды t k = 80 ° R ; температура плавления льда t 0 = 0 ° R . В термометре Реомюра использовался спирт; на данный момент шкала почти не используется.

Температуры, выраженные в градусах Цельсия и градусах по Реомюру, связаны так:

  • Согласно шкале Ранкина: температура кипения воды t k = 671 , 67 ° R a ; температура плавления льда t 0 = 491 , 67 ° R a . Начало шкалы соответствует абсолютному нулю. Количество градусов между реперными точками замерзания и кипения воды в шкале Ранкина идентично шкале Фаренгейта и равно 180 .

Температуры по Кельвину и Ранкину связаны выражением:

° R a = ° F + 459 , 67 .

Градусы по Фаренгейту возможно перевести в градусы по Ранкину согласно формуле:

° R a = ° F + 459 , 67 .

Наиболее применима в быту и технических устройствах шкала Цельсия (единица шкалы – градус Цельсия, обозначаемый как ° C ).

В физике же используют термодинамическую температуру, которая не просто удобна, но и несет глубокую физическую смысловую нагрузку, поскольку определена как средняя кинетическая энергия молекулы. Единица термодинамической температуры — градус Кельвина (до 1968 г.) или сейчас просто Кельвин ( К ) , являющийся одной из основных единиц в С И . Температура T = 0 К называется абсолютным нулем температуры, как уже упоминалось выше.

Вообще современная термометрия опирается на шкалу идеального газа: за термометрическую величину принимают давление. Шкала газового термометра абсолютна ( T = 0 , p = 0 ) . При решении практических задач чаще всего приходится применять именно эту шкалу температур.

Принято, что комфортная для человека температура в помещении находится в интервале от + 18 ° С до + 22 ° С . Необходимо рассчитать границы интервала температуры комфорта согласно термодинамической шкале.

Решение

Возьмем за основу соотношение T ( K ) = t ° C + 273 , 15 ° C .

Произведем расчет нижней и верхней границ температуры комфорта по термодинамической шкале:

T = 18 + 273 ≈ 291 ( K ) ; T = 22 + 273 ≈ 295 ( K ) .

Ответ: границы интервала температуры комфорта по термодинамической шкале находятся в интервале от 291 К до 295 К .

Необходимо определить, при какой температуре показания термометров по шкале Цельсия и по шкале Фаренгейта будут одинаковы.

Решение

Температурные шкалы

Возьмем за основу соотношение t ° F = 1 , 8 t ° C + 32 .

По условию задачи температур равны, тогда возможно составить следующее выражение:

Определим из полученной записи переменную x :

x = — 32 0 , 8 = — 40 ° C .

Ответ: при температуре — 40 ° С (или — 40 ° F ) показания термометров по шкалам Цельсия и Фаренгейта будут одинаковы.

Измерение температуры и что такое температура.

В быту и на производстве мы часто обращаемся к «температуре» и «измерение температуры» «термометрами»:

— меряем температуру тела;

— смотрим на уличный термометр за окном, чтобы решить как одеться;

— контроль технологических или химических процессов.

Обычно под температурой мы понимаем просто степень нагретости тела: горячо — жарко, холодно — тепло.

Для точного измерения температуры в рамках какого-либо технологического процесса необходимо создать измерительную систему с учетом всех влияющих факторов. Тот же процесс инкубации яиц, чтобы вывести яйца в инкубаторе необходимо регулировать температуру.

Из четырёх величин Международной системы единиц (СИ), неразрывно связанных с человеческой деятельностью: массой, длиной, временем и температурой, последняя оставалась полной загадкой для человечества вплоть до 18 века.

Но и сегодня не все , кто пользуется различными средствами измерения температуры, понимают , что же они измеряют .

То же давление легко воспринимается, так как оно связано с силой и может быть без труда определено количественно. С температурой невозможно связать количественную величину.

Теория (кратко).

В быту мы оцениваем температуру по ощущениям: горячо, тепло, холодно. Казалось бы, если одно тело горячее другого, то и его температура должна быть больше. Но это не так. Попробуйте взять в разогретой сауне в руку деревянный ковшик и металлический ковшик. Совершенно разные ощущения, хотя температура одна. Но если мы хотим сравнить температуру одинаковых по своей природе объектов, то можем сделать это с высокой точностью.

Рукой можно определить, повышена ли температура другого человека, фактически измерить её с точностью ±0,5⁰С. Также находясь в помещении можно с точностью до 1…2⁰С определить температуру воздуха. Человек хорошо чувствует этот физический параметр и в то же время мало кто сможет чётко сказать, что же это такое — температура.

Совершенно обратная ситуация с влажностью воздуха: очень трудно определить влажность воздуха по своим ощущениям. Однако эта характеристика прекрасно понимается в количественном выражении – это количество молекул воды в единице объёма.

Существуют несколько определений температуры. Одно из них наиболее близкое людям, занимающимся практическими измерениями и исходит из нулевого закона термодинамики:

если два тела находятся в состоянии теплового равновесия, то они имеют одинаковую температуру.

Таким образом, если мы обеспечим хороший тепловой контакт термометра с измеряемой средой, то по прошествии некоторого времени, необходимого для установления теплового равновесия, температуры термометра и среды будут одинаковы. Естественно, что данный вывод будет верен, только если наша система изолирована от других тел и не совершается никакой работы.

Ну а само понимание физической природы температуры приходит только после изучения статистической механики, где температура представлена как мера кинетической энергии тела.

Для корректного изложения вопросов измерения температуры необходимо дать ее точное физическое определение.

Температура — физическая величина, количественно характеризующая меру средней кинетической энергии теплового движения молекул какого-либо тела или вещества.

Из определения температуры следует, что она не может быть колличественно измерена непосредственно и судить о ней можно по изменению других физических свойств тел (объема, давления, электрического сопротивления, термоЭДС, интенсивности излучения и т.д.).

В зависимости от диапазона измеряемых температур различают две основные группы методов измерения:

  • контактные (собственно термометрия) — жидкостные, манометрические, термоэлектрические термометры, термометры сопротивления и др.
  • безконтактные (пирометрия или термометрия излучения), применяемые в основном для измерения очень высоких температур — для измерения криогенных температур используются также газовые, акустические и магнитные термометры.

Кроме того, в системах, не требующих высокой точности измерений, в определенном диапазоне температур широко используются полупроводниковые датчики температуры на диодах, транзисторах и специальных интегральных микросхемах.

Историческая справка.

Первое достоверно известное устройство для измерения температуры было создано Г. Галилеем около 1595 г. Этот прибор (термоскоп) использовал явление изменения объема газа при нагревании и охлаждении. Однако этот прибор (и последующие аналоги) имел большой недостаток: его шкала была относительной и показания не могли быть выражены в численной форме.

Крупным шагом в развитии термометрии было введение изобретателем ртутного термометра Г.Фаренгейтом (G. Fahrenheit) в начале 18 века первой температурной шкалы, названной его именем, опирающейся на две опорные точки. В качестве нижней опорной точки (0°F) он использовал температуру замерзания солевого раствора, самую низкую воспроизводимую в то время, а в качестве верхней точки температуру тела человека (96°F — в старину было удобнее считать дюжинами). Сам изобретатель определял вторую эталонную точку как температуру под мышкой здорового англичанина.

Привычная нам десятичная температурная шкала была предложена А. Цельсием (A. Celsius) в 1742 году. В качестве опорных точек для нее используются температура плавления льда (0°C) и температура кипения воды (100°C).

Наконец, в начале 19 века английским ученым лордом Кельвином (Kelvin) была предложена универсальная абсолютная термодинамическая температурная шкала, ставшая стандартной в современной термометрии. Одновременно Кельвин обосновал понятие абсолютного нуля температуры.

Перевести температуру из одной шкалы в другую можно с помощью следующих простых соотношений:

0°C соответствует 32°F и 273,15 К,

а 100°C — 212°F и 373,15 К.

Выбор между этими опорными точками 100 делений у шкалы Цельсия и 180 делений у шкалы Фаренгейта является чисто условным (как, впрочем, и выбор самих опорных точек).

Для обеспечения единства измерений температуры в качестве международного стандарта в 1968 году принята Международная Практическая Температурная Шкала МПТШ68 (в настоящее время в качестве стандарта принята уточненная в 1990 году версия шкалы ITS90), использующая в качестве опорных точек температуры изменения агрегатного состояния определенных веществ, которые могут быть воспроизведены. Кроме того, стандарт определяет типы образцовых средств измерения во всем диапазоне температур.

Перечень основных фиксированных точек МПТШ68

Наименование Температура, К Образцовое средство измерения
Точка затвердевания золота 1337,58 свыше 1337,58 К — спектральный пирометр
Точка затвердевания серебра 1235,08 от 903,89 К до 1337,58 К — термопара платина/платина%родий (10% Rh)
Точка затвердевания цинка 692,73 от 13,81 К до 903,89 К — платиновый термометр сопротивления
Точка кипения воды 373,15
Тройная точка воды 273,16
Точка кипения кислорода 90,188
Тройная точка кислорода 54,361
Точка кипения неона 27,102
Точка кипения равновесного водорода 20,28

Принято считать, что первый термометр, работающий на расширении воздуха, был изобретён Галилеем примерно в 1592 г. А в 1641 году появился первый, реально работающий спиртовой стеклянный термометр, созданный герцогом Тосканским. С этого момента началось быстрое развитие термометрии. В начале 18-ого века Фаренгейт первым изготовил ртутный стеклянный термометр и предложил температурную шкалу, в которой одной из фиксированных точек служила температура человеческого тела, которую он принял за 96 градусов, а другой – температура таяния льда -32 градуса. Ну а кульминационной точкой в развитии практической термометрии явилось принятие в 1927 году Международной температурной шкалы МТШ-27. В дальнейшем температурная шкала совершенствовалась и расширялась практически до 0 К.

Температура — параметр, который можно измерить только косвенно, по изменению других физических параметров. Термометрию различают на первичную и вторичную. В первичной термометрии температура явно описывается через другие физические параметры, например для газовых термометров это давление и объём. Примерами вторичных термометров являются термометры сопротивления и термопары. В промышленности термометры сопротивления и термопары являются основными средствами контроля температуры, закрывая диапазон измерения от минус 200 до + 2500⁰С и более.

В последнее время платиновые термосопротивления активно начали вытеснять медные и термопары . Связано это с появлением на рынке недорогих платиновых плёночных термочувствительных элементов, которые в отличие от медных являются более стабильными и работают в более широком диапазоне температур. А по сравнению с термопарами — обеспечивают более высокую точность измерения и не требуют использования дорогого термокомпенсационного кабеля.

Однако в России медные термометры до сих пор находят широкое применение. Одно из основных преимуществ меди — это очень хорошая линейная зависимость её сопротивления от температуры в диапазоне от минус 50 до + 200⁰С и более высокая чем у платины чувствительность. Свыше 200⁰С медь начинает очень быстро окисляться на воздухе, поэтому обычно верхний предел измерения для медных термосопротивлений устанавливается до 180⁰С. При производстве используется проволока диаметром от 30 до 80 мкм. При дальнейшем уменьшении диаметра стоимость проволоки резко возрастает, а изготовление термосопротивления с заданными параметрами становится проблематичным.

Также следует обращать внимание на максимальный измерительный ток. Например, для термометров сопротивления, изготовленных из проволоки диаметром 30 мкм уже при токе 0,2мА становится заметным явление саморазогрева от протекающего тока, а значит, использование таких термометров с большинством измерительных приборов становится невозможным. Обычно диаметр используемой проволоки определяется исходя из диаметра зонда, в который будет устанавливаться проволочный чувствительный элемент. Например, для зонда диаметром 2 мм используют проволоку диаметром 30 мкм, 4 мм – 40 мкм, 5…6 мм – 50 мкм, 8…10 мм- 80 мкм.

Большое значение имеет схема соединения проводников термосопротивления. Различают три основных схемы: 2-х, 3-х и 4-х проводную.

При двухпроводной схеме к сопротивлению ЧЭ добавляется сопротивление внешних проводов, что приводит к появлению дополнительной погрешности измерения. Ясно, что такой способ можно использовать только для ЧЭ с большим сопротивлением. Из наиболее употребляемых — это Pt1000. Легко подсчитать, что для обеспечения точности измерения 0,1⁰С общее сопротивление внешних проводников не должно быть больше 3,8 Ом.

В трёхпроводной схеме подключения автоматически из полного сопротивления вычитается сопротивление внешних проводов. Но это только в случае, если сопротивление проводников 1 и 2 трёхпроводной схемы равны между собой. Тем не менее, 3-х проводная схема подключения термосопротивлений на сегодняшний момент является самой популярной. Практически все вторичные приборы (измерители, регуляторы) имеют входные цепи, рассчитанные под эту схему. Трёхпроводная схема позволяет увеличить расстояние от датчика до прибора до 50…100 метров. При этом не обязательно, чтобы сам термометр сопротивления был изготовлен по 3-х проводной схеме. Можно использовать и датчики с двумя клеммами, подключив к одной клемме один провод, а ко второй – два.

Четырёхпроводная схема используется в основном только для точных измерений и в эталонных приборах. Данная схема позволяет автоматически компенсировать влияние на результат измерения не только сопротивления проводников, но и ЭДС в местах контактов.

Советы при выборе и монтаже термометров сопротивления

Есть банальные истины, которыми нужно руководствоваться при выборе подходящего датчика температуры. Конечно же, нужно в первую очередь обратить внимание на диапазон измерения и точность. Во-вторых, нужно решить вопрос с основным конструктивным исполнением: в клеммной головке, или с кабельным выводом. Датчики с кабельным выводом более миниатюрны и менее инерционны. Они уже полностью готовы к подключению к вторичному прибору. Но вышеперечисленные преимущества одновременно являются и их недостатками. Миниатюрный корпус – следовательно, небольшой размер чувствительного элемента и малый измерительный ток. Жёстко присоединённый кабель несёт за собой худшую, чем для датчиков в клеммной головке степень защиты от воды. Эти датчики заведомо дороже из-за высокой стоимости применяемого высокотемпературного кабеля. Они менее надёжны при механических воздействиях опять-таки из-за наличия кабеля. С термосопротивлением в клеммной головке не обязательно использовать высокотемпературный кабель. Минус этих датчиков в одном – габаритных размерах, что бывает важно в ряде случаем.

При монтаже датчика температуры нужно максимально увеличить его тепловой контакт с контролируемой средой и одновременно уменьшить отток тепла от места подключения. Необходимо помнить, что чувствительный элемент имеет конечную длину, поэтому глубина погружения датчика должна быть как минимум на несколько диаметров зонда больше, чем длина ЧЭ. При монтаже датчиков контроля поверхности очень важно место соединения предварительно смазать каким-либо вязким веществом. Также важно обеспечить тепловой контакт кабеля с контролируемым объектом, чтобы минимизировать отвод тепла от ЧЭ датчика по кабелю. Ещё лучше, если и датчик и подводящий кабель будут закрыты хорошим теплоизолятором, например пенополиуретаном, или пенополиэтиленом.

Датчики температуры воздуха лучше устанавливать в тех местах помещения, которые наиболее важны для контроля. При плохой конвекции воздуха в помещении градиент температуры может составить до 5-ти и более градусов.

При экспресс контроле температуры поверхности теплоёмкость датчика должна быть минимальной. Дело в том, что самое большое зло при контактном способе измерения температуры поверхности состоит в том, что датчик уменьшает температуру поверхности в месте установки. Процесс восстановления начальной температуры может идти очень долго, что зачастую приводит к неправильным результатам и выводам. Примером может служить ситуация с «занижением» показаний медицинских электронных термометров.

По сравнению с термометрами сопротивления термопары обладают рядом очень больших преимуществ и таких же больших недостатков. По большому счёту эти два класса приборов очень органично дополняют друг друга. И задача киповца — определить, какой датчик температуры ему нужен для той или иной задачи.

Термопары имеют очень большой диапазон рабочих температур. При этом, чем больше максимальная рабочая температура термопары, тем меньше её чувствительность. С этим фактом связан большой ассортимент применяемых термопар. При помощи термопар можно измерять температуру очень маленьких объектов. Для этого достаточно сварить между собой две термоэлектродные проволоки маленького диаметра. Естественно, что такая термопара имеет и очень незначительную инерционность. Термопара из недрагоценных металлов малой длины дешевле термосопротивления. Однако при увеличении длины стоимость её значительно возрастает. В то же время термопары значительно уступают термосопротивлениям в точности измерения. Связано это с рядом причин. Сигнал с термопары значительно более нелинеен. Для получения абсолютной измеренной температуры необходимо знать температуру холодного спая термопары. А это означает, что общая погрешность измерения сложится из двух: погрешности измерения разности температур рабочего и холодного спая термопары и погрешности измерения температуры холодного спая. На практике же всё ещё сложнее. Очень непросто измерить с хорошей точностью температуру выводов термопары на входе вторичного прибора. На практике эта погрешность составляет около 1⁰С. При измерении высоких температур значение данной погрешности несколько нивелируется.

Советы по выбору и применению термопар

Для использования в диапазоне до +200⁰С лучше применять платиновые или медные термосопротивления. В случае контроля температуры очень небольшого объекта малой теплоёмкости можно использовать термопару медь-константан, которая замечательна тем, что очень легко сваривается над поверхностью раствора медного купороса, имеет самую высокую чувствительность и очень низкую стоимость.

Для диапазона до +800⁰С в России используется термопара ХК(L) хромель-копель. Данные термопары имеют очень высокую чувствительность в широком диапазоне начиная от -200⁰С. В других странах данный тип термопары не применяется. Самыми популярными в промышленности являются термопары типа ХА(К) хромель-алюмелевые. Теоретический диапазон их использования составляет от -200 до +1300⁰С. Термопары типа К замечательны хорошей линейностью характеристики от 0 до 1000⁰С. В реальности наиболее высокотемпературные термопары работают до 1100⁰С. Так как при высокой температуре от +800⁰С термоэлектродные проволоки начинают активно окисляться, то единственным путём увеличить срок службы термопары и температуру эксплуатации является увеличение диаметра термоэлектродных проволок до 2…3 мм. При температуре выше 800⁰С нержавеющую сталь кожуха меняют на специальную высокотемпературную сталь или керамику.

Для измерения температуры вплоть до +1700⁰С применяют термопары, изготовленные из драгоценных металлов платиновой группы. Они отличаются высокой стабильностью параметров, но имеют крайне низкую чувствительность при низких температурах и очень высокую стоимость. Наиболее высокотемпературные термопары – вольфрам-рениевые. Но они не могут работать в окислительной атмосфере при температуре уже выше 500⁰С. Оболочку этих датчиков необходимо наполнять инертным газом. Так как герметичный корпус для высоких температур изготовить проблематично, то для продолжительной работы по внутренней полости этих термопар постоянно пропускают инертный газ.

Для контроля температуры поверхности или воздуха лучше применять гибкую термопару без защитного чехла. Для контроля поверхности нужно обеспечить хороший тепловой контакт с поверхностью не только рабочего конца термопары, но и термоэлектродов на расстоянии не менее 50 мм, чтобы уменьшить теплоотвод от места контроля. При использовании термопары при высокой температуре в окислительной или агрессивной атмосфере может наблюдаться деградация параметров, связанная с окислением и изменением химического состава термоэлектродов. Необходимо периодически контролировать качество термопары хотя бы по её полному сопротивлению постоянному току. Для использования в экстремальных условиях в течение непродолжительного времени существуют ТП разового применения и ТП кратковременного применения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *