Что такое электромагнитное поле
Перейти к содержимому

Что такое электромагнитное поле

  • автор:

 

Электромагнитное поле это математическая фантазия

Жанр данной статьи пришлось написать политика. Почему?
Если бы ошибки в физике были по недопониманию "учёных", то я бы выбрал жанр — критика.
Но ошибки на самом деле специально засунуты в фундаментальную физику.
Кроме того, они утверждены программой образования и все обязаны их зазубривать.

Максвелл (1831 – 1879 г.) предполагал, что электромагнитное излучение (фотоны) представляет собой электромагнитное поле. О том, что это всего лишь предположение, написано в любой энциклопедии. Экспериментально это никогда не подтверждалось. Заглянем в любую энциклопедию и убедимся, что никаких доказательств, подтверждающих существование электромагнитного поля, вытекающих из законов Кулона, Ампера, Фарадея-Ленца, не существует, а тем более экспериментальных.
Напротив, предположения Максвелла, как сейчас увидим, просто противоречат законам Кулона, Ампера, Фарадея-Ленца.
А что есть? Есть только предположение Максвелла, фальшивые исходные уравнения и фальшивые коэффициенты в формулах Кулона и Ампера, введённые Максвеллом, а также выдуманные вихревые электрические токи и всякие другие выдумки типа формулы .
Раз его предположение экспериментально не подтверждается, тогда Максвелл решил создать электромагнитное поле математически. Смысл его предположений состоял в том, что электрическое поле создаёт магнитное и наоборот. Таким образом, был как бы конец теории, но не было начала, экспериментально подтверждённого. Это начало Максвелл стал придумывать. Но начало должно быть таким, чтобы получилось именно то, что хотел Максвелл. Для этого необходимо исходное подогнать так, чтобы всё совпадало с ответом. Так нередко поступают нерадивые студенты, зная ответ. Но, как сейчас увидите, Максвеллу пришлось производить подлог и фальсификации, прикрываясь именами великих учёных-экспериментаторов.
Максвелл первым нарушил, введённое Галилео Галилеем правило, что всё должно подтверждаться экспериментально.
Этим Максвелл нанёс самый большой вред физике.
Вы догадались, что происходило в науке. Одни искали, думали, делали открытия. Другие думали, как бы всё это запутать. И придумали. Физику решили подменить как можно сложнейшей математикой. Этим занялся сам Максвелл, будучи в то время руководителем масонской ложи. Если Эйлер взял просто и подсунул, в качестве перевода, ошибочную механику Гюйгенса, назвав её при этом законами Ньютона, то Максвелл вообще встал на путь придумывания теорий и формул. Впервые после заявления Галилея о том, что отныне всё будет основываться на экспериментах, Максвелл похоронил такой принцип. В 1864 году Максвелл объявил, что придумал ”гениальную“ формулу . Через эту ”гениальную“ формулу он ”вывел“ коэффициенты к формулам Кулона и Ампера. Затем он придумал четыре уравнения, которые якобы описывают экспериментально не существующее электромагнитное поле. Так появились в физике фальшивые уравнения и коэффициенты Максвелла и многое другое, конечно, всё ошибочное. Наступило время придумывания и описание придуманного математически, но чтобы было как можно сложнее. Почему сложнее? Потому, чтобы только самые ”умные“ могли это выучить. Потом в 20 веке для окончательного одурачивания придумают ещё одну дополнительную физику, назвав её ”квантовой механикой“ со сложным математическим аппаратом.
Итак, что придумал Максвелл?
Лжевихревые электрические токи. В “современной” физике утверждается, что существуют вихревые электрические токи. Однако вихревых электрических токов в природе не бывает.
Рассмотрим, в каких случаях вообще может появиться электрический ток?
1. Если имеется два заряда разной величины, то по закону Кулона между зарядами существует электрическое поле. Если эти заряды соединить проводником, то по нему потечёт электрический ток. В данном случае наличие двух зарядов является обязательным.
2. Если имеется два проводника, обращающихся один относительно другого, и по одному из них протекает электрический ток, то во втором проводнике возникнет электрический ток противоположного направления. В качестве проводника с электрическим током можно использовать постоянный магнит.
3. Если имеется трансформатор с переменным электрическим током в первичной обмотке, то во вторичной обмотке возникнет электрический ток противоположного направления.
Теперь рассмотрим, на каком основании “современная” физика утверждает, что вихревые токи существуют в проводниках?
Вот, пожалуйста, посмотрите как Вас обманывают:
“Из закона Фарадея следует, что изменение магнитного потока производит индуцированное электрическое поле даже в пустом пространстве. Если металлическая пластина вставляется в это пространство, индуцированное электрическое поле приводит к появлению электрического тока в металле. Эти индуцированные токи называются вихревые токи” (из учебника).
Это обман и подтасовка. У Фарадея такого нет.
У Фарадея его закон звучит следующим образом: электродвижущая сила индукции пропорциональна скорости изменения магнитного потока . Направление наведённого при этом электрического тока определяется по закону Ленца — правилу правой руки. Правило правой руки — это не что иное, как один из законов природы. Закон такой же, как и все остальные. И пренебрегать этими законами нельзя. Никакого индуцированного электрического поля нет, и Фарадей о нём не упоминает.
В учебнике написано “следует”. А, то в чём Вас стараются убедить, вовсе из этого не следует. Нужны экспериментальные доказательства, а не ссылка на фальшивую математическую теорию Максвелла. Теория Максвелла — это фальшивка.
А как на самом деле?
Эфирные частицы магнитного поля (заметьте магнитного поля), а не электрического поля, толкают электроны в проводнике только в прямом направлении по правилу правой руки.
Вихревых токов никогда и нигде не существует. Совершенно не важно, какое поле создаёт электрический ток, в любом случае заряды движутся по законам природы, которые не предусматривают образование вихревых токов.
Магнитное поле не создаёт электрическое поле.
Фальшивое предположение о том, что “магнитное поле рождает электрическое поле и наоборот есть только в математической фантазии Максвелла об электромагнитном поле, существование которого экспериментально не подтверждается” (из энциклопедии).
Что представляет собой математическая теория Максвелла?
Это всего на всего четыре фальшивых уравнения никакого отношения, не имеющие с законами Фарадея, Кулона, Ампера и Ленца. А даже, наоборот, противоречащие им.
В математической теории Максвелла исходными стали четыре уравнения. Математика, если не делать ошибок, наука точная, что поставишь на вход, то и получишь на выходе. Нового она ничего не даст. Для нового нужны эксперименты. Если на вход поставишь уравнение, которое описывает, как из электрического поля получается магнитное (первое уравнение), а из магнитного поля получается электрическое (второе уравнение), то на выходе будет, то же самое.
Первое уравнение Максвелл назвал теоремой Фарадея. У Фарадея такого нет. Это не ошибка, а обман, подтасовка и подлог. Фарадей бы возмутился этому. У Фарадея его закон звучит следующим образом: электродвижущая сила индукции пропорциональна скорости изменения магнитного потока . С учётом вывода Ленца закон принимает вид . В лжеэнциклопедии ВИКИПЕДИЯ к уравнению Максвелла дан и рисунок кругового вихря напряжённости электрического поля, из каждой точки которого рождается магнитная индукция. Но в электрическом поле – поле заряженного конденсатора никаких круговых вихрей быть не может.
Эфирные частицы магнитного, а не электрического поля толкают электроны по правилу правой руки только прямо. Механизм переноса силового взаимодействия у частиц электрических и магнитных полей разный по природе.
ЭДС и электрический ток в проводнике вызывается только магнитным полем. Кроме того, ток не вихревой, а прямой по правилу правой руки.
Совершенно аналогично подтасовано и второе уравнение, которое Максвелл назвал теоремой Ампера.
Всё приведённое в исходных уравнениях Максвелла не соответствует действительности и противоречит законам Кулона, Ампера, Фарадея-Ленца, которые ничего общего с фантазиями Максвелла не имеют. Очень наглядно это подтверждает моя эфирная теория. Электрическое поле возникает лишь тогда, когда появляется эфирная тень от других неподвижных зарядов, поэтому теорема Гаусса не имеет физического смысла.
Электрическое поле – это потоки переизлученных эфирных частиц (фотоников) между неподвижными зарядами. Переносчики взаимодействия фотоники ( , ). Электрическое поле – это поле заряженного конденсатора. Нет второго заряда, нет и электрического поля. Когда заряд один, то вторая обкладка конденсатора отсутствует. Конденсатора, как такового, нет. Ёмкость равна нулю.
Вот про ёмкость в системе СИ: ”Фарада, единица электрической ёмкости. Фарада – ёмкость конденсатора (заметьте не заряда, а конденсатора), на обкладках которого при заряде 1 Кл возникает электрическое напряжение 1 В“. То есть электрическое поле может быть только между зарядами. Если два разноимённых заряда соединить проводником, то по проводнику потечёт эл. ток. Потоки, переизлученных фотоников от отрицательного заряда, будут отталкивать электроны к противоположному заряду, а потоки, переизлученных фотоников от положительного заряда, будут притягивать электроны к положительному заряду. Таким образом, эл. ток – это перемещение зарядов между двумя зарядами.
Нет двух зарядов – нет и эл. тока между ними и, соответственно, нет электрического поля.
Аналогично, магнитное поле возникает лишь тогда, когда появляется эфирная тень от других движущихся зарядов, поэтому теорема Био-Савара-Лапласа также не имеет физического смысла. Если проводник с эл. током один и прямой, то магнитного поля вокруг него не будет. Индуктивность одного прямого проводника с эл. током равна нулю, соответственно, не будет вокруг проводника и магнитного поля. Вот про индуктивность в системе СИ: ”Генри, единица индуктивности. Генри равен индуктивности контура (заметьте, контура, а не прямого проводника), в котором возникает ЭДС самоиндукции в 1 В при равномерном изменении силы тока в этом контуре на 1 А за 1 с“.
Что надо сделать, чтобы магнитное поле появилось?
Вообще слово взаимодействие подсказывает, что взаимодействие может происходить только между, как минимум двумя компонентами взаимодействия.
Магнитное поле – это потоки, переизлученных эфирных частиц (фотоников), между проводниками с эл. током (движущимися зарядами). Переносчиком взаимодействия являются фотоники ( , ).
Взаимодействие электрических и магнитных полей переносится массой эфирных частиц в виде инерции.
Других видов переноса взаимодействия в природе не существует. Чтобы появилось магнитное поле (потоки переизлученных эфирных частиц фотоников от движущихся зарядов), необходима эфирная тень от других движущихся зарядов. То есть нужен второй проводник с эл. током. Или прямой проводник превратить в виток (условно будет два проводника). Появится эфирная тень между движущимися зарядами, и появятся потоки переизлученных движущимися зарядами фотоников. И электрическое поле, и магнитное поле – это результат взаимодействия либо между неподвижными зарядами, либо между движущимися зарядами. Итак, мы рассмотрели причины возникновения электрического поля, электрического тока и магнитного поля.
Можно сделать вывод. Исходные уравнения, заложенные Максвеллом в систему уравнений, мягко сказать ошибочные. Одиночный заряд не имеет электрического поля. Теорема Гаусса ошибочна. Такая же ситуация и с магнитным полем вокруг прямого проводника с эл. током. Теорема Био-Савара-Лапласа также ошибочна. Первые два уравнения из системы уравнений Максвелла, что Максвелл “назвал” и “преподнёс” как теорему Фарадея и теорему Ампера просто не соответствуют действительности. Первые два уравнения фальшивые. Эл. ток не создаёт магнитное поле. Магнитное поле возникает только тогда, когда есть проводники с эл. током или хотя бы один виток проводника с эл. током. Электрические и магнитные поля – это результат взаимодействия неподвижных или движущихся зарядов с участием эфира, переносчика силового взаимодействия.
Сказать, что из электрического поля появляется магнитное – это мягко сказать заблуждение. Но вообще-то это обман.
В природе есть электромагнитное излучение всех диапазонов частот — фотоны. Фотон — это частица, обладающая свойствами дифракции и интерференции. Волна – это колебательный процесс, который распространяется. Считается, что колебания якобы совершают электрические и магнитные поля. Для доказательства приводят рисунок Максвелла с напряжённостями электрических и магнитных полей, плоскости которых расположены под углом друг к другу, а фазы совпадают. Но этим рисунком Максвелл противоречит всей своей теории, согласно которой электрическое поле создаёт магнитное, и, наоборот. А на рисунке оба поля то сразу исчезают в никуда, то появляются вновь из ниоткуда, ведь фазы совпадают. Соответственно, нарушается закон сохранения массы и энергии. Энергия и масса исчезать не могут, а также появляться из ничего. Кроме того, электрическое поле и эл. ток в нём создают заряды, а магнитное – эл. токи. Где в фотоне заряды и где в фотоне эл. токи?
Чушь какая-то.
Что говорят об этом эксперименты? Фотоны не взаимодействуют ни с электрическими, ни с магнитными полями и поэтому ни электрическими, ни магнитными свойствами не обладают. Фотоны электронейтральны.
Придуманные Максвеллом уравнения описывают какое-то поле, которого в природе не существует. Кроме этого, Максвеллу пришлось без экспериментов ”дополнить“ формулы законов Кулона и Ампера, введя в них коэффициенты и , вычисленные один через другой так, чтобы получалась придуманная им формула .
Рассмотрим формулу закона Кулона, описывающую взаимодействие между неподвижными зарядами и формулу закона Ампера, описывающую взаимодействие проводников с электрическим током , где и коэффициенты пропорциональности. Эти две формулы получены экспериментально Кулоном и Ампером, кроме экспериментов по вычислению коэффициентов и . Чтобы было понятно, что такое коэффициенты пропорциональности и , необходимо рассмотреть формулу закона Ньютона.
В 1683 г. Ньютон на основании анализа законов Кеплера теоретически связал зависимость гравитационного взаимодействия между телами и расстоянием между ними. Коэффициент пропорциональности — гравитационная постоянная как единичная сила взаимодействия в формуле отсутствовала. Все расчёты производились через пропорциональность другим величинам. Например, средняя плотность Земли 5,48 плотностей воды. Или, масса Луны в 81 раз меньше массы Земли. В астрономии это применяется до сих пор.
Что такое коэффициент пропорциональности?
Коэффициент пропорциональности должен быть получен только экспериментально. Он должен согласовать размерности левой и правой частей уравнения, а также содержать в себе численную величину единичной силы взаимодействия. В формулах силовых взаимодействий (гравитационное, электростатическое и магнитное) коэффициент пропорциональности лучше называть единичная сила взаимодействия. Как дальше увидите, в единичной силе взаимодействия, никаких быть не может. Только показания динамометра.
Для , и эта единичная сила (показания динамометра или устройства выполняющее его роль) оказалась равной . Эта единичная сила и является гравитационной постоянной, характеристикой среды, которая переносит силовое взаимодействие. Эта единичная сила должна быть вычислена обязательно в результате эксперимента и не может содержать в себе никаких констант типа потому, что между массами измеряется только сила взаимодействия.
Формула Ньютона – это образец как надо поступать в науке. С другими формулами по взаимодействиям дела обстоят не так хорошо, там коэффициенты пропорциональности фальшивые.
В 1785 г. Кулон экспериментально нашёл зависимость взаимодействия между неподвижными зарядами . Но коэффициент пропорциональности как единичная сила не был экспериментально вычислен. Тогда ещё не было методики измерения величины электрических зарядов. В такой же ситуации оказался и Ампер. В 1820 г. Ампер экспериментально нашёл зависимость взаимодействия между проводниками с электрическим током . Но коэффициент пропорциональности как единичная сила не был экспериментально вычислен. В 1864 г. Максвелл придумал коэффициенты сразу одновременно для формулы Кулона и для формулы Ампера так, чтобы из них получалась придуманная им формула . Эти коэффициенты вычислены один через другой и скорость света. Придумывать формулы нельзя. Формулы должны быть только экспериментально подтверждённые.
Однако в формулах Кулона и Ампера коэффициенты пропорциональности так же, как и формуле Ньютона, должны быть вычислены в результате экспериментов (показания динамометра или устройства, выполняющего его роль), как единичные силы и также должны согласовывать размерности правой и левой частей уравнений. В формуле Кулона коэффициент пропорциональности является единичной силой и характеристикой электрического поля, переносчика силового взаимодействия или электрической постоянной. Только этот коэффициент может быть электрической постоянной. Аналогично должен быть магнитной постоянной. Эта подмена коэффициентов является просто жульничеством, замаскированным якобы переводом размерности из СГС в СИ. Эти коэффициенты должны быть экспериментальными и не могут состоять из набора констант.
Теперь о самом процессе жульничества Максвелла с коэффициентами и . Нет, нет, это не ошибки – это жульничество. Откуда и как Максвелл ”вывел“ коэффициенты пропорциональности к формулам Кулона и Ампера?
Он начал эту фальсификацию с определения единицы силы тока 1А. Вот определение единицы силы тока.
За силу тока 1А принимают эл. ток, который, протекая, по каждому из двух параллельно расположенных в вакууме тонких проводов бесконечной длины на расстоянии 1м друг от друга, вызывает силу магнитного взаимодействия равную на каждый метр длины. Вот формула Ампера .
Если , , , , тогда — это показания динамометра.
Первое жульничество Максвелла.
Тут с очень мелкого, казалось бы, эпизода начинается жульничество Максвелла. В определение силы тока 1А специально закладывается первое жульничество: применяется не , а именно, . Дело в том, что эта двойка далее понадобится Максвеллу в константе 4 .
Второе жульничество Максвелла.
Итак, экспериментом для закона Ампера посчитали эксперимент при определении силы тока 1А. Из этого эксперимента видно, что коэффициент пропорциональности, единичная сила взаимодействия равна . Но не тут-то было. Если у Ампера формула выглядит или , то Максвелл преподносит её как (запись из учебника) . Вот и появилось второе жульничество , а это значит, что ни с того, ни с сего взяли и увеличили силу взаимодействия в раза, по сравнению с экспериментом. Величина коэффициента должно быть показание динамометра, а подсовывают , а потом предлагается вообще . Теперь видно для чего нужна была цифра два. Как будто бы без неё нельзя было давать определение силе тока 1А. В представленной Максвеллом формуле лишними являются и . А этого быть не должно, так как кроме численного показания динамометра в эксперименте ничего нет. Вот Вам теперь фальшивое значение, не знаю, как и назвать, . Но это не соответствует эксперименту и действительности. Это не магнитная постоянная. Магнитная постоянная – это характеристика среды переносящей силовое взаимодействие между проводниками с эл. током. Измеряется динамометром между проводами с эл. током в результате эксперимента. И в эксперименте оно устанавливалось как .
Третье жульничество Максвелла рассчитано на невежество в физике. Рассмотрим как Максвелл ”вывел“ коэффициент пропорциональности, он же единичная сила взаимодействия между неподвижными зарядами формулы Кулона. Эксперимента не будет, жульничать легче на бумаге. Формула закона Кулона: , где — это показания динамометра. Максвелл устанавливает (назначает) коэффициент пропорциональности для формулы Кулона равным единице в единицах СГС. Это подтверждает, что эксперимента не было и не будет. Без эксперимента заявляется, что два заряда по единице каждый на расстоянии между ними равным единице длины в СГС равны 1 дине. Каким невежеством надо обладать, чтобы без эксперимента такое объявить, а остальным это принять. Вдумайтесь, что заставляют Вас зубрить с помощью утверждённой программы образования. Это ведь чушь.
В СИ предлагается, естественно, без эксперимента
.
Сокращённо это же предлагается записывать как
, где .
Откуда всё это взялось? Это взялось из четвёртого жульничества Максвелла — придуманной им формулы . Ведь, если не придумать эту формулу, то без эксперимента не ”вывести“ коэффициент пропорциональности . И что, получается. Берётся фальшивый коэффициент и придуманная формула , а из них, пожалуйста, фальшивый .
Вывод. Коэффициенты и , не являются экспериментальными. Они фальшивые, придуманные Максвеллом. Вот такова ”современная“ физика, якобы экспериментальная.
Возникает вопрос. Раз коэффициенты пропорциональности
(единичные силы) в формулах Кулона и Ампера фальшивые, придуманные Максвеллом, тогда как это влияет на все расчёты, связанные с этими формулами? Ответ на этот вопрос находится в прочитанном Вами разделе. В 17 и до середины 19 века коэффициенты пропорциональности отсутствовали вообще. И что? Да ничего. Все пользовались пропорциональным исчислением друг относительно друга. Например. Луна меньше Земли в 81 раз, плотность Земли 5,48 плотностей воды. Это и сейчас осталось в астрономии и частично в физике. Плотность воды ведь принята за единицу.
Теперь у Вас коэффициенты пропорциональности в формулах силовых взаимодействий ошибочные (фальшивые). Ну и что? Как и в 17 веке получается пропорциональное исчисление, но теперь уже относительно ошибочного (фальшивого) коэффициента. Ничего особенного и не произошло. Ведь жили же до середины 19 века с пропорциональным исчислением.
Но наука – это представления человека о природе. Согласитесь, ведь лучше, когда эти представления ближе к реальной природе, а не выдуманные очередным “гением”. Лучше будет, если коэффициенты будут экспериментально полученные. Но чтобы до этого добраться, нужна свобода научной информации и дискуссий. А пока всё, что противоречит теории ”Большого Взрыва“ и теориям Эйнштейна является лженаукой.
Доставшаяся нам по наследству терминология крайне нелогична и противоречива.
Например. Термин – электромагнитное взаимодействие.
Это взаимодействие включает в себя два самостоятельных взаимодействия. Электромагнитное взаимодействие между неподвижными зарядами – это электрические поля. Так и название должно быть электрическое взаимодействие. Электромагнитное взаимодействие между движущимися зарядами – это магнитные поля. Так и название должно быть магнитное взаимодействие.
Хорошо, что в этих терминах присутствует слово взаимодействие. Оно указывает, что взаимодействие может быть только между чем-то (два заряда, два проводника), то есть как минимум два взаимодействующих объекта. Если объект один, то взаимодействовать не с чем, и никакого поля нет.
Электромагнитное взаимодействие и электромагнитное излучение – это разные процессы в природе. А названия одинаковые. Это, чтобы Вас запутывать. А электромагнитных полей и электромагнитных волн в природе вообще нет. Электромагнитное излучение лучше называть просто излучение или фотоны. Как получилось, что электромагнитных полей в природе нет, а математическое описание их есть с 1864 г.? И это включено в 1905 г. в утверждённую программу образования и обязательно для всех. В этом заслуга Максвелла. С тех пор всем это необходимо заучивать. Вызывает сожаление тот факт, что если раньше Вас заставляли учить и сдавать экзамены по ошибочным теориям и формулам с запутанной терминологией, то теперь это заставляют делать Ваших детей и внуков. Не будьте к этому равнодушны, постарайтесь в этом разобраться и сделать соответствующие выводы. Задайте себе вопрос: “Почему в науке физике запрещены дискуссии? Кому это нужно? Почему нас дурачат?“

Статья с формулами в разделе рецензии

Используемые источники
1. Николаев С.А. “Эволюционный круговорот материи во Вселенной”, 8-ое издание,
СПб, 2015 г., 320 с.

Портал Проза.ру предоставляет авторам возможность свободной публикации своих литературных произведений в сети Интернет на основании пользовательского договора. Все авторские права на произведения принадлежат авторам и охраняются законом. Перепечатка произведений возможна только с согласия его автора, к которому вы можете обратиться на его авторской странице. Ответственность за тексты произведений авторы несут самостоятельно на основании правил публикации и законодательства Российской Федерации. Данные пользователей обрабатываются на основании Политики обработки персональных данных. Вы также можете посмотреть более подробную информацию о портале и связаться с администрацией.

Ежедневная аудитория портала Проза.ру – порядка 100 тысяч посетителей, которые в общей сумме просматривают более полумиллиона страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.

© Все права принадлежат авторам, 2000-2023. Портал работает под эгидой Российского союза писателей. 18+

Что такое электромагнитные поля?

Электрические поля возникают за счет разницы напряжений: чем больше электрическое напряжение, тем более сильным будет возникающее поле. Магнитные поля возникают там, где проходит электрический ток: чем сильнее ток, тем сильнее магнитное поле. Электрическое поле есть даже при отсутствии электрического тока. Если имеется электрический ток, то сила магнитного поля будет меняться в зависимости от расхода электроэнергии, а сила электрического поля остается при этом постоянной.
(Выдержка из брошюры «Электромагнитные поля», опубликованной Европейским региональным бюро ВОЗ в 1999 г. (серия справочных брошюр для местных органов власти по вопросам здоровья и окружающей среды; 32).

Природные источники электромагнитных полей

Электромагнитные поля (ЭМП) окружают нас повсюду, оставаясь при этом невидимыми человеческому глазу. Электрические поля образуются при возникновении в атмосфере электрических зарядов, вызванных грозой. Магнитное поле Земли заставляет иглу компаса всегда указывать направление «север–юг» и помогает птицам и рыбам ориентироваться в пространстве.

Антропогенные (искусственные) источники электромагнитных полей

Помимо ЭМП, возникающих за счет природных источников, в спектре электромагнитных полей есть и те, которые создаются антропогенными источниками: например, рентгеновские лучи, используемые для диагностирования переломов конечностей в результате спортивных травм. Электричество в каждой штепсельной розетке ведет к образованию сопутствующих ЭМП низкой частоты. Различные радиоволны более высокой частоты используются для передачи информации при помощи ТВ антенн, радиостанций или базовых станций мобильной связи.

Одна из основных характеристик электромагнитного поля – это его частота или соответствующая длина волны. Поля различной частоты воздействуют на организм по-разному. Вы можете попытаться представить электромагнитные волны в виде череды регулярно повторяющихся волн огромной скорости, равной скорости света. Частота – это показатель, который просто указывает число колебаний или циклов в секунду, а термин «длина волны» используется для определения расстояния между следующими одна за другой волнами. Следовательно, длина и частота волны тесно взаимосвязаны: чем выше частота, тем короче длина волны.

Проведение простого сравнения поможет лучше проиллюстрировать вышеизложенное: привяжите длинную веревку к дверной ручке, а свободный конец веревки держите в руке. Если вы будете медленно поднимать и опускать руку с веревкой, то образуется одна большая волна; если же движения будут более быстрыми, то это приведет к возникновению целой серии небольших волн. Длина веревки при этом остается постоянной, а значит, чем больше волн вы создадите (то есть, волн более высокой частоты), тем меньше будет расстояние между ними (то есть, длина волны будет короче).

Воздействие электромагнитных полей – это не новое явление. Однако, в течение XX века воздействие антропогенных электромагнитных полей в окружающей нас среде неуклонно возрастало по мере того, как увеличивающийся спрос на электроэнергию, непрерывно развивающиеся технологии и изменяющиеся формы социального поведения приводили к созданию все большего числа искусственных источников ЭМП. На каждого из нас воздействует целый комплекс слабых электрических и магнитных полей, как дома, так и на работе, в результате производства и передачи электроэнергии, использования бытовой техники и промышленного оборудования, средств телекоммуникации и радио- и телевещания.

Очень слабые электрические токи образуются в теле человека в результате химических реакций, происходящих в ходе нормального функционирования организма, даже при отсутствии внешних электрических полей. Например, нервы передают сигналы при помощи электрических импульсов. Большинство биохимических реакций (от биохимии пищеварения, до деятельности мозга) сопровождается перераспределением заряженных частиц. Даже сердце является электрически активным: ваш доктор может проследить это при помощи электрокардиограммы.

Электрические поля низкой частоты воздействуют на организм человека точно так же, как на любой другой материал, состоящий из заряженных частиц. Когда электрические поля воздействуют на электропроводные материалы, они влияют на распределение электрических зарядов на поверхности таких материалов. Электрические поля являются причиной того, что электрический ток проходит через тело человека и уходит в землю.

Низкочастотные магнитные поля индуцируют циркулирующие токи в организме человека. Сила этих токов зависит от интенсивности внешнего магнитного поля. Если токи достаточно сильные, они могут оказывать возбуждающее действие на нервы и мускулатуру, а также влиять на другие биологические процессы.

Как электрические, так и магнитные поля могут индуцировать напряжение и токи в организме человека, но даже если человек находится непосредственно под высоковольтной линией электропередач (ЛЭП), индуцированные токи очень слабы в сравнении с пороговыми значениями для возникновения состояния шока или других последствий, обусловленных электричеством.

Нагревание является основным биологическим эффектом от радиочастотных электромагнитных полей. Этот эффект использован в микроволновых печах для подогрева пищи. Уровни радиочастотных полей, воздействию которых обычно подвергаются люди, гораздо ниже уровней, способных вызвать значительное нагревание внутренних тканей организма.

Ученые исследуют вероятность того, что при продолжительном воздействии поля ниже порогового уровня могут вызвать эффекты нагревания внутренних тканей организма. На сегодняшний день нет подтвержденных данных о неблагоприятных последствиях для здоровья от продолжительного слабого воздействия радиочастотных полей или полей промышленной частоты. Тем не менее, ученые продолжают активно заниматься научными исследованиями в этой области.

Биологические эффекты – это поддающиеся измерению ответные реакции организма на раздражители или изменения в окружающей среде. Эти изменения необязательно вредны для вашего здоровья. Например, когда вы слушаете музыку, читаете книгу, едите яблоко или играете в теннис, возникает целый ряд биологических эффектов от этих процессов. Однако ни от одного из этих видов деятельности мы не ждем неблагоприятных последствий для здоровья.

Организм обладает тонкими механизмами для того, чтобы подстроиться к множеству самых разных воздействий, которые мы испытываем в условиях окружающей среды. Постоянные изменения являются непременной частью нашей жизни. Однако нет сомнений в том, что организм не обладает адекватными компенсационными механизмами в отношении всех биологических эффектов. Изменения необратимого характера, создающие продолжительный по времени стресс для организма, могут представлять угрозу для здоровья.

Неблагоприятное воздействие на здоровье вызывает поддающиеся обнаружению нарушения здоровья у человека, подвергшегося такому воздействию, или у его/ее детей; с другой стороны, биологические эффекты необязательно вызывают неблагоприятные последствия для здоровья.

Неоспоримым является тот факт, что электромагнитные поля выше определенного уровня могут вызывать биологические эффекты. Эксперименты, проведенные на здоровых волонтерах, указывают на то, что кратковременное воздействие полей тех уровней, которые присутствуют в окружающей среде или в нашем доме, не вызывает явных пагубных последствий. В отношении воздействия ЭМП более высокого уровня, способных причинить вред здоровью, существуют строгие ограничения, сформулированные в национальных и международных руководствах. В настоящее время основные споры ведутся вокруг того, может ли продолжительное воздействие полей низких уровней вызвать биологические ответные реакции организма и повлиять на самочувствие людей.

Широко распространенная обеспокоенность в отношении здоровья

Взгляд на новостные заголовки последних лет позволяет нам в известной степени уяснить, какие вопросы вызывают общественную обеспокоенность. Последние десять лет в центре внимания, с точки зрения опасностей для здоровья, оказались многочисленные источники электромагнитных полей, в том числе, линии электропередач, микроволновые печи, компьютерные мониторы и экраны телевизоров, устройства безопасности, радары, а с недавних пор – мобильные телефоны и их базовые станции.

Международный проект по ЭМП

В ответ на растущую общественную обеспокоенность в связи с возможными неблагоприятными последствиями для здоровья человека от воздействия все увеличивающегося количества разнообразных источников ЭМП, в 1996 г. Всемирная организация здравоохранения (ВОЗ) приступила к реализации крупного мультидисциплинарного проекта по изучению ЭМП. Международный проект по ЭМП позволяет обобщить все современные научные знания и свести воедино ресурсы ведущих международных и национальных организаций и научных учреждений.

Выводы научных исследований

За последние 30 лет опубликовано около 25 тысяч статей по проблемам биологических эффектов и медицинского применения неионизирующего излучения. Несмотря на то, что некоторые люди считают, что следует и дальше наращивать научные исследования в этой области, на сегодняшний день научные знания в ней гораздо шире, чем знания в отношении большинства химических веществ. На основе недавно проведенного углубленного обзора научной литературы, ВОЗ пришла к выводу о том, что имеющиеся фактические данные не указывают на существование неблагоприятных последствий для здоровья от воздействия электромагнитных полей низких уровней. Однако в знаниях о биологических эффектах имеются определенные пробелы, что вызывает необходимость проведения дальнейших научных исследований.

Последствия для общего состояния здоровья

Некоторые представители общественности объясняют целый ряд симптомов «размытого» характера тем, что в домашних условиях мы подвергаемся слабому воздействию электромагнитных полей. К числу отмечаемых симптомов относятся следующие: головная боль, чувство беспокойства, суицидальные настроения и депрессия, тошнота, чувство усталости и потеря либидо. На сегодняшний день нет научно обоснованных данных, подтверждающих наличие связи между этими симптомами и воздействием электромагнитных полей. По крайней мере, некоторые из перечисленных проблем со здоровьем могут возникать из-за шума или других факторов окружающей среды, или из-за беспокойства, возникающего в связи с использованием новых технологий.

Последствия для исхода беременности

ВОЗ и другие организации провели оценку множества разнообразных источников электромагнитных полей и их воздействия в той среде, где мы живем и работаем, в том числе: компьютерных мониторов, гидростатических матрацев, одеял с электро-обогревом, радиочастотных сварочных аппаратов, оборудования для диатермии и радаров. В целом, совокупность фактических данных позволяет сделать вывод о том, что воздействие полей обычного для окружающей среды уровня не увеличивает риск какого-либо неблагоприятного исхода беременности, например спонтанного выкидыша, врожденных пороков развития, низкой массы тела при рождении или врожденных заболеваний. Время от времени поступают сообщения о взаимосвязи возникающих проблем со здоровьем и предположительным воздействием ЭМП. Например, имеются сообщения о случаях рождения недоношенных детей или детей с низкой массой тела при рождении в семьях людей, работающих в электронной промышленности. Однако научное сообщество не считает, что подобные случаи непременно связаны с воздействием полей (в отличие от связи, например, с таким фактором риска как воздействие растворителей).

Катаракты

Обычное раздражение глаз и катаракты иногда отмечаются у рабочих, испытывающих воздействие радиочастотного или микроволнового излучения высокого уровня. Однако исследования, проведенные на животных, не подтверждают предположение о том, что такие формы повреждения глаз могут быть вызваны полями тех уровней, которые не являются опасными с точки зрения возможного нагревания тканей организма. Нет фактических данных, подтверждающих, что подобные последствия имеют место при воздействии полей тех уровней, с которыми сталкивается обычное население.

Электромагнитные поля и раковые заболевания

Несмотря на многочисленные исследования данного вопроса, доказательства каких-либо возможных последствий такого рода от ЭМП остаются крайне противоречивыми. Однако, совершенно очевидно, что даже если ЭМП каким-то образом влияют на раковые заболевания, увеличение риска заболевания под воздействием ЭМП будет очень незначительным. Хотя имеющиеся на сегодняшний день результаты исследований отличаются крайней непоследовательностью, среди детей и взрослых не выявлено значительного увеличения риска заболевания любыми видами рака в результате воздействия ЭМП.

Ряд эпидемиологических исследований позволяет предположить, что есть незначительное увеличение риска заболевания детей лейкемией под воздействием низкочастотных магнитных полей в домашних условиях. Однако ученые не делают общего вывода о том, что такие результаты указывают на наличие причинно-следственной связи между воздействием полей и заболеванием (напротив, можно говорить об искажениях, допущенных в исследованиях, или об эффектах, не связанных с воздействием полей). Частично, такое мнение явилось результатом того, что исследования на животных и лабораторные исследования не подтверждают наличия каких-либо воспроизводимых эффектов, согласующихся с гипотезой о том, что поля вызывают раковые заболевания или способствуют их возникновению. Сейчас в ряде стран проводятся широкомасштабные исследования, которые, возможно, помогут ответить на связанные с данной проблемой вопросы.

Гиперчувствительность к электромагнитным полям и депрессия

Некоторые люди сообщают о «гиперчувствительности» к электрическим или магнитным полям. Они задаются вопросом, не может ли чувство боли, головная боль, депрессия, сонливость, нарушения сна и даже судороги и эпилептические припадки объясняться воздействием электромагнитного поля.

Научных данных, подтверждающих идею о гиперчувствительности к ЭМП, мало. В ходе недавних исследований, проведенных в скандинавских странах, был сделан вывод о том, что люди не демонстрируют стойких реакций на воздействие электромагнитных полей, если оно имеет место в должным образом контролируемых условиях. Не существует и какого-либо признанного биологического механизма для объяснения гиперчувствительности. Проведение научных исследований в данной области затруднено, поскольку здесь могут быть задействованы и другие субъективные ответные реакции организма помимо прямых эффектов от полей как таковых. Исследования в этом направлении продолжаются.

Какова основная направленность текущих и будущих исследований?

Сейчас значительные усилия сосредоточены на исследовании ЭМП в связи с раковыми заболеваниями. Продолжается изучение, хотя и в меньших масштабах, чем в конце 90-х годов, возможных канцерогенных эффектов от полей промышленной частоты.

Долговременные неблагоприятные последствия для здоровья от мобильных телефонов – это еще одна область, в которой в настоящее время проводится много исследований. Очевидные неблагоприятные последствия от воздействия радиочастотных полей низких уровней не обнаружены. Однако, учитывая общественную обеспокоенность в отношении безопасности сотовых телефонов, дальнейшие исследования направлены на выяснение того, не могут ли иметь место менее очевидные последствия при очень низких уровнях воздействия.

Основные положения

  • Широкий спектр факторов окружающей среды вызывает биологические эффекты. «Биологические эффекты» и «угрозы для здоровья» – это не одно и то же. Для выявления и оценки угроз для здоровья требуется проведение специального исследования.
  • На низких частотах внешние электрические и магнитные поля индуцируют слабые циркулирующие токи внутри организма человека. Практически во всех обычных условиях уровни индуцированных токов в организме слишком малы, чтобы вызвать явные последствия.
  • Основной эффект от радиочастотных ЭМП состоит в нагревании внутренних тканей организма.
  • Нет сомнений в том, что кратковременное воздействие очень мощных ЭМП может причинить вред здоровью. Сегодня общественную обеспокоенность в основном вызывают долговременные неблагоприятные последствия для здоровья от воздействия ЭМП более низкого уровня, чем тот, который обусловливает острые биологические реакции.
  • Международный проект по ЭМП был инициирован ВОЗ для того, чтобы получить научно-обоснованные и объективные ответы на вопросы, вызывающие общественную обеспокоенность, в отношении возможных угроз для здоровья от электромагнитных полей низких уровней.
  • Несмотря на широкомасштабные исследования, на сегодняшний день нет фактических данных, которые позволили бы сделать вывод о том, что воздействие ЭМП низких уровней вредит здоровью человека.
  • Международные исследования сосредоточены на изучении возможных связей между раковыми заболеваниями и ЭМП промышленного и радиочастотного диапазона.

Если электромагнитные поля (ЭМП) представляют угрозу для здоровья, последствия ощутят все индустриально-развитые страны. Общественность требует конкретных ответов на все более злободневный вопрос: могут ли ЭМП, с которыми мы сталкиваемся в повседневной жизни, вызывать неблагоприятные последствия для здоровья?

Средства массовой информации нередко предлагают нам окончательные, с их точки зрения, ответы. Однако к таким сообщениям следует подходить с осторожностью, учитывая, что просвещение населения не является первоочередной задачей СМИ. Журналист может выбрать тему и написать статью, руководствуясь целым рядом причин далеко не технического характера: журналисты конкурируют между собой за время и место публикации, а журналы и газеты бьются за тираж.

Оригинальные сенсационные заголовки, которые могут привлечь внимание максимального числа людей, помогают журналистам в достижении их целей, а плохая новость – это не только всегда большая новость, но нередко та единственная, о которой мы узнаем. Большое число исследований, которые наводят на мысль о безопасности ЭМП, в лучшем случае лишь слабо освещаются в СМИ. Наука не может дать гарантии полной безопасности, но в целом, продолжение научных исследований не может не обнадеживать.

Необходимы различные виды исследований

Совокупность исследований в различных областях крайне важна для оценки потенциального неблагоприятного воздействия электромагнитных полей на здоровье В различных видах исследований рассматриваются разные аспекты данной проблемы.

Лабораторные исследования клеточного материала направлены на выявление основополагающих механизмов взаимосвязи между воздействием ЭМП и биологическими эффектами. Они проводятся для выявления механизмов, исходя из изменений на молекулярном и клеточном уровне, которые вызваны ЭМП. Такие изменения могут дать ключ к разгадке того, как физическая сила преобразуется в биологические процессы внутри организма человека. В рамках этих исследований отдельные клетки или ткани изымаются из привычной для них среды обитания, что может блокировать активность потенциальных компенсаторных механизмов.

Исследования иного рода – с использованием животных – более близки к реальным жизненным ситуациям. В результате ученые получают фактические данные, имеющие более прямое отношение к определению безопасных уровней воздействия для человека. В таких исследованиях нередко изучаются несколько различных по уровню полей с тем, чтобы проследить зависимость «доза-эффект».

Эпидемиологические исследования или исследования здоровья человека – это еще один непосредственный источник информации о долговременных последствиях воздействия ЭМП. Такие исследования направлены на изучение причин и распределения заболеваний в реальных жизненных ситуациях среди местных сообществ и профессиональных групп. Ученые пытаются определить, существует ли статистическая корреляция между воздействием ЭМП и заболеваемостью определенной болезнью или неблагоприятными последствиями для здоровья. Однако стоимость эпидемиологических исследований высока. Но что еще более важно, так это то, что они предусматривают проведение оценки очень сложных по составу групп населения, и обеспечить достаточно хороший контроль, необходимый для выявления малейших эффектов, в рамках таких исследований весьма непросто.

Вот почему ученые проводят оценку всех релевантных фактических данных, когда принимают решение относительно потенциальных угроз для здоровья, включая данные эпидемиологических исследований, исследований на животных и исследований клеточного материала.

Интерпретация результатов эпидемиологических исследований

Эпидемиологические исследования сами по себе обычно не могут точно установить взаимосвязь между причинами и эффектами, прежде всего потому, что они определяют только статистическую корреляцию между воздействием и заболеванием, которое может быть или не быть результатом воздействия.

Представим себе некое гипотетическое исследование, направленное на установление связи между воздействием ЭМП на рабочих-электриков компании «Х-Электрисити» и повышенным риском заболевания раком. Даже при выявленной статистической корреляции, она может объясняться неполными данными в отношении других факторов на рабочем месте. Например, рабочие-электрики могли испытать воздействие химических растворителей, способных вызывать раковые заболевания. Более того, наблюдаемая статистическая корреляция может быть результатом чисто статистических эффектов, или несовершенства схемы исследования.

Вот почему нахождение взаимосвязи между каким-то фактором и определенным заболеванием не всегда означает, что именно этот фактор вызвал заболевание. Для установления причинно-следственной связи исследователь должен учитывать многие факторы. Аргументы в пользу наличия такой связи становятся более убедительными, если наблюдается постоянная и сильная корреляция между воздействием и эффектом, четкая зависимость «доза-эффект», убедительное объяснение биологического характера, если результаты подкреплены релевантными исследованиями на животных, а самое главное, если различные исследования согласуются друг с другом.

Эти условия, как правило, не соблюдаются для исследований в области ЭМП и раковых заболеваний. Это одна из главных причин того, что ученые обычно не склонны делать вывод о наличии последствий для здоровья от слабых ЭМП.

Почему сложно полностью исключить возможность присутствия весьма незначительных рисков?

«По-видимому, отсутствие фактических данных о пагубных эффектах не может удовлетворить современное общество. Напротив, фактические данные об отсутствии таких эффектов все в большей степени востребованы». (Barnabas Kunsch, Австрийский научно-исследовательский центр Зайберсдорф)

«Отсутствуют убедительные фактические данные о неблагоприятных последствиях от ЭМП для здоровья» или «Причинно-следственная связь между ЭМП и раковыми заболеваниями не подтверждена» – вот типичные формулировки тех выводов, к которым пришли экспертные комитеты, изучавшие данную проблему. Все это звучит так, как будто научное сообщество избегает ответа на интересующий всех вопрос. Зачем же тогда продолжать научные исследования, если ученые уже продемонстрировали, что никаких последствий нет?

Ответ прост: научные исследования здоровья человека очень хорошо зарекомендовали себя с точки зрения выявления значительных эффектов, например, взаимосвязи между курением и раковыми заболеваниями. К сожалению, ученым сложнее отличить слабые эффекты от отсутствия эффектов как таковых. Если бы ЭМП тех уровней, которые типичны для окружающей среды, были сильными канцерогенными факторами, то к настоящему моменту было бы совсем просто продемонстрировать такую взаимосвязь.

Напротив, если ЭМП низких уровней являются слабыми канцерогенами, или даже если они являются сильными канцерогенами для небольшой группы людей, живущих в крупном сообществе, такую взаимосвязь гораздо сложнее продемонстрировать. Более того, даже если крупное научное исследование укажет на отсутствие такой корреляции, мы никогда не сможем быть совершенно уверены в том, что такой взаимосвязи действительно не существует.

Отсутствие эффекта может означать, что действительно эффектов нет. Но с тем же успехом это может свидетельствовать о том, что эффект просто не выявляется при помощи нашего метода оценки. Поэтому отрицательные результаты обычно менее убедительны, чем веские положительные результаты.

Наиболее сложная ситуация возникла, к сожалению, в области эпидемиологических исследований в отношении ЭМП, и состоит она в том, что имеется целый ряд исследований, давших неубедительные положительные результаты, которые, при этом, носят взаимно противоречивый характер. В такой ситуации, сами ученые, вероятно, расходятся во мнении относительно важности полученных данных. Тем не менее, в силу изложенных выше причин, большинство ученых и медицинских работников согласны с тем, что даже если существуют какие-либо последствия для здоровья от ЭМП низкого уровня, они, скорее всего, крайне незначительны в сравнении с другими рисками для здоровья, с которыми люди сталкиваются в повседневной жизни.

Что нас ждет в будущем?

Основная цель международного проекта ВОЗ по ЭМП состоит в том, чтобы инициировать и скоординировать проведение научных исследований во всем мире для осуществления обоснованных ответных действий в связи с проблемами, вызывающими общественную обеспокоенность. Это позволит обобщить результаты исследований клеточного материала, исследований на животных, а также исследований здоровья человека для обеспечения наиболее всесторонней оценки рисков для здоровья. Целостная оценка результатов ряда релевантных и заслуживающих доверия исследований даст наиболее достоверный ответ относительно неблагоприятных последствий для здоровья (если таковые существуют) от продолжительного воздействия слабых электромагнитных полей.

Один из способов иллюстрации необходимости получения фактических данных в результате проведения разнообразных экспериментов – это провести сравнение с разгадыванием кроссворда. Например, мы имеем девять вопросов, на которые должны ответить, чтобы разгадать определенный кроссворд с абсолютной УВЕРЕННОСТЬЮ. Предположим, мы знаем точные ответы лишь на три вопроса, но при этом сможем найти решение методом догадки. Однако определенные три буквы могут быть частью совершенно другого слова. В то же самое время, каждый дополнительный ответ усилит нашу уверенность. На самом деле, наука, скорее всего, никогда не сможет ответить на все вопросы, но, чем более убедительные фактические данные мы соберем, тем более точной будет наша догадка в отношении окончательного решения.

Основные положения

  • Лабораторные исследования клеточного материала проводятся, чтобы определить, существует ли механизм, способствующий возникновению пагубных биологических эффектов под воздействием ЭМП. Исследования на животных чрезвычайно важны для определения возможных эффектов для высших организмов, физиология которых в определенной степени схожа с физиологией человека. Эпидемиологические исследования направлены на установление статистической корреляции между воздействием полей и распространенностью определенных неблагоприятных результатов в отношении здоровья у людей.
  • Выявление статистической корреляции между неким фактором и определенным заболеванием не означает, что этот фактор явился причиной заболевания.
  • Отсутствие эффектов для здоровья может означать, что таковых нет; однако, это может означать и то, что эффект просто не выявляется с помощью существующих методов.
  • Результаты различных исследований (цитологических, эпидемиологических и исследований на животных) следует анализировать в совокупности, прежде чем делать выводы о возможных рисках для здоровья от предполагаемой экологической угрозы. Последовательные данные, полученные в результате этих столь разных по характеру исследований, помогут с большей степенью уверенности судить о действительных эффектах.

Электромагнитные поля дома

Уровни фонового электромагнитного излучения от передающих или распределительных электросетевых объектов

Электричество передается на большие расстояния по высоковольтным линиям. Трансформаторы снижают такое высокое напряжение в сети до требуемого уровня для распределения электроэнергии на местах – в домах и на предприятиях. Передающие и распределительные электросетевые объекты, а также бытовая электропроводка и электроприборы создают в домах фоновый уровень электрических и магнитных полей промышленной частоты. Если дома не расположены вблизи линий электропередач (ЛЭП), фоновый уровень может доходить примерно до 0.2 микротесл. Непосредственно под ЛЭП поля гораздо сильнее. Индукция магнитного поля на уровне земли может достигать нескольких микротесл. Уровни электрических полей непосредственно под ЛЭП могут доходить до 10 кВ/м. Однако поля (как электрические, так и магнитные) по мере удаления от ЛЭП ослабевают. На расстоянии 50-100 метров уровни полей, обычно, такие же, как те, которые наблюдаются на удаленных от высоковольтных ЛЭП территориях. К тому же, стены зданий значительно снижают уровни электрических полей в сравнении с уровнями вне домов в той же местности.

Электробытовые приборы

Самые сильные электрические поля промышленной частоты в окружающей среде обычно встречаются непосредственно под высоковольтными ЛЭП. Напротив, самые сильные магнитные поля промышленной частоты обычно наблюдаются в непосредственной близости от двигателей и других электроприборов, а также специализированного оборудования, например магнитно-резонансных томографов, используемых для диагностической визуализации в медицине.

Обычные значения силы электрических полей вблизи бытовых электроприборов (на расстоянии 30 см от них
(Источник: Федеральное ведомство по радиационной защите, Германия, 1999 г.)

Электробытовой прибор Сила электрического поля (В/м)
Стерео-проигрыватель 180
Утюг 120
Холодильник 120
Миксер 100
Тостер 80
Фен для волос 80
Цветной телевизор 60
Кофейная машина 60
Пылесос 50
Электропечь 8
Лампочка 5
Установленное пороговое значение 5000

Многие люди удивляются, когда узнают о существовании магнитных полей самого разного уровня рядом с различными бытовыми приборами. Сила этих полей не зависит от размера, сложности, мощности таких приборов или уровня шума от них. Более того, сила магнитных полей может очень сильно различаться, даже если речь идет о вроде бы похожих приборах. Например, одни фены для волос окружены очень сильным полем, а другие вряд ли вообще создают какое-либо магнитное поле. Такая разница в отношении силы магнитных полей объясняется дизайном изделия.

В приведенной ниже таблице указаны обычные значения силы поля для ряда электроприборов, широко используемых дома и на рабочем месте. Измерения производились в Германии, при этом во всех приборах использовался ток с частотой 50 Гц. Следует отметить, что фактические уровни воздействия значительно различаются в зависимости от модели прибора и расстояния от него.

Обычные значения силы магнитных полей вокруг бытовых электроприборов (в зависимости от расстояния от них)

На расстоянии 3 см (микротесла)

На расстоянии 30 см (микротесла)

На расстоянии 1 м (микротесла)

6 – 2000

15 – 1500

2 – 20

Флюоресцентный осветительный прибор

0.5 – 2

4 – 8

1

0.15 – 0.5

0.15 – 3

0.12 – 0.3

0.6 – 3

< 0.01

0.01 – 0.25

0.01 – 0.15

Для большинства бытовых электроприборов сила магнитного поля на расстоянии 30 см от них значительно ниже установленного для населения порогового значения в 100 микротесл.

Таблица иллюстрирует две основные мысли: во-первых, сила магнитного поля вокруг всех приборов стремительно уменьшается по мере того, как вы удаляетесь от них; во-вторых, большинство бытовых приборов работает не слишком близко от человека. На расстоянии 30 см уровень магнитные поля вокруг большинства бытовых приборов более чем в 100 раз ниже установленного для обычного населения порогового значения в 100 микротесл при частоте электрического тока в 50 Гц (и 83 микротесл при частоте тока в 60 Гц).

Телевизоры и компьютерные мониторы

В основе работы компьютерных мониторов и телевизоров лежат одни и те же принципы. И те и другие продуцируют статические электрические поля и переменные электрические и магнитные поля разных частот. Однако, жидко-кристаллические мониторы некоторых ноутбуков и настольных ПК не создают значительные электрические и магнитные поля. Мониторы современных компьютеров созданы из проводящих материалов, что снижает статическое поле вокруг монитора до уровней, сопоставимых с нормальным фоновым уровнем в доме или на рабочем месте. Если человек работает на правильном расстоянии (30-50 см) от монитора, уровень индукции переменного магнитного поля (промышленной частоты) обычно ниже 0,7 микротесл. Сила переменных электрических полей при работе на том же расстоянии от монитора находится в интервале от менее 1 В/м до 10 В/м.

Микроволновые печи

Бытовые микроволновые печи отличаются большой мощностью. Однако, надежный защитный экран снижает возможную утечку микроволнового излучения за пределы печи до практически неопределяемого уровня. Кроме того, уровень утечки стремительно снижается по мере удаления пользователя от печи. Во многих странах существуют промышленные стандарты, конкретно указывающие предельно допустимые уровни утечки для новых печей. Если печь соответствует этим стандартам, она не представляет никакой угрозы для потребителя.

Переносные телефоны

Для работы переносных телефонов требуется гораздо менее интенсивное поле, чем для мобильных телефонов. Это связано с тем, что они используются совсем близко от своей базы, а значит, нет необходимости в сильном поле, как это было бы в случае передачи сигнала на большое расстояние. Соответственно, радиочастотные поля вокруг этих телефонов совсем незначительны.

Электромагнитные поля в окружающей среде

Радар

Радары используются для навигации, составления прогноза погоды, в военных целях, а также для выполнения множества других задач. Они посылают пульсирующие микроволновые сигналы. Пиковая мощность сигнала может быть высокой, между тем как средняя мощность может быть низкой. Многие радары вращаются или движутся вверх и вниз, что уменьшает среднее значение плотности мощности поля, которое воздействует на людей вблизи радара. Даже в отношении высокомощных, не вращающихся военных радарных установок действуют ограничения по уровню воздействия: он должен быть ниже установленного порогового значения в местах, доступных для населения.

Системы безопасности

Системы защиты от краж в магазинах основаны на использовании специальных датчиков, закрепляемых на товарах, которые считываются электрическими контурами на выходе. Когда покупка осуществлена должным образом, эти датчики снимают или полностью деактивируют. Электромагнитные поля вокруг контуров обычно не превышают рекомендуемые уровни допустимого воздействия. Системы управления доступом, работают по тому же принципу: датчик встроен в брелок для ключей, либо в пропуск. Системы безопасности в библиотеках используют специальные этикетки-датчики, которые деактивируются при выдаче книги читателю и вновь активируются, когда книга возвращается. Металло-детекторы и системы безопасности в аэропортах создают сильное магнитное поле (до 100 микротесл), которое реагирует на металлические предметы. Вблизи рамки детектора сила магнитного поля может приближаться к установленному пороговому уровню, а иногда и превышать его. Тем не менее, это не создает угрозу для здоровья, о чем будет сказано в разделе, посвященном руководящим принципам по допустимым уровням воздействия (см. «Опасны ли уровни воздействия выше установленных пороговых значений?»).

Электропоезда и трамваи

Поезда дальнего следования имеют один или несколько моторных отсеков, расположенных в отдельных вагонах. Таким образом, пассажиры испытывают воздействие полей в основном от электричества, подаваемого в поезд. Магнитные поля в пассажирских вагонах поездов дальнего следования могут достигать нескольких сотен микротесл на уровне пола и более низких значений (десятков микротесл) в других местах в купе. Сила электрического поля может достигать 300 В/м. Люди, живущие вблизи железнодорожных путей, могут испытывать воздействие магнитных полей от линий электропроводов над полотном железной дороги, причем сила этих полей, в зависимости от каждой конкретной страны, может быть сопоставима с силой полей вокруг высоковольтных ЛЭП.

Двигатели и тяговое оборудование поездов и трамваев обычно располагается внизу, под пассажирскими вагонами. На уровне пола интенсивность магнитного поля может достигать десятков микротесл (на тех участках пола, которые находятся прямо над двигателем). Однако, чем выше от пола, тем быстрее уменьшается интенсивность поля, и его воздействие на верхнюю часть туловища пассажиров значительно слабее.

Телевидение и радио

Когда вы у себя дома слушаете радио и ищете нужную вам станцию, задавались ли вы когда-нибудь вопросом, что могут означать хорошо знакомые вам сокращения АМ и FM? Радиосигналы могут быть амплитудно-модулированными (АМ) или частотно-модулированными (FM). Все зависит от того, как они переносят информацию. Радиосигналы АМ могут использоваться для вещания на очень большие расстояния, в то время как FM волны охватывают более ограниченные пространства, но при этом обеспечивают звук лучшего качества.

АМ радиосигналы передаются при помощи сложной системы антенн, которые могут достигать десятков метров в высоту и располагаться в местах, не доступных обычному населению. Уровни воздействия в непосредственной близости от антенн и кабелей питания могут быть высокими, но с ними приходится иметь дело обслуживающему персоналу, а не обычному населению.

Телевизионные антенны и антенны для FM радиосигналов гораздо меньше по размеру, чем антенны для АМ радиосигналов, и устанавливаются они как система направленных антенн на самом верху высоких башен. Причем башни являются лишь поддерживающей конструкцией. Поскольку уровень воздействия у самого основания таких башен ниже установленных пороговых значений, доступ обычного населения в места, где находятся такие башни, не запрещен. Небольшие ТВ- и радиоантенны местного значения иногда устанавливаются на крышах зданий; в этом случае не исключается необходимость контролировать доступ на крышу.

Мобильные телефоны и их базовые станции

Мобильные телефоны дают нам возможность всегда быть на связи с другими людьми. Эти приборы низкой мощности, испускающие и принимающие радиоволновые сигналы от сети стационарных базовых станций малой мощности. Каждая базовая станция мобильной связи обеспечивает охват определенной территории. В зависимости от потока обрабатываемых звонков, базовые станции могут находиться на расстоянии от всего лишь нескольких сотен метров (в крупных городах) до нескольких километров (в сельской местности) друг от друга.

Базовые станции мобильной связи обычно устанавливают на крыше зданий или башен, на высоте от 15 до 50 метров. Уровни прохождения сигналов от конкретной базовой станции непостоянны и зависят от количества звонков и расстояния, на котором звонящий абонент находится от базовой станции. Антенны излучают очень узкий пучок радиоволн, который далее распространяется почти параллельно земле. Поэтому радиочастотные поля на уровне земли и на территориях, обычно доступных для населения, во много раз ниже уровней, представляющих опасность.

Рекомендуемые пороговые значения были бы превышены лишь в том случае, если бы человек оказался прямо перед системой антенн на расстоянии одного-двух метров. До того, как мобильные телефоны стали широко использоваться, население в основном испытывало воздействие радиочастотного излучения от радио- и ТВ-станций. Но и сегодня, с появлением мобильных телефонов, башни, на которых расположены базовые станции мобильной связи, сами по себе крайне мало усугубляют общее воздействие на наш организм, поскольку сила сигналов в местах, доступных для населения, обычно такая же или даже ниже, чем сила сигналов от радио- и ТВ-станций, расположенных на значительном удалении от этих мест.

Однако на самого пользователя мобильного телефона воздействуют радиочастотные поля более высокого уровня, чем те, которые обычно присутствуют в окружающей нас среде. Разговаривая по мобильному телефону, мы держим его очень близко к голове. Именно поэтому, вместо того, чтобы отслеживать эффект нагревания тканей во всем организме, следует определить распределение поглощенной энергии в голове пользователя телефона. В результате сложного компьютерного моделирования и проведения оценок с использованием моделей головы человека, сделан вывод о том, что, по всей видимости, уровень энергии, поглощенной при использовании мобильного телефона, не превышает установленных на сегодня пороговых значений.

Вызывают обеспокоенность и другие, так называемые «нетермальные» последствия воздействия частот мобильных телефонов. Есть различные предположения в отношении едва заметных эффектов для клеток, которые могут повлиять на развитие раковых заболеваний. Также высказываются гипотезы о возможных эффектах для тканей, раздражаемых под воздействием электричества, и о том, что это может повлиять на функцию мозга и нервных тканей. Тем не менее, все имеющиеся на данный момент фактические данные не подтверждают наличия каких-либо пагубных последствий для здоровья человека от использования мобильных телефонов.

Магнитные поля в повседневной жизни: действительно ли они такие сильные?

В последние годы национальными органами власти различных стран были проведены многочисленные оценки для определения уровней ЭМП в среде обитания человека. Ни одно из этих обследований не пришло к выводу о том, что уровни полей могут вызвать неблагоприятные последствия для здоровья.

Недавно Федеральное ведомство по радиационной защите (Германия) сделало оценку повседневного воздействия магнитных полей с привлечением к обследованию примерно 2 000 человек. Оценка проведена как в отношении представителей ряда профессий, так и обычного населения. Всем участникам обследования были выданы персональные дозиметры для измерения уровней воздействия 24 часа в сутки. Полученные данные различались весьма значительно, но средний уровень в день составлял 0,10 микротесл. Это значение в тысячу раз меньше, чем предельно допустимое значение в 100 микротесл для обычного населения и в 5 тысяч раз ниже, чем предельное допустимое значение в 500 микротесл для людей определенных профессий. Более того, при исследовании воздействия полей на людей, живущих в центральной части городов, было обнаружено, что, с точки зрения воздействия полей, нет существенной разницы между проживанием в сельской и городской местности. Даже уровни воздействия на людей, живущих в непосредственной близости от высоковольтных ЛЭП, лишь незначительно отличаются от средних уровней воздействия на обычное население.

Основные положения

  • Фоновые уровни ЭМП в доме в основном создаются передающими и распределительными электросетевыми объектами или бытовыми электроприборами.
  • Электроприборы сильно различаются с точки зрения силы генерируемых ими полей. По мере удаления от приборов уровни как электрических, так и магнитных полей стремительно снижаются. В любом случае, уровни полей вокруг бытовых электроприборов обычно гораздо ниже установленных пороговых значений.
  • Уровни электрических и магнитных полей от телевизоров и компьютерных мониторов (при соблюдении пользователем правильной дистанции от них) в сотни тысяч раз ниже установленных пороговых значений.
  • Микроволновые печи, отвечающие стандартам качества, не представляют опасности для здоровья.
  • Пока действуют ограничения в отношении доступа населения непосредственно к радарным установкам, радиоантеннам и базовым станциям мобильной связи, установленные предельные уровни воздействия радиочастотных полей не будут превышены.
  • Пользователи мобильных телефонов испытывают воздействие полей таких уровней, которые значительно превышают любые значения, регистрируемые в обычной среде обитания. Но, по-видимому, даже столь высокие уровни воздействия не приводят к пагубным последствиям для здоровья.
  • Многочисленные обследования подтвердили, что воздействие электромагнитных полей тех уровней, которые наблюдаются в среде обитания человека, очень незначительно.

Стандарты устанавливаются с целью защиты нашего здоровья. Широко известно о существовании стандартов для многих пищевых добавок, допустимой концентрации химических веществ в воде или концентрации веществ, загрязняющих воздух. Точно так же есть стандарты и в отношении электромагнитных полей, установленные с целью ограничения чрезмерного воздействия ЭМП, существующих в окружающей среде.

Кто вырабатывает руководящие принципы по допустимым уровням воздействия?

Страны самостоятельно устанавливают свои национальные стандарты в отношении допустимого воздействия ЭМП. Однако при формировании большинства национальных стандартов за основу были взяты руководящие принципы, разработанные Международной комиссией по защите от неионизирующей радиации (ICNIRP). Эта неправительственная организация, официально признанная ВОЗ, оценивает результаты научных исследований, проведенных по всему миру. На основании углубленного анализа имеющейся литературы ICNIRP разрабатывает руководящие принципы по допустимым уровням воздействия. Руководящие принципы подвергаются регулярному критическому рассмотрению и, по мере необходимости, обновляются.

Уровни ЭМП изменяются в зависимости от диапазона частот, и эта зависимость носит сложный характер. Перечисление всех значений для каждого стандарта и каждой частоты было бы затруднительно для понимания. Приведенная ниже таблица обобщает в сжатом виде рекомендации в отношении допустимых уровней воздействия в трех случаях, вызывающих особую обеспокоенность населения: воздействия электричества в домах, базовых станций мобильных телефонов и микроволновых печей. Эти руководящие принципы в последний раз обновлялись в апреле 1998 года.

Резюме руководящих принципов ICNIRP по допустимым уровням воздействия ЭМП

Промышленная частота, принятая в Европе Частота базовой станции мобильной связи Частота микроволновой печи
Частота 50 Гц 50 Гц 900 МГц 1.8 ГГц 2.45 ГГц
Электрическое поле (В/м) Магнитное поле (микротесла) Плотность мощности (Вт/м2) Плотность мощности (Вт/м2) Плотность мощности (Вт/м2)
Пороговые значения воздействия для обычного населения 5 000 100 4.5 9 10
Пороговые значения воздействия для людей определенных профессий 10 000 500 22.5 45

ICNIRP, EMF guidelines [Руководящие принципы по допустимым уровням воздействия ЭМП], Health Physics №74, 494-522 (1998 г.)

Рекомендуемые пороговые значения воздействия, принятые в некоторых странах бывшего Советского Союза и в западных странах, могут различаться в 100 и даже более раз. В связи с глобализацией торговли и стремительным внедрением телекоммуникаций во всем мире, возникает необходимость установления неких универсальных стандартов. Поскольку в настоящее время многие страны бывшего СССР работают над созданием новых стандартов, ВОЗ недавно объявила о глобальной инициативе по гармонизации рекомендуемых пороговых значений воздействия. Будущие стандарты будут основаны на результатах Международного проекта ВОЗ по электромагнитным полям.

Что лежит в основе руководящих принципов?

Важно отметить, что рекомендуемое пороговое значение само по себе не устанавливает четкую границу между тем, что безопасно и тем, что опасно. Не существует такого единого уровня, выше которого воздействие создает угрозу для здоровья. Напротив, потенциальный риск для здоровья человека возрастает постепенно, по мере увеличения уровней воздействия. В руководящих принципах указано, что, согласно имеющимся научным данным, воздействие ЭМП ниже определенного порогового значения не является опасным. Но из этого не следует автоматический вывод, что если воздействие превышает это определенное пороговое значение, оно непременно представляет опасность.

Тем не менее, для установления ограничений в отношении воздействия ученые, занимающиеся исследованиями, должны определить пороговый уровень, при котором начинают проявляться первые неблагоприятные последствия для здоровья. Поскольку для проведения экспериментов нельзя использовать людей, при составлении руководящих принципов приходится полностью полагаться на результаты опытов на животных. Незначительные изменения форм поведения животных при низких уровнях воздействия зачастую предшествуют более радикальным изменениям показателей здоровья при более высоких уровнях воздействия. Отклонение в поведении – это очень точный индикатор ответной биологической реакции, и оно было выбрано в качестве самого малозаметного неблагоприятного эффекта для здоровья. В руководящих принципах содержится рекомендация не допускать такие уровни воздействия ЭМП, при которых изменение форм поведения становится заметным.

Такой пороговый уровень воздействия с точки зрения изменения форм поведения не равен пороговому уровню, рекомендуемому в руководящих принципах. ICNIRP использует коэффициент безопасности, равный 10, при установлении допустимых предельных значений воздействия на людей определенных профессий, и коэффициент, равный 50, для расчета рекомендуемых предельных значений для обычного населения. Например, в диапазоне радиочастот и микроволновых частот, максимальные уровни, с которыми вы можете столкнуться в окружающей среде или у себя дома, по меньшей мере, в 50 раз ниже, чем те пороговые значения, при которых у животных проявляется изменение форм поведения.

Почему для людей определенных профессий установлены менее жесткие ограничения в отношении допустимого уровня воздействия, чем для обычного населения?

Лица, которые в силу своей профессии вынуждены испытывать воздействие полей – это взрослые люди, привыкшие работать в хорошо знакомых им условиях электромагнитных полей. Они прошли соответствующую подготовку, чтобы понимать потенциальные риски такой работы и принимать соответствующие меры предосторожности. В отличие от них, обычное население – это люди всех возрастов с разным состоянием здоровья. Во многих случаях обычные люди даже не осознают, что на них воздействуют ЭМП. Кроме того, не следует ожидать, что каждый человек будет принимать меры для того, чтобы избежать вредного воздействия полей или свести его к минимуму. Именно по этим причинам для обычного населения приняты более жесткие ограничения в отношении допустимого уровня воздействия, чем для людей, подвергающихся воздействию ЭМП в силу своей профессии.

Как было упомянуто выше, низкочастотные ЭМП индуцируют токи в организме человека (см. раздел «Краткое описание последствий для здоровья»). Но и различные биохимические реакции в самом организме человека также генерируют токи. Клетки и ткани не смогут распознать индуцированные токи, если они ниже этого фонового уровня. Вот почему в отношении низкочастотных полей в руководящих принципах по допустимым уровням воздействия закреплено, что уровень токов, индуцированных электромагнитными полями, должен быть ниже уровня токов, естественным образом генерируемых в организме человека.

Основной эффект от радиочастотной энергии состоит в нагревании тканей. Соответственно, пороговые значения воздействия радиочастотных и микроволновых полей установлены таким образом, чтобы предотвратить пагубные последствия для здоровья от локализованного или общего нагревания организма (см. «Краткое описание последствий для здоровья»). Соблюдение руководящих принципов гарантирует, что эффекты нагревания будут достаточно слабыми и, соответственно, неопасными.

Чего нельзя предусмотреть в руководящих принципах?

В настоящее время предположения о возможных долговременных неблагоприятных последствиях для здоровья не могут служить основанием для выпуска соответствующих руководящих указаний или стандартов. Если суммировать результаты научных исследований, совокупность всех доказательств не свидетельствует о том, что ЭМП вызывают долговременные пагубные последствия, например, раковые заболевания. Национальные и международные органы устанавливают и обновляют стандарты на основании самых последних научных знаний, чтобы защитить здоровье людей от общеизвестных неблагоприятных эффектов.

Руководящие принципы создаются в интересах некого «среднего» населения и не могут напрямую отвечать на запросы того меньшинства, которое, возможно, отличается более высокой чувствительностью. Например, руководящие принципы по допустимым уровням загрязнения воздуха не ориентированы на особые потребности людей больных астмой. Точно так же, руководящие принципы в отношении ЭМП не призваны защищать людей от воздействия, связанного с вживляемыми медицинскими электронными приборами, такими как кардиостимуляторы. Вместо этого, такие пациенты должны обращаться за советом по поводу того, как избежать возможного неблагоприятного воздействия, к производителям и врачам, вживляющим прибор.

Каковы типичные максимальные уровни воздействия в домашних условиях и в окружающей среде?

Некоторая информация практического характера поможет вам оценить приведенные выше значения уровней воздействия, установленные в международных руководящих принципах. Ниже в таблице вы найдете информацию о наиболее распространенных источниках ЭМП. Все приведенные значения – это максимально допустимые уровни для обычного населения. Уровень воздействия в вашем случае, вероятнее всего, будет гораздо ниже. Чтобы получить более подробную информацию об уровнях полей вокруг отдельных электроприборов, рекомендуем вам ознакомиться с разделом «Обычные уровни воздействия в домах и в окружающей среде».

Источник Типичный максимальный уровень воздействия для обычного населения
Электрическое поле (В/м) Индукция магнитного поля (микротесла)
Естественные поля 200 70 (магнитное поле Земли)
Мощность, потребляемая от сети в домах, расположенных не вблизи линий электропередач (ЛЭП) 100 0.2
Мощность, потребляемая от сети под крупными ЛЭП 10 000 20
Электропоезда и трамваи 300 50
Телевизоры и компьютерные мониторы (на правильном расстоянии от них) 10 0.7
Типичный максимальный уровень воздействия для обычного населения (Вт/м2)
Теле- и радиопередающие станции 0.1
Базовые станции мобильной связи 0.1
Радары 0.2
Микроволновые печи 0.5

Источник: Европейское региональное бюро ВОЗ

Как руководящие принципы применяются на практике, и кто контролирует этот процесс?

Ответственность за проверку уровней полей вокруг ЛЭП, базовых станций мобильной связи и других источников, доступ к которым обычного населения не ограничен, лежит на государственных учреждениях и местных органах власти. Они должны обеспечить соблюдение руководящих принципов.

Если речь идет об электронных приборах, за соблюдение стандартных ограничений отвечают производители. Однако, как было упомянуто выше, свойства большинства приборов таковы, что излучение от них гораздо ниже даже малозначимых величин воздействия. Кроме того, многие объединения потребителей регулярно проводят тестирование приборов. В случае, когда вы испытываете особую обеспокоенность или тревогу, рекомендуем вам напрямую связаться с производителем или направить запрос в местный орган общественного здравоохранения.

Опасны ли уровни воздействия выше установленных пороговых значений?

Совершенно не опасно съесть баночку клубничного джема до истечения срока годности. Но если вы съедите джем позже, производитель не гарантирует вам хорошее качество продукта. Однако обычно даже через несколько недель или месяцев после истечения срока годности употреблять джем в пищу совершенно безопасно. Аналогичным образом, руководящие принципы в отношении ЭМП гарантируют, что в пределах установленных пороговых значений воздействия не возникнет никаких общеизвестных пагубных последствий для здоровья. Значительный коэффициент безопасности использован при установлении того уровня, который, как общепризнано, вызывает пагубные последствия для здоровья. Поэтому даже если вы подверглись воздействию поля, сила которого в несколько раз превосходит определенное пороговое значение, воздействие на вас все равно будет в пределах безопасности.

В повседневных ситуациях большинство людей не подвергается воздействию ЭМП с превышением установленных пороговых значений. Обычные уровни воздействия гораздо ниже этих значений. Тем не менее, бывают случаи, когда человек подвергается в течение короткого периода времени воздействию, близкому или даже превосходящему рекомендуемые пороговые уровни. Согласно ICNIRP, воздействие радиочастотных и микроволновых полей следует усреднить по времени, чтобы понять кумулятивные эффекты. В руководящих принципах в отношении воздействия таких полей конкретно указано усреднение по времени (шесть минут), и специально упомянуто как допустимое кратковременное воздействие с превышением пороговых значений.

Напротив, в руководящих принципах в отношении воздействия низкочастотных электрических и магнитных полей нет усреднения по времени. Еще более усложняет картину наличие так называемого «фактора сопряжения». Под этим понимается взаимовлияние электрических и магнитных полей и тела, испытывающего их воздействие. Фактор сопряжения зависит от размера и формы тела, типа тканей и расположения тела в пространстве по отношению к полю. Руководящие принципы обязаны быть консервативными: ICNIRP всегда исходит из того, что между полем и человеком, испытывающим его воздействие, есть максимальное сопряжение. Поэтому рекомендуемые пороговые уровни обеспечивают максимальную защиту человека. Например, даже если уровни магнитного поля фена для сушки волос или электробритвы оказываются выше рекомендуемых значений, очень слабое сопряжение между полем и головой предотвращает индуцирование электрических токов, которые могли бы превысить установленные предельно допустимые уровни.

Основные положения

  • Выпускаемые ICNIRP руководящие принципы основаны на современных научных знаниях. Большинство стран используют это международное руководство для формирования своих национальных стандартов.
  • Стандарты в отношении низкочастотных ЭМП предусматривают, что уровень индуцированных токов должен быть ниже обычного уровня фоновых токов в организме человека. Стандарты для радиочастотных и микроволновых полей установлены на таком уровне, чтобы не допустить неблагоприятных последствий для здоровья от локализованного или общего нагревания организма.
  • Руководящие принципы не предусматривают защиту от возможного воздействия медицинских электроприборов.
  • Максимальные уровни воздействия в повседневной жизни обычно гораздо ниже рекомендуемых пороговых значений.
  • Благодаря значительному коэффициенту безопасности воздействие, превышающее установленные пороговые значения, необязательно окажется вредным для здоровья. Кроме того, усреднение по времени в отношении высокочастотных полей и допущение о максимальном сопряжении для низкочастотных полей еще более расширяют границы безопасности.

По мере поступления все новых данных научных исследований вероятность того, что воздействие ЭМП представляет серьезную угрозу для здоровья, уменьшается. Однако определенная неуверенность сохраняется. Некогда чисто научная дискуссия о том, как следует интерпретировать противоречивые данные, превратилась в обсуждение этого вопроса как важной общественной и политической проблемы.

Публичное обсуждение ЭМП сосредоточено на вопросах потенциального вреда таких полей и часто оставляет без внимания ту пользу, которая связана с технологическим использованием ЭМП. Без электричества наша жизнь замрет. Точно так же теле- и радиовещание стали очевидным фактом современной жизни. Крайне важно анализировать соотношение ценности и потенциальных угроз.

Охрана общественного здоровья

Международные руководящие принципы и национальные стандарты по безопасным уровням воздействия электромагнитных полей разрабатываются на основе современных научных знаний и призваны гарантировать, что те поля, с которыми приходится сталкиваться людям, не причинят вреда их здоровью. Чтобы учесть наличие некоторых неопределенностей в знаниях (например, по причине допущенных в экспериментах ошибок, экстраполяции данных с животных на человека или из-за статистической погрешности), при установлении пороговых значений допустимого воздействия используются значительные коэффициенты безопасности.

Руководящие принципы подвергаются регулярному критическому рассмотрению и, по мере необходимости, обновляются. С учетом существующих неопределенностей, соблюдение дополнительных мер предосторожности рекомендовано в качестве эффективного подхода, который можно взять на вооружение до тех пор, пока наука не пополнит наши знания о влиянии ЭМП на здоровье. Однако выбор конкретного подхода в отношении соблюдения предосторожности и степень его использования чрезвычайно зависит от силы доказательств наличия риска для здоровья, а также масштабов и характера возможных последствий. Меры предосторожности должны быть пропорциональны потенциальному риску.

Был разработан ряд стратегий по популяризации мер предосторожности в целях привлечения внимания к проблемам, вызывающим обеспокоенность в отношении общественного здоровья, гигиены труда и окружающей среды, а также безопасности в связи с химическими и физическими факторами риска.

Что рекомендуется делать, пока научные исследования в этой области продолжаются?

Одна из целей Международного проекта по ЭМП состоит в том, чтобы помочь национальным органам управления взвесить преимущества от использования технологий, основанных на ЭМП, и сопоставить их с возможным обнаружением риска для здоровья от их использования. Помимо этого ВОЗ выпустит рекомендации в отношении мер защиты, если в них возникнет необходимость. На завершение необходимых научных исследований, оценку их результатов и публикацию уйдет несколько лет. Тем временем Всемирная организация здравоохранения подготовила серию указанных ниже рекомендаций:

Электромагнитное поле — основные понятия, формулы и определения с примерами

Сильное электромагнитное поле отрицательно действует на человеческий организм — повреждается центральная нервная система, может возникнуть рак головного мозга, уровень гемоглобина в крови понижается, нарушается память и понижается внимание.

Карта электромагнитного поля:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Электрический заряд и электромагнитное поле

При трении тел друг о друга на них возникают электрические заряды. В этом случае говорят, что тело наэлектризовано, оно получило электрический заряд, или оно потеряло электрический заряд.

Электрическое взаимодействие между наэлектризованными телами в зависимости от знаков их зарядов может носить характер притяжения или отталкивания:

  • — тела, обладающие зарядами одинакового знака, отталкиваются друг от друга;
  • — тела, обладающие зарядами противоположного знака, притягиваются друг к другу.

В природе существуют заряды двух видов: положительный электрический заряд (+) и отрицательный электрический заряд (-). Заряды одинакового знака отталкиваются друг от друга, а заряды разного знака притягиваются друг к другу. Тела, не обладающие избытком электрического заряда, называют электрически нейтральными, или незаряженными телами.

Электрический заряд обозначают буквой q. За единицу измерения электрического заряда в СИ принят 1 кулон, названный так в честь французского ученого Шарля Кулона: [q] = 1 Кл.

Электростатическое поле — вид материи, который создается неподвижными электрическими зарядами.

Напряженность электрического поля — силовая характеристика этого поля. Являясь векторной величиной, напряженность электрического поля направлена так же, как и электрическая сила, действующая на положительный заряд.

Вещества, продолжительное время сохраняющие свои магнитные свойства, называются постоянными магнитами или просто магнитами. Каждый магнит имеет два полюса: северный (N) и южный (S). Одноименные полюсы магнита отталкиваются, разноименные полюсы магнита притягиваются.

Магнитное поле — вид материи, который создается движущимися зарядами.

Индукция магнитного поля (или магнитная индукция) является силовой характеристикой этого поля. Направление вектора магнитной индукции в данной точке магнитного поля совпадает с направлением северного полюса магнитной стрелки, помещенной в эту точку поля.

Кстати:

Было выяснено, что при полете пчела заряжается положительно. А цветы обладают отрицательным зарядом. Поэтому, когда пчела садится на цветок, ее пыльца прилипает к пчеле. Самым интересным является то, что после контакта пчелы с цветком электромагнитное поле растения меняется. Это изменение как будто подает знаки другим пчелам, находящимся в воздухе: «На этом цветке нет пыльцы!».

Электромагнитное поле - основные понятия, формулы и определения с примерами

Электрический заряд

Электрический заряд — это свойство тел и частиц создавать вокруг себя электромагнитное ноле. Электрический заряд принят также количественной мерой измерения этого свойства тел.

Взаимодействие между заряженными частицами называется электромагнитным взаимодействием. Например, когда говорят, что протон несет положительный заряд, а электрон несет отрицательный заряд, то можно с уверенностью говорить о наличии электромагнитного взаимодействия между ними. Между незаряженными (электрически нейтральными) частицами не существует электромагнитного взаимодействия. Поэтому говорят: Электрический заряд определяет интенсивность электромагнитного взаимодействия.

Электрический заряд обладает следующими особенностями:

1. Электрический заряд дискретен (не непрерывен, делим) — электрический заряд любого тела кратен целому числу элементарных зарядов:Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь N — число приобретенных или потерянных телом электронов.

Абсолютное значение наименьшего электрического заряда в природе называют элементарным зарядом. Элементарный заряд обозначают буквой е, численное его значение равно абсолютному значению заряда электрона или протона:Электромагнитное поле - основные понятия, формулы и определения с примерами

Кроме электрона и протона в природе существуют ещё несколько видов элементарных частиц. Однако только электроны и протоны могут существовать в свободном состоянии неограниченно долго. Время жизни остальных заряженных частиц очень мало — миллионные доли секунды. Они образуются в результате столкновений быстрых элементарных частиц, и через ничтожно малое время превращаются в другие частицы.

Дискретность заряда позволяет ему равномерно распределяться по поверхности проводника. Предположим, что заряд равномерно распределился по поверхности площадью S.

Величина, численно равная электрическому заряду, приходящемуся на единицу площади поверхности, называется поверхностной плотностью электрического заряда (Электромагнитное поле - основные понятия, формулы и определения с примерами):

Электромагнитное поле - основные понятия, формулы и определения с примерами

Единицей поверхностной плотности электрического заряда в СИ является:Электромагнитное поле - основные понятия, формулы и определения с примерами

2. Для электрического заряда выполняется закон сохранения — алгебраическая сумма электрических зарядов частиц (или тел) замкнутой системы остается неизменной:

Электромагнитное поле - основные понятия, формулы и определения с примерами

3. Электрический заряд является аддитивной величиной — электрический заряд системы равен алгебраической сумме электрических зарядов частиц (или тел) этой системы.

4. Электрический заряд является инвариантной величиной — электрический заряд частиц (или тел) одинаков во всех инерциальных системах отсчета.

Электромагнитное поле

Раздел физики, в котором изучаются электрические и магнитные явления, проявляющиеся при движении и взаимодействии электрических зарядов, называется электродинамикой.

Электродинамика — раздел физики, изучающий закономерности взаимодействия между электрическими зарядами посредством электромагнитного поля.

Электромагнитное поле — вид материи, осуществляющий взаимодействие между электрически заряженными частицами и телами.

Электрическое и магнитное поля являются особыми формами проявления электромагнитного поля. Поэтому состояние электромагнитного поля в произвольной точке пространства и в любой момент времени характеризуется двумя величинами — напряженностью электрического поля Электромагнитное поле - основные понятия, формулы и определения с примерамии индукцией магнитного поля Электромагнитное поле - основные понятия, формулы и определения с примерамиЭти величины являются силовыми характеристиками электромагнитного поля и определяют силы, с которыми оно действует на заряженные частицы. Под «определением силовых характеристик электромагнитного поля» имеется в виду определение сил, действующих на внесенный в поле пробный заряд (положительный точечный заряд). Отметим, что действие электромагнитного поля на заряд может быть различным, в зависимости от того, покоится заряд или движется.

Силу, с которой электромагнитное поле действует на заряд, покоящийся в данной инерциальной системе отсчета, называют электрической. Электрическая сила всегда прямо пропорциональна количественному значению заряда, помещенного в данную точку поля: Электромагнитное поле - основные понятия, формулы и определения с примерами

На электрический заряд, движущийся в данной инерциальной системе отсчета, электромагнитное поле действует, кроме электрической силы, ещё с силой, называемой магнитной силой. Магнитная сила прямо пропорциональна и значению движущегося заряда, и проекции скорости заряда, перпендикулярной вектору магнитной индукции: Электромагнитное поле - основные понятия, формулы и определения с примерами

Поэтому на электрический заряд, движущийся в электромагнитном поле, действует результирующая сила, равная сумме электрической и магнитной сил. Эту силу называют обобщенной силой Лоренца:Электромагнитное поле - основные понятия, формулы и определения с примерами

Напряженность электростатического поля

Поле, созданное неподвижными электрическими зарядами, называется электростатическим.

Напряженность электрического поля — векторная физическая величина, равная отношению электрической силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку поля, к величине этого заряда: Электромагнитное поле - основные понятия, формулы и определения с примерами

Единица измерения напряженности электрического поля в СИ: Электромагнитное поле - основные понятия, формулы и определения с примерами

Электрическая сила равна произведению напряженности электрического поля на величину помещенного в поле заряда: Электромагнитное поле - основные понятия, формулы и определения с примерами

Закон Кулона: сила взаимодействия двух неподвижных точечных электрических зарядов в вакууме прямо пропорциональна произведению модулей этих зарядов и обратно пропорциональна квадрату расстояния между ними:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Учитывая кулоновскую силу в формуле напряженности, выясняем, от каких величин зависит напряженность электрического поля.

Модуль напряженности электрического поля, создаваемого точечным зарядом Электромагнитное поле - основные понятия, формулы и определения с примерамив данной точке, прямо пропорционален величине этого заряда и обратно пропорционален квадрату расстояния до этой точки:Электромагнитное поле - основные понятия, формулы и определения с примерами

Одной из задач электродинамики является определение силовой характеристики электростатического поля, созданного данным электрическим зарядом. Одним из особых состояний электромагнитного поля является создаваемое неподвижным зарядом электростатическое поле.

Электрическое поле — это электромагнитное поле, в котором Электромагнитное поле - основные понятия, формулы и определения с примерами относительно данной системы отсчета. Электрическое поле, созданное покоящимися относительно данной системы отсчета электрическими зарядами, называется электростатическим. В дальнейшем для упрощения, называя поле электрическим, будем подразумевать, что это электростатическое поле.

Электрическое иоле может быть однородным и неоднородным.

Однородное электрическое поле — поле, в каждой точке которого численное значение и направление напряженности электрического поля одинаковы. В противном случае поле неоднородное.

Например, поле между двумя параллельными пластинами, одна из которых обладает положительным, а другая таким же но модулю отрицательным зарядом, является однородным (а), а электрическое поле, создаваемое точечным зарядом, является неоднородным (b).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Напряженность электрического поля, создаваемого точечным электрическим зарядом в вакууме и в среде. Известно, что при внесении пробного заряда в электрическое поле точечного заряда Электромагнитное поле - основные понятия, формулы и определения с примерамив вакууме между зарядами возникает кулоновское взаимодействие.

Силы взаимодействия двух точечных электрических зарядов прямо пропорциональны произведению модулей зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды (с).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами— коэффициент пропорциональности, равный

Электромагнитное поле - основные понятия, формулы и определения с примерами

Эта постоянная показывает, что два точечных заряда по 1 Кл каждый, находящиеся в вакууме на расстоянии 1 м друг от друга, взаимодействуют с силой 9•10 9 Н.

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами— электрическая постоянная: Электромагнитное поле - основные понятия, формулы и определения с примерами

Таким образом, на основе закона Кулона можно определить модуль напряженности электрического поля, созданного в вакууме зарядом Электромагнитное поле - основные понятия, формулы и определения с примерамив любой точке на расстоянии Электромагнитное поле - основные понятия, формулы и определения с примерамиот источника поля:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Напряженность в данной точке электрического поля, созданного точечным зарядом в вакууме, прямо пропорциональна величине этого заряда и обратно пропорциональна квадрату расстояния от источника поля до этой точки.

Если заряд alt=»Электромагнитное поле — основные понятия, формулы и определения с примерами» />положительный, то вектор напряженности в произвольной точке поля направлен радиально от источника поля (d), а если же заряд отрицательный — вектор напряженности направлен радиально к источнику поля (заряду alt=»Электромагнитное поле — основные понятия, формулы и определения с примерами» />).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Для электрических полей выполняется принцип суперпозиции.

Напряженность результирующего электрического поля в данной точке пространства, создаваемого несколькими электрическими зарядами, равна геометрической сумме напряженностей отдельных полей:

Электромагнитное поле - основные понятия, формулы и определения с примерами

На рисунке изображена схема определения напряженности результирующего ноля в точке А, созданного двумя точечными зарядами (е).
Электромагнитное поле - основные понятия, формулы и определения с примерами

В среде (внутри однородного диэлектрика) кулоновская сила взаимодействия зарядов слабее по сравнению с силой их взаимодействия в вакууме в Электромагнитное поле - основные понятия, формулы и определения с примерами раз:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами — величина, называемая диэлектрической проницаемостью среды и показывающая, во сколько раз кулоновская сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме при неизменном расстоянии между ними:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Напряженность электрического поля в среде меньше, чем в вакууме, в Электромагнитное поле - основные понятия, формулы и определения с примерами раз:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Значит, диэлектрическая проницаемость среды также является физической величиной, показывающей, во сколько раз напряженность электрического поля, созданного электрическим зарядом в данной точке внутри однородного диэлектрика, меньше, чем в вакууме:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Диэлектрическая проницаемость различных сред различна. Например, для дистиллированной воды alt=»Электромагнитное поле — основные понятия, формулы и определения с примерами» />=81 (для вакуума alt=»Электромагнитное поле — основные понятия, формулы и определения с примерами» /> = 1).

Работа однородного электрического поля

Энергетическая характеристика электрического поля называется электрическим напряжением или просто напряжением.

Скалярная величина, показывающая, какую работу совершило электрическое поле при перемещении единичного заряда из одной точки поля в другую, называется электрическим напряжением между этими точками поля:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Единицей измерения напряжения в СИ является вольт: Электромагнитное поле - основные понятия, формулы и определения с примерами

Механическая работа — скалярная физическая величина, равная произведению модуля силы, действующей на тело, модуля перемещения тела и косинуса угла между векторами силы и перемещения:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Работа силы тяжести в гравитационном поле Земли: Электромагнитное поле - основные понятия, формулы и определения с примерами

Работа силы тяжести не зависит от формы траектории движения тела, она зависит от разности уровней начального и конечного положений центра тяжести тела.

Электромагнитное поле - основные понятия, формулы и определения с примерами

Силы, работа которых не зависит от формы траектории движения тела, называются консервативными. Значит, сила тяжести — консервативная сила.

Это положение позволяет вывести понятие «потенциальной энергии» для системы тел, взаимодействующих с силами гравитационного взаимодействия. Так, выражение mgh в последней формуле является потенциальной энергией взаимодействия Земли и тела, находящегося на высоте h от поверхности Земли:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Проведенные учеными исследования показали, что Земля обладает отрицательным электрическим зарядом, а слой ионосферы в её атмосфере — положительным зарядом. Слои атмосферы, лежащие между ними, играют роль изолятора.

Электромагнитное поле - основные понятия, формулы и определения с примерами

Работа однородного электрического поля:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Работа однородного электрического поля, в котором положительный пробный заряд под действием постоянной электрической силы Электромагнитное поле - основные понятия, формулы и определения с примерамисовершает перемещение Электромагнитное поле - основные понятия, формулы и определения с примерамимежду двумя точками поля, равна (а):

Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами— угол между силовой линией поля и вектором перемещения заряда.

Так как проекция вектора перемещения на силовую линию равна Электромагнитное поле - основные понятия, формулы и определения с примерамито работа поля будет равна:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Работа однородного электрического поля при перемещении пробного положительного заряда равна произведению модуля этого заряда на модуль напряженности электрического поля и на проекцию его перемещения на направление силовых линий.

Выражение (1) можно написать и так: Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерамии Электромагнитное поле - основные понятия, формулы и определения с примерами— соответственно расстояния от отрицательной пластины до точек 1 и 2. Вследствие пропорциональности работы электрического поля величине пробного заряда отношение Электромагнитное поле - основные понятия, формулы и определения с примерамине зависит от величины пробного заряда и не зависит от траектории его движения. Это отношение зависит от электрического поля, а также от начального и конечного положений заряда в поле.

Так как работа электрической силы при переносе пробного заряда из одной точки электрического поля в другую не зависит от формы траектории, то электрическая сила является консервативной, а электрическое поле — потенциальным.

Скалярная физическая величина, равная отношению работы электрического поля при переносе электрического заряда из одной точки поля в другую к величине этого заряда, называется разностью потенциалов между этими точками, или напряжением между ними:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами— разность потенциалов. Индексы 1 и 2 указывают на точки

поля, между которыми перемещается заряд. Единицей измерения разности потенциалов в СИ является вольт: Электромагнитное поле - основные понятия, формулы и определения с примерами

Из выражения (3) можно определить работу поля при перемещении заряда между двумя его точками:

Работа электрического поля при перемещении заряда между двумя его точками равна произведению заряда на разность потенциалов (напряжение) между ними :

Электромагнитное поле - основные понятия, формулы и определения с примерами

Сравнивая (1) и (3), получим формулу, связывающую напряженность и напряжение:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Напряженность электрического поля направлена от точки поля с большим потенциалом к точке с меньшим потенциалом.

Потенциал электрического поля

Для выражения энергетической характеристики электрического ноля в произвольной точке используется физическая величина, называемая потенциалом. Разность потенциалов между любой точкой электрического поля и точкой, принятой за нулевой потенциал, называют потенциалом поля в этой точке. Обычно вычисление потенциала производится относительно бесконечности.

Потенциал — скалярная величина, численно равная работе поля по перемещению единичного положительного заряда в бесконечность при его отталкивании от положительного заряда q:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Потенциал обозначается символом Электромагнитное поле - основные понятия, формулы и определения с примерами. Единицей измерения потенциала в СИ

является вольт: Электромагнитное поле - основные понятия, формулы и определения с примерами

Потенциальная энергия заряда в электрическом поле. Так как электрическое поле является потенциальным, то к замкнутой системе заряд-электрическое поле можно применить теорему о потенциальной энергии.

Работа, совершенная в потенциальном поле, равна изменению потенциальной энергии системы, взятому с противоположным знаком:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерамии Электромагнитное поле - основные понятия, формулы и определения с примерами— потенциальные энергии заряда в точках 1 и 2 ноля (b).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Сравнив выражения (4) и (7), получим:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Электромагнитное поле - основные понятия, формулы и определения с примерами

Значит, величина, определяемая отношением потенциальной энергии пробного заряда в данной точке поля к величине заряда, равна потенциалу поля.

Эквипотенциальные поверхности

Поверхность, во всех точках которой потенциал поля принимает одинаковые значения, называется эквипотенциальной. Для точечного заряда эквипотенциальными являются концентрические сферы, центры которых совпадают с местонахождением заряда (с). Для однородного электрического поля — это поверхности, перпендикулярные силовым линиям поля (d).
Электромагнитное поле - основные понятия, формулы и определения с примерами

Конденсатор и электрическая емкость

Конденсатор-устройство, используемое для накопления электрических зарядов. Его название происходит от латинского слова «kondensare», что означает сгущение.

Самый простой конденсатор — плоский конденсатор, состоит из двух близко расположенных параллельных металлических пластин с тонким слоем диэлектрика (например, воздуха) между ними (а). На схемах электрических цепей конденсатор обозначают как Электромагнитное поле - основные понятия, формулы и определения с примерами.

Электромагнитное поле - основные понятия, формулы и определения с примерами

Пластины конденсатора электризуются равными по модулю зарядами противоположных знаков.

Способность конденсатора накапливать электрический заряд характеризуется физической величиной, называемой электрической ёмкостью.

Для разделения, накопления и передачи большого количества электрического заряда разных знаков используются устройства, называемые электрофорной машиной (b).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Быстро вращаясь, диски электрофорной машины трутся о воздух между ни-ми и электризуются зарядами разного знака. Заряды пластин снимаются с помощью металлических щеток и накапливаются в двух лейденских банках (1), а оттуда передаются на сферические металлические кондукторы (2). В результате на одном из кондукторов накапливается положительный, а на другом — отрицательный заряд.
Электромагнитное поле - основные понятия, формулы и определения с примерами

Известный сербский ученый Никола Тесла (1856-1943) выдвинул идею о том, что система Земля — атмосфера представляет собой гигантский конденсатор, который является источником дешевой электрической энергии. Согласно этой идее, совпадение частоты слабого электромагнитного излучения, посылаемого в ионосферу Земли, с собственной частотой заряженных частиц ионосферы вызовет в ней резонанс. В результате возникнет очень сильное излучение, окружающее Землю. В это время достаточно будет в любой точке поверхности Земли воткнуть длинный металлический стержень, чтобы непрерывно получать из неба бесплатную электрическую энергию. Главной проблемой было построение башни для создания возбуждающих ионосферу импульсов — резонатора. Американский миллиардер Морган принял решение о финансировании постройки этой башни в Лонг-Айленде (США). Однако незадолго до завершения работы он приостановил и отменил этот проект в целях предотвращения возможной экологической катастрофы.

Известно, что простейшим конденсатором является плоский конденсатор, состоящий из двух параллельных пластин. Характеристикой конденсатора является электрическая ёмкость.

Электрическая ёмкость конденсатора (С) — скалярная физическая величина, равная отношению заряда конденсатора к разности потенциалов (напряжению) между его пластинами:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Единицей измерения электрической ёмкости в СИ является фарад (1Ф):

1 фарад — это электрическая емкость конденсатора, когда заряд пластин 1 Кл создает между ними напряжение 1В:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Фарад — очень большая ёмкость, поэтому на практике используются его дольные единицы (микрофарад, нанофарад, пикофарад и др.):

Электромагнитное поле - основные понятия, формулы и определения с примерами

Заряд конденсатора равен модулю заряда одной из пластин конденсатора. Этот заряд прямо пропорционален напряжению на концах источника, подключенного к конденсатору:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Значит, электроёмкость является коэффициентом пропорциональности между зарядом и напряжением и не зависит ни от заряда, ни от напряжения. От чего же зависит электроёмкость?

Электрическая ёмкость плоского конденсатора зависит от площади его пластин, расстояния между пластинами и диэлектрической проницаемости вещества, находящегося между ними:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь S — площадь одной из пластин конденсатора, d — расстояние между пластинами, alt=»Электромагнитное поле — основные понятия, формулы и определения с примерами» />— диэлектрическая проницаемость вещества, которое находится между его пластинами. Именно диэлектрик, находящийся между пластинами, дает конденсатору возможность длительное время сохранять заряд. Если диэлектриком между пластинами является только воздух ( alt=»Электромагнитное поле — основные понятия, формулы и определения с примерами» />= 1), то такой конденсатор называется воздушным и его электроёмкость:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Энергия электрического поля конденсатора

Энергия однородного электрического поля между пластинами плоского заряженного конденсатора определяется нижеприведенной формулой:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Примечание. Множитель Электромагнитное поле - основные понятия, формулы и определения с примерами в выражении (5) указывает на то, что при движении пластин конденсатора в отдельности каждая из них оказывается движущейся в электрическом поле, созданным зарядом другой пластины. Напряженность поля одной пластины в 2 раза меньше напряженности электрического поля между пластинами.

Если учесть здесь выражение (2), то получаются выражения, отражающие зависимость энергии конденсатора от ёмкости и заряда конденсатора:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Электромагнитное поле - основные понятия, формулы и определения с примерами

Если учесть выражение (3) в выражениях (6) и (7), то можно получить следующие выражения для энергии электрического поля плоского конденсатора:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Распределение энергии электрического ноля в пространстве выражается физической величиной, называемой плотностью энергии электрического поля:

Плотность энергии электрического поля — физическая величина, численно равная энергии электрического поля, приходящейся на единицу объёма:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами— плотность энергии электрического поля, единица её измерения в СИ: Электромагнитное поле - основные понятия, формулы и определения с примерами

Если в последнем выражении учесть формулу (8), выражения Электромагнитное поле - основные понятия, формулы и определения с примерамито станет очевидным, что плотность энергии электрического поля прямо пропорциональна квадрату напряженности поля:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Примечание. Конденсатор не может служить аккумулятором, длительное время сохраняющим в себе электрическую энергию (из-за утечки заряда). Однако он, в отличие от аккумулятора, способен мгновенно разряжаться в цепи с малым сопротивлением. Это свойство конденсатора широко используется на практике (например, во вспышках фотоаппаратов и лампах мобильных телефонов).

Соединение конденсаторов

Электрическая цепь может состоять из различных элементов: источник тока, потребители (лампа, электрический звонок, электрический нагреватель, телевизор и др.), ключ, соединительные провода. Одной из простейших цепей является последовательное соединение этих элементов.

Электромагнитное поле - основные понятия, формулы и определения с примерами

При последовательном соединении конец каждого проводника соединяется с началом последующего.

При последовательном соединении силы токов одинаковы в любой части цепи: Электромагнитное поле - основные понятия, формулы и определения с примерами

Общее напряжение цепи при последовательном соединении равно сумме напряжений отдельных участков этой цепи:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Общее сопротивление при последовательном соединении равно сумме сопротивлений отдельных ее участков:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Общее сопротивление Электромагнитное поле - основные понятия, формулы и определения с примерами цепи, состоящей из n проводников с одинаковым сопротивлением R, в n раз больше сопротивления каждого проводника: Электромагнитное поле - основные понятия, формулы и определения с примерами

Параллельным называется соединение проводников, при котором начапа всех проводников соединяются в одной точке (например, в точке А), а концы в другой (например, в точке В).

Напряжения на концах параллельно соединенных проводников одинаковы: Электромагнитное поле - основные понятия, формулы и определения с примерами

При параллельном соединении сила тока в неразветвленной части цепи равна сумме сил токов в отдельных ветвях цепи: Электромагнитное поле - основные понятия, формулы и определения с примерами

Величина, обратная общему сопротивлению параллельно соединенных проводников, равна сумме величин, обратных сопротивлению каждого проводника:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Общее сопротивление участка цепи, состоящей из двух параллельно соединенных проводников, равно:

Электромагнитное поле - основные понятия, формулы и определения с примерами

В соответствии с этим общее сопротивление участка цепи, состоящей из n числа параллельно соединенных проводников с одинаковым сопротивлением R, меньше сопротивления каждого из них в n раз:

Электромагнитное поле - основные понятия, формулы и определения с примерами

На практике часто случается, что при выходе из строя бытовых приборов для срочного их ремонта отсутствуют конденсаторы с необходимым номиналом электроёмкости и напряжения. В таких случаях приходится получить необходимый номинал, используя конденсаторы различного номинала. А для этого необходимо знать правила их соединений.

С целью получения различных значений электроёмкости собирают батареи конденсаторов, соединяя их либо последовательно, либо параллельно.

Последовательное соединение конденсаторов

При последовательном соединении конденсаторов отрицательно заряженная пластина первого конденсатора соединена с положительно заряженной пластиной второго и т.д. (с).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Заряды последовательно соединенных конденсаторов одинаковы:

Электромагнитное поле - основные понятия, формулы и определения с примерами

 

Общее напряжение на концах цепи, состоящей из последовательно соединенных конденсаторов, равно сумме напряжений отдельных конденсаторов:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Величина, обратная общей электроемкости батареи последовательно соединенных конденсаторов, равна сумме величин, обратных значениям электроёмкостей отдельных конденсаторов:
Электромагнитное поле - основные понятия, формулы и определения с примерами

Общая ёмкость цепи, состоящей из последовательно соединенных n конденсаторов одинаковой ёмкости, в n раз меньше ёмкости одного конденсатора:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Напряжение и энергия последовательно соединенных конденсаторов обратно пропорциональны их электрическим ёмкостям:Электромагнитное поле - основные понятия, формулы и определения с примерами

Параллельное соединение конденсаторов

При параллельном соединении положительно заряженные пластины всех конденсаторов соединяют в одной точке, а отрицательно заряженные пластины в другой точке (d).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Общий заряд параллельно соединенных конденсаторов равен сумме зарядов отдельных конденсаторов:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Напряжения на концах параллельно соединенных конденсаторов одинаковы:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Общая электроёмкость батареи параллельно соединенных конденсаторов равна сумме электроёмкостей отдельных конденсаторов:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Общая электроёмкость n числа параллельно соединенных одинаковых конденсаторов в n раз больше электроёмкости одного конденсатора:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Электрические заряды и энергии параллельно соединенных конденсаторов прямо пропорциональны их электроёмкостям:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Движение заряженных частиц в магнитном поле

При равномерном движении по окружности линейная скорость материальной точки численно равна отношению пройденного пути ко времени, за которое этот путь пройден: Электромагнитное поле - основные понятия, формулы и определения с примерами

При равномерном движении по окружности модуль центростремительного ускорения материальной точки равен отношению квадрата линейной скорости к радиусу окружности: Электромагнитное поле - основные понятия, формулы и определения с примерами

Сила, с которой магнитное поле действует на движущуюся заряженную частицу, называется силой Лоренца: Электромагнитное поле - основные понятия, формулы и определения с примерами

Если заряженная частица влетает в магнитное поле в направлении, перпендикулярном линиям индукции, то сила Лоренца принимает максимальное значение:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Сила Лоренца перпендикулярна векторам Электромагнитное поле - основные понятия, формулы и определения с примерами и Электромагнитное поле - основные понятия, формулы и определения с примерами её направление определяется правилом левой руки.

Правило левой руки для определения направления силы Лоренца

Правило левой руки для определения направления силы Лоренца: левую руку следует расположить в магнитном поле так, чтобы вектор магнитной индукции Электромагнитное поле - основные понятия, формулы и определения с примерами входил в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного заряда), тогда отогнутый на 90 о большой палец покажет направление действующей на заряд силы Лоренца.

Вблизи Северного и Южного полюсов Земли наблюдаются очень красивые природные явления, называемые «полярным сиянием». Причиной возникновения полярного сияния является действие магнитного поля Земли на поток заряженных частиц в атмосфере.
Электромагнитное поле - основные понятия, формулы и определения с примерами

Магнитное поле — это электромагнитное поле, индукция магнитного поля которого относительно данной системы отсчета отлична от нуля Электромагнитное поле - основные понятия, формулы и определения с примерами напряженность электрического поля которого равна нулю Электромагнитное поле - основные понятия, формулы и определения с примерами

На заряженную частицу, движущуюся в магнитном поле, действует сила Лоренца:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Так как направление силы Лоренца перпендикулярно направлению скорости частицы Электромагнитное поле - основные понятия, формулы и определения с примерамито эта сила не совершает работы: Электромагнитное поле - основные понятия, формулы и определения с примерамиПо этой причине сила Лоренца не может изменить модуль скорости и импульса частицы, а также ее кинетическую энергию. Она способна изменить лишь направление движения частицы. Согласно II закону Ньютона, уравнение движения заряженной частицы в неизменном во времени однородном магнитном поле (при условии Электромагнитное поле - основные понятия, формулы и определения с примерами) имеет вид:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Если частица влетает в поле в направлении, перпендикулярном силовым линиям поля Электромагнитное поле - основные понятия, формулы и определения с примерамито на неё действует максимальная сила Лоренца (sin 90° = 1):Электромагнитное поле - основные понятия, формулы и определения с примерами

В этом случае уравнение движения частицы:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Электромагнитное поле - основные понятия, формулы и определения с примерами

Сообщая телу центростремительное ускорение (так как Электромагнитное поле - основные понятия, формулы и определения с примерами), сила Лоренца заставляет его вращаться по окружности радиусом R (b):Электромагнитное поле - основные понятия, формулы и определения с примерами

Уравнение движения частицы преобразуется: Электромагнитное поле - основные понятия, формулы и определения с примерами

Из выражения (4) можно выяснить, от каких величин зависит радиус окружности, по которой вращается частица:Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь р и Ек — соответственно модуль импульса и кинетическая энергия частицы.

Радиус окружности, которую описывает заряженная частица в однородном магнитном поле, прямо пропорционален модулю скорости его движения (импульса) и обратно пропорционален модулю вектора магнитной индукции поля.

Период обращения частицы по окружности зависит от массы частицы, величины заряда и модуля индукции магнитного поля:Электромагнитное поле - основные понятия, формулы и определения с примерами

Кстати:

Прибор, используемый для определения массы частицы, называется «масс-спектрограф». Принцип его работы заключается в следующем: вакуумная камера прибора помещается в однородное магнитное поле (вектор его индукции направлен к нам перпендикулярно плоскости рисунка). Заряженные частицы сначала ускоряются электрическим полем, а затем, отклоняясь магнитным полем, описывают дугу, оставляя след на фотопластинке (с). Радиус кривизны дуги измеряется. Это позволяет точно вычислить массу частицы с известным значением заряда.

Электромагнитное поле - основные понятия, формулы и определения с примерами

Действие магнитного поля на проводник с током

Направление вектора индукции магнитного поля, созданного электрическим током, удобно определять правилом правого буравчика: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика показывает направление вектора индукции магнитного поля, созданного этим током (1). Направление вектора индукции магнитного поля кругового тока также определяется правилом правого буравчика: если вращать рукоятку буравчика по направлению кругового тока, то направление поступательного движения буравчика покажет направление вектора индукции магнитного поля, созданного током (2).

Электромагнитное поле - основные понятия, формулы и определения с примерами

При помещении проводника с током в однородное магнитное поле модуль действующей на него силы Ампера равен произведению модуля индукции магнитного поля, длины этого проводника, силы тока в нем и синуса угла между направлением тока и вектором магнитной индукции:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Направление силы Ампера определяется правилом левой руки: если расположить левую руку в магнитном поле так, чтобы линии магнитной индукции были направлены в ладонь, а четыре пальца были вытянуты по направлению тока, то отведенный под 90 о большой палец укажет направление силы Ампера.

В начале XIX века один из основоположников математической теории электромагнетизма, немецкий математик и физик Карл Фридрих Гаусс (1777-1855) разработал теорию электромагнитной пушки, называемой «пушкой Гаусса». Принцип её работы основан на взаимодействии катушки с током и железного снаряда (постоянный магнит). На рисунке изображены модель пушки Гаусса и схема принципа его работы (а).

Электромагнитное поле - основные понятия, формулы и определения с примерами

После того, как датский ученый X. Эрстед экспериментально установил существование взаимодействия проводника с током и магнитной стрелки, французский физик А. Ампер выяснил, что два параллельных проводника с током взаимодействуют как два постоянных магнита. Стало известно, что между параллельными проводниками с токами одинакового направления взаимодействие носит характер притяжения, а между проводниками с токами противоположного направления -характер отталкивания. Так как электрический ток является упорядоченным движением заряженных частиц, то магнитное взаимодействие является взаимодействием магнитных полей, созданных движущимися заряженными частицами в пространстве.

Магнитное поле действует с определенной силой на любой проводник с током (пробный ток), помещенный в это поле. Модуль этой силы, называемой силой Ампера, равен произведению силы тока в проводнике, модуля вектора магнитной индукции, длины проводника и синуса угла между направлением тока и вектором индукции магнитного поля:Электромагнитное поле - основные понятия, формулы и определения с примерами

Известно, что направление силы Ампера определяется правилом левой руки. Если проводник с током перпендикулярен вектору магнитной индукции (sin90°=l), то сила Ампера принимает максимальное значение:Электромагнитное поле - основные понятия, формулы и определения с примерами

С помощью этой формулы можно выразить физическую суть силовой характеристики магнитного поля — индукции магнитного поля.

Индукция магнитного поля — векторная величина, численно равная максимальной силе, действующей на элемент тока (Электромагнитное поле - основные понятия, формулы и определения с примерами), помещенный в это поле:Электромагнитное поле - основные понятия, формулы и определения с примерами

За направление вектора магнитной индукции в данной точке поля принимают направление, которое указывает северный полюс свободной магнитной стрелки, помещенной в эту точку поля (с). Единицей измерения магнитной индукции в СИ является тесла (Тл):

Электромагнитное поле - основные понятия, формулы и определения с примерами

Электромагнитное поле - основные понятия, формулы и определения с примерами

1 тесла — индукция такого магнитного поля, которое на проводник длиной 1 м, расположенный перпендикулярно линиям магнитной индукции, и силой тока 1 А, действует с силой 1 Н.

Магнитное поле, в каждой точке которого числовое значение и направление вектора магнитной индукции Электромагнитное поле - основные понятия, формулы и определения с примерами одинаковы, называется однородным магнитным полем.

Для магнитного поля выполняется принцип суперпозиции: вектор индукции результирующего магнитного поля, созданного несколькими проводниками с током, равен геометрической сумме векторов индукции отдельных магнитных полей, созданных этими проводниками: Электромагнитное поле - основные понятия, формулы и определения с примерами

С целью визуализации магнитного поля его изображают с помощью линий магнитной индукции (силовые линии поля) (d):

Электромагнитное поле - основные понятия, формулы и определения с примерами

Линия индукции магнитного поля — линия, касательная к каждой точке которой совпадает с вектором магнитной индукции в этой точке.

Линии индукции магнитного поля замкнутые, они не имеют ни начала, ни конца.

Поле, силовые линии которого являются замкнутыми, называют вихревым.

Применение силы Ампера в электроизмерительных приборах

Известно, что существуют различные системы электроизмерительных приборов — амперметра, вольтметра и ваттметра. Это магнитоэлектрические, электромагнитные и электродинамические системы. Принцип работы всех этих систем основан на действии магнитного поля на проводник с током.

Принцип работы приборов магнитоэлектрической системы основан на взаимодействии магнитного поля постоянного магнита с магнитным полем, возникающим вследствие прохождения измеряемого тока через проводящую рамку (е).

Принцип работы прибора электромагнитной системы основан на взаимодействии магнитного поля, возникающего в результате прохождения измеряемого тока через неподвижную катушку, с подвижным стальным сердечником, помещенным в это поле (f).

Принцип действия прибора электродинамической системы основан на взаимодействии магнитных полей токов, протекающих по неподвижной и подвижной катушкам (или системам катушек) (g).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Магнитный поток и явление электромагнитной индукции

После проведения многочисленных опытов М. Фарадей в 1831 году установил, что изменения магнитного поля приводят к возникновению электрического тока в замкнутом проводящем контуре.

Явление возникновения электрического тока в замкнутом проводящем контуре, помещенном в изменяющееся магнитное поле, называют электромагнитной индукцией, а возникающий ток — индукционным током.

Возникновение переменного магнитного поля всегда сопровождается созданием в окружающем пространстве вихревого электрического поля.

Вихревое электрическое поле отличается от электростатического:

  • a) электростатическое поле создается неподвижным электрическим зарядом, а вихревое электрическое поле создается переменным магнитным полем;
  • b) линии напряженности электростатического поля не замкнуты: они начинаются на положительных зарядах и заканчиваются на отрицательных зарядах. Линии напряженности вихревого электрического поля не имеют ни начала, ни конца — эти линии замкнуты.

В 1833 году русский физик Э. Ленц установил общее правило определения направления индукционного тока, так называемое правило Ленца:

Индукционный ток принимает такое направление, что созданное им магнитное поле противодействует тому изменению внешнего магнитного поля, которое стало причиной возникновения тока.

При усилении внешнего магнитного поля магнитное поле индукционного тока ослабляет это изменение — вектор индукции магнитного поля индукционного тока направлен против вектора индукции внешнего магнитного поля (1).

При ослаблении внешнего магнитного поля магнитное поле индукционного тока препятствует изменению, то есть стремится к тому, чтобы это поле не ослабло. Вектор индукции магнитного поля индукционного тока направлен так же, как и вектор индукции внешнего магнитного поля (2).
Электромагнитное поле - основные понятия, формулы и определения с примерами

Магнитный поток

Электромагнитное поле - основные понятия, формулы и определения с примерами

Если поместить замкнутый контур (рамку) в однородное магнитное поле, то через площадь S, ограниченную этим контуром, проходит определенное количество линий магнитной индукции (с). Величину, прямо пропорциональную числу этих линий индукции, называют потоком магнитной индукции, или просто магнитным потоком.

Поток магнитной индукции (Ф) — скалярная физическая величина, равная произведению модуля вектора магнитной индукции, площади контура и косинуса угла между вектором магнитной индукции и нормалью к площади контура:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Магнитный поток относится к скалярным величинам, которые могут принимать положительные, отрицательные значения, а также равняться нулю:

  • — если угол между вектором индукции и нормалью к плоскости контура острый, то магнитный поток принимает положительные значения, а если этот угол тупой — отрицательные;
  • — если вектор индукции перпендикулярен плоскости контура, то есть параллелен нормали к плоскости, то Электромагнитное поле - основные понятия, формулы и определения с примерамитогда магнитный поток, пронизывающий плоскость контура, принимает максимальное значение:

Электромагнитное поле - основные понятия, формулы и определения с примерами

  • — если вектор индукции параллелен поверхности, то есть перпендикулярен нормали, то Электромагнитное поле - основные понятия, формулы и определения с примерамитогда магнитный поток не проходит через плоскость контура, то есть он равен нулю: Электромагнитное поле - основные понятия, формулы и определения с примерамиЗначит, линии магнитной индукции не пронизывают поверхность контура.

Единицей измерения магнитного потока в СИ является вебер (1 Вб):Электромагнитное поле - основные понятия, формулы и определения с примерами

1 Вебер — магнитный поток, пронизывающий поверхность площадью 1 м 2 , ограниченную проводящим контуром, расположенным в магнитном поле с индукцией 1 Тл перпендикулярно линиям индукции поля.

Явление электромагнитной индукции

В 1831 году английский ученый Майкл Фарадей (1791-1867) открыл явление электромагнитной индукции и показал существование взаимосвязи между электрическим и магнитным полем.

Вы знаете, что при введении в катушку, соединенную с гальванометром, постоянного магнита, и выведении его из катушки в витках катушки возникает индукционный ток. А если магнит неподвижен внутри катушки или совершает вращательное движение внутри катушки, то ток не возникает. Значит, причиной возникновения индукционного тока является изменение магнитного потока, пронизывающего контур (d и е).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Возникновение электрического тока в проводящем контуре в результате изменений магнитного потока, пронизывающего площадь, ограниченную этим контуром, называют явлением электромагнитной индукции.

Направление индукционного тока зависит от того, увеличивается или уменьшается пронизывающий контур магнитный поток.

1. Магнитный поток увеличивается Электромагнитное поле - основные понятия, формулы и определения с примерами Электромагнитное поле - основные понятия, формулы и определения с примерамиЭто случай, когда магнит приближается к контуру. В результате магнитный поток растет, индукционный ток, возникающий в контуре при изменении внешнего поля, создает свое собственное магнитное поле. Это вновь созданное поле отталкивает приближающийся к катушке магнит. Значит, вектор индукции Электромагнитное поле - основные понятия, формулы и определения с примерамивнешнего поля, создавшего ток в контуре, направлен против вектора Электромагнитное поле - основные понятия, формулы и определения с примерамисобственного магнитного поля контура с током (см. d). В этом случае магнит и контур отталкиваются одноименными магнитными полюсами. Для круговых токов можно применять правило правого буравчика и легко определить, как направлен индукционный ток — его направление совпадает с направлением вращения стрелки часов.

Правило правого буравчика для кругового тока

Правило правого буравчика для кругового тока: при вращении рукоятки буравчика по направлению кругового тока направление его поступательного движения совпадает с направлением вектора индукции магнитного поля внутри кругового тока (f).

Электромагнитное поле - основные понятия, формулы и определения с примерами

2. Магнитный поток уменьшается Электромагнитное поле - основные понятия, формулы и определения с примерамиЭто случай, когда магнит выводится из катушки. В результате магнитный поток уменьшается. Возникающий в контуре индукционный ток принимает такое направление, при котором вектор индукции Электромагнитное поле - основные понятия, формулы и определения с примерамиего собственного магнитного ноля направлен так же, как и вектор индукции внешнего магнитного поля Электромагнитное поле - основные понятия, формулы и определения с примерами. В этом случае магнит и контур притягиваются, как магниты, противоположными полюсами (см. е). На основе правила правого буравчика устанавливается, что индукционный ток направлен против направления вращения стрелки часов.

Итак, возникающий в замкнутом проводящем контуре индукционный ток всегда направлен так, что его собственное магнитное поле препятствует тем изменениям внешнего магнитного поля, которые стали причиной возникновения этого тока.

Это правило Ленца, позволяющее определить направление индукционного тока.

Закон электромагнитном индукции

Упорядоченное движение заряженных частиц называется электрическим током.

Для существования непрерывного электрического тока в проводнике необходимо выполнение следующих условий: наличие в проводнике заряженных частиц (носителей заряда), способных свободно перемещаться по проводнику; действие электрической силы, способной перемещать эти частицы в определенном направлении; проводник (цепь, состоящая из проводников), по которому проходит электрический ток, должен быть замкнутым.

За направление электрического тока условно принято направление вектора напряженности электрического поля внутри проводника.

За направление электрического тока принято направление движения положительных зарядов (против направления движения свободных электронов).

Зависимость силы тока в данном проводнике от напряжения на его концах проводника и от его сопротивления выражается законом Ома для участка цепи постоянного тока.

Сила тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Индукционный ток, как и любой другой, создается электрическим полем.

Существование переменного магнитного поля всегда сопровождается появлением в окружающем пространстве вихревого электрического поля. Именно вихревое электрическое поле (а не переменное магнитное) действует на свободные электроны в замкнутом контуре и способствует возникновению индукционного тока в нем.

Вихревое электрическое поле существенно отличается от электростатического:

  • а) Электростатическое поле создается покоящимися зарядами, а вихревое электрическое переменным магнитным полем;
  • b) Линии напряженности электростатического поля не замкнуты: они начинаются на положительных зарядах и заканчиваются на отрицательных зарядах. Линии напряженности вихревого электрического поля не имеют ни начала, ни конца, они замкнуты как линии индукции магнитного поля.

Одним из современных видов общественного транспорта является поезд на воздушной подушке, движущийся в подвешенном состоянии левитации -без непосредственного контакта с дорогой. Вместо колес шасси этого поезда, называемого МагЛев, оснащено электромагнитной опорой и направляющими магнитами. Железная дорога состоит из проводящего рельса Т-образной формы, оснащенного электромагнитом, создающим мощный индукционный ток. Такой поезд, испытания которого проводились в Японии вблизи города Фудзияма, показал рекордную скорость 603 Электромагнитное поле - основные понятия, формулы и определения с примерамиНа рисунке показана упрощенная схема МагЛева (а).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Вихревое электрическое поле и ЭДС индукции

Причиной возникновения индукционного тока в замкнутом проводящем контуре является возникновение вихревого электрического поля вокруг переменного магнитного ноля, которое, действуя на свободные электроны в контуре, приводит их в упорядоченное движение -создает индукционный электрический ток. Работа вихревого электрического поля по перемещению положительного единичного заряда по замкнутому проводнику характеризуется физической величиной, называемой электродвижущей силой индукции (ЭДС индукции).

Электродвижущая сила индукции — скалярная физическая величина, равная отношению работы, совершенной вихревым электрическим полем при перемещении положительного единичного заряда вдоль замкнутого контура, к величине этого заряда:

Электромагнитное поле - основные понятия, формулы и определения с примерами

В проведенном исследовании явления электромагнитной индукции вы определили, что значение возникшего в замкнутом контуре индукционного тока пропорционально скорости изменения магнитного потока, проходящего через поверхность, ограниченную этим контуром. Значит, и электродвижущая сила индукции, создающая индукционный ток в проводящем контуре, зависит от скорости изменения внешнего магнитного потока.

Если за очень малый промежуток времени Электромагнитное поле - основные понятия, формулы и определения с примерамимагнитный поток изменяется на Электромагнитное поле - основные понятия, формулы и определения с примерамито отношение Электромагнитное поле - основные понятия, формулы и определения с примерамиявляется скоростью изменения магнитного потока.

Закон электромагнитной индукции

На основе вышесказанного можно выразить закон электромагнитной индукции:

ЭДС индукции, возникающая в замкнутом проводящем контуре, прямо пропорциональна скорости изменения магнитного потока, проходящего через ограниченную этим контуром поверхность:Электромагнитное поле - основные понятия, формулы и определения с примерами

Знак минус в выражении (2) указывает на то, что магнитный поток индукционного тока препятствует изменению внешнего магнитного потока, породившего индукционный ток.

Если контур состоит из N числа витков, го выражение (2) принимает вид:Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами— ЭДС индукции, единицей ее измерения является вольт (1 В):Электромагнитное поле - основные понятия, формулы и определения с примерами

Сила индукционного тока, возникающего в замкнутом проводящем контуре, определяется согласно закону Ома для участка цепи:Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь R — сопротивление контура.

ЭДС индукции в движущихся в магнитном поле проводниках. При движении проводника в магнитном поле находящиеся внутри него свободные заряженные частицы движутся вместе с ним. По этой причине на каждую частицу действует сила Лоренца. В результате свободные заряды, перемещаясь внутри проводника, совершают упорядоченное движение — в проводнике возникает ЭДС индукции.

Возникающая ЭДС индукции зависит от скорости проводника, длины части проводника, находящейся в поле, и модуля вектора магнитной индукции. Это легко доказывается на основе закона электромагнитной индукции.

Электромагнитное поле - основные понятия, формулы и определения с примерами

Представим, что проводник длиной Электромагнитное поле - основные понятия, формулы и определения с примерамипереместился в магнитном поле индукцией Электромагнитное поле - основные понятия, формулы и определения с примерамина Электромагнитное поле - основные понятия, формулы и определения с примерамив направлении, перпендикулярном вектору индукции (b). ЭДС индукции, возникающая при этом в проводнике: Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь принято во внимание, что Электромагнитное поле - основные понятия, формулы и определения с примерамии Электромагнитное поле - основные понятия, формулы и определения с примерами(см. b). Если вектор скорости составляет угол Электромагнитное поле - основные понятия, формулы и определения с примерамис вектором магнитной индукции, то ЭДС индукции определяется так:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Направление индукционного тока в проводнике, движущегося в магнитном иоле, удобно определять правилом правой руки:

Правую руку следует держать в магнитном поле так, чтобы вектор Электромагнитное поле - основные понятия, формулы и определения с примерами входил в ладонь, а отогнутый на 90° большой палец показывал направление движения проводника, тогда четыре вытянутых пальца укажут направление индукционного тока.

Кстати:

Принцип работы электронных счетчиков потребления, используемых в быту, основан на применении закона электромагнитной индукции. Например, в электронных счетчиках потребления воды в проводящем электрический ток потоке жидкости возникает ЭДС индукции, пропорциональная скорости жидкости. Индукционный ток в электронной части прибора преобразуется в цифровой сигнал.

Электромагнитное поле - основные понятия, формулы и определения с примерами

ЭДС самоиндукции и энергия магнитного поля

Инертность — одно из важнейших свойств тела (происходит от латинского слова «inertia» — бездеятельность, ленивость).

Инертность — это свойство тел, выражающееся в том, что на изменение скорости тела всегда требуется определенное время. Явление сохранения телом состояния покоя или прямолинейного равномерного движения при отсутствии действия на тело других тел (когда действующие на тело силы уравновешивают друг друга) называется инерцией.

Мера инертности тела — его масса.

Энергия, которой обладает тело вследствие своего движения, называется кинетической энергией. Кинетическая энергия тела зависит от массы тела и модуля его скорости (не от направления):Электромагнитное поле - основные понятия, формулы и определения с примерами

Так как магнитные свойства разных веществ различны, то индукция магнитного поля, созданного в них одним и тем же источником поля, будет различна. Магнитные свойства веществ характеризуются величиной, называемой магнитной проницаемостью вещества.

Магнитная проницаемость вещества показывает, во сколько раз модуль индукции однородного магнитного поля В в веществе отличается от индукции этого магнитного поля в вакууме Во:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами (мю) — магнитная проницаемость вещества. Это безразмерная величина.

Прохождение электрического тока через газ при отсутствии внешнего воздействия называется самостоятельным разрядом. Одним из видов самостоятельного газового разряда является искровой разряд.

Искровой разряд возникает в воздухе при высоком напряжении между электродами и наблюдается в виде светящихся узких каналов зигзагообразной формы. Температура в канале разряда может достигать 10 ООО °С, сила тока до 5000 А, напряжение до 10 4 В.

Кстати:

Наверно, каждый из вас наблюдал появление кратковременной искры при вынимании вилки прибора в рабочем режиме из электрической розетки. Это значит, что в воздухе между вилкой прибора и электрической розеткой возник самостоятельный разряд с напряжением несколько тысяч вольт. Такая искра иногда приводит к выводу из строя вилки или розетки.

Электромагнитное поле - основные понятия, формулы и определения с примерами

ЭДС самоиндукции

Электрический ток, существующий в любом замкнутом контуре, создает собственное магнитное поле (находится в собственном магнитном поле). При изменении силы тока в контуре одновременно происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока приводит к возникновению вихревого электрического поля, и в результате в этом контуре возникает ЭДС индукции.

Явление возникновения ЭДС индукции в замкнутом проводящем контуре в результате изменения силы тока в нем называют самоиндукцией.

При увеличении силы тока в замкнутом контуре от нуля до определенного значения увеличивается и проходящий через этот контур магнитный поток. Возникающая в контуре в результате увеличения магнитного потока ЭДС самоиндукции создает индукционный ток, направленный против проходящего по контуру основного тока — индукционный ток замедляет рост основного тока и достижение им максимального значения — на увеличение силы тока до максимального значения уходит определенное время (кривая OA, b).
Электромагнитное поле - основные понятия, формулы и определения с примерами

При размыкании цепи сила тока уменьшается от максимального значения до нуля, вместе с этим уменьшается магнитный поток. Уменьшение магнитного потока приводит к возникновению в контуре ЭДС самоиндукции, которая в свою очередь создает в этом контуре индукционный ток, направленный, согласно правилу Ленца, так же, как и основной ток, и замедляющий его уменьшение (кривая ВС, b).

Из вышесказанного становится ясно, что возникающий в контуре собственный магнитный поток прямо пропорционален силе проходящего через контур тока — Электромагнитное поле - основные понятия, формулы и определения с примерамиили:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь L является коэффициентом пропорциональности (между Электромагнитное поле - основные понятия, формулы и определения с примерамии Электромагнитное поле - основные понятия, формулы и определения с примерами) и называется индуктивностью контура (катушки).

Индуктивность зависит от геометрических размеров контура (катушки), от магнитной проницаемости среды внутри него, от числа витков. Она не зависит от силы тока в контуре и магнитного потока.

Индуктивность — скалярная величина, единица ее измерения в СИ названа генри (1 Гн), в честь американского ученого Джозефа Генри:

Электромагнитное поле - основные понятия, формулы и определения с примерами

1 Гн — индуктивность такого контура (катушки), в которой при силе тока 1 А через контур проходит собственный магнитный поток 1 Вб.

Если учесть выражение (1) в законе электромагнитной индукции, то получим, что ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, проходящего через контур:Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами— ЭДС самоиндукции, Электромагнитное поле - основные понятия, формулы и определения с примерами— скорость изменения силы тока в контуре.

Энергия магнитного поля

Согласно закону сохранения энергии, работа, совершенная при создании ЭДС индукции, будет равна энергии магнитного поля, создавшего его. Для определения этой энергии удобно воспользоваться схожестью явления самоиндукции с явлением инерции. Так, индуктивность L играет такую же роль при изменениях силы тока Электромагнитное поле - основные понятия, формулы и определения с примерамив электромагнитных процессах, какую играет масса Электромагнитное поле - основные понятия, формулы и определения с примерами— при изменениях скорости Электромагнитное поле - основные понятия, формулы и определения с примерамив механических процессах. Тогда для энергии магнитного поля, создаваемого контуром в электромагнитных явлениях, можно принять выражение, аналогичное выражению кинетической энергии тела в механических явлениях:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Если в этом выражении учесть формулу (1), получим ещё две формулы для энергии магнитного поля:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Из теоретических вычислений получено, что плотность энергии магнитного поля прямо пропорциональна квадрату магнитной индукции и обратно пропорциональна магнитным свойствам среды:Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами— магнитная постоянная: Электромагнитное поле - основные понятия, формулы и определения с примерами

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Электромагнитные волны для «чайников». Что излучает телефон?

В этой небольшой серии из трех статей, мы попробуем разобраться с очень важной темой, которая касается каждого современного человека. Ведь все мы буквально погружены в океан электромагнитного излучения, порой даже не осознавая, что это такое и как оно влияет на нас.

Безусловно, в интернете предостаточно статей, которые рассказывают об электромагнитных волнах, их длине и частоте, об ионизирующем излучении и прочих сложных терминах. Но для многих людей всё это остается загадкой — чем-то далеким от той реальности, которую можно потрогать, увидеть или хотя бы осознать.

Например, многие знают, что видимый свет — это поток фотонов или «светящихся шариков», переносящих энергию в пространстве. Но тогда радиоволны или тепло — это тоже фотоны/шарики?

Как вы представляете себе энергию? Может это некий светящийся сгусток материи или небольшая порция электричества, вроде микроскопической молнии? Но ведь брошенный камень тоже обладает энергией, а в нем нет никакого электричества или светящегося вещества.

Что происходит, когда смартфон или фитнес-браслет создает электромагнитную волну, которая затем отдает эту энергию нашему телу? Ведь все эти устройства непрерывно что-то излучают. И куда же девается эта энергия?

Цель этого небольшого цикла статей — ответить на все поставленные выше вопросы. Но ответить не цифрами или сложными терминами, а дать интуитивное понимание, чтобы электромагнитное излучение и энергия показались такими же обыденными вещами, как огонь или вода.

В процессе чтения этих статей вы непосредственно почувствуете, что значит потратить 1 джоуль энергии или сколько это 1 ватт. Ведь именно в ваттах измеряется мощность радиоизлучения от Wi-Fi, смартфонов или Bluetooth-наушников.

Но прежде, чем мы разберемся с энергией, которую излучает различная техника (во второй части), и поймем влияние этой энергии на организм (в третьей части), нужно осознать, что такое излучение вообще.

Именно о природе электромагнитных волн и пойдет речь в первой статье!

Что такое электромагнитное поле? Или о логических противоречиях

Очевидно, электромагнитные поля — это набор электрических и магнитных полей. Но при попытке ответить на вопрос о том, что же такое электромагнитное поле, из чего оно состоит и почему работает так, как работает, мы сталкиваемся с логическим противоречием.

Если вы пытались в этом разобраться, то, скорее всего, тоже каждый раз разочаровывались в ответах, потому что, задавая такие вопросы, вы нарушаете законы логики.

Из чего состоит воздух? Очевидно, из молекул. Почему воздух нагревается? Потому что молекулы находятся в непрерывном движении и если они ускоряются, то при столкновении с нашей кожей ударяются в нее сильнее, передавая часть энергии движения нашим молекулам. И мы чувствуем тепло.

Это простые вопросы и на них есть простые ответы, так как ни воздух, ни молекулы не являются фундаментальными понятиями, а значит, их природу можно объяснить.

Фундаментальное понятие — это то, из чего состоит всё остальное, то, что невозможно разложить на составляющие части, невозможно разделить, как мы делим молекулы на атомы, атомы — на электроны и ядра, а ядра — на протоны и нейтроны.

Представьте машинку, собранную из деталек конструктора. Для ребенка одна деталька и будет фундаментальным понятием. Ведь он даже не представляет, что детальку можно «разобрать» на более мелкие «детальки» — атомы.

Так вот, в современной науке, какой бы продвинутой и фантастической она ни казалась нам, электрические и магнитные поля являются фундаментальными понятиями. Поэтому ни одна статья не сможет дать вам тот ответ, на который вы рассчитываете.

Тем не менее, кое-что мы понять можем!

Что такое электрическое поле?

Всё вещество в нашей вселенной в основном состоит из трех частиц: электронов, протонов и нейтронов. Это и есть «неделимые» детальки конструктора. А раз неделимые, значит, элементарные.

Из этих трех частиц только две (электроны и протоны) обладают неким интересным свойством под названием электрический заряд. Например, у частиц есть какая-то масса, «размер» и другие параметры, включая тот самый «заряд».

Если вы при слове «заряд» подумали об электрическом токе, то снова сделали логическую ошибку. Ток — это движение зарядов в пространстве. Соответственно, называя заряд током, мы ходим по кругу: заряд — это ток, а ток — это заряд. Нонсенс.

Дело в том, что электрон и протон не просто так парят в пространстве, они изменяют его! Эти частицы создают вокруг себя некую форму материи, которую мы и назвали электрическим полем.

Его невозможно потрогать, невозможно увидеть, но все частицы, обладающие зарядом, испытывают его влияние на себе.

Электрический заряд — это и есть способность частицы создавать вокруг себя материю под названием «электрическое поле», а также способность реагировать на электрические поля, созданные другими частицами.

Если мы представим протоны и электроны как шарики, то электрическим полем будут линии, выходящие из этих шариков (или входящих в них). Это непростые линии, они могут толкать или притягивать другие частички, обладающие зарядом:

электрические элементарные заряды

Эти линии никогда не пересекаются. Если поместить рядом два протона, из которых исходят линии (электрическое поле), то линии согнутся и будут пытаться выпрямиться, словно прутья. В результате две частички отлетят друг от друга:

два одноименных заряда отталкиваются

Но если мы поместим протон, из которого выходят линии, и электрон, в который линии входят, они «склеятся» друг с другом:

разноименные заряды притягиваются

Когда люди заметили подобное поведение, то решили как-то обозвать два типа таких зарядов. Можно было называть их исходящими и входящими зарядами или липкими и колючими. Но Бенджамин Франклин (тот, что изображен на стодолларовой купюре) назвал их положительными и отрицательными зарядами.

Итак, электрическое поле — это некая таинственная материя, которую создают вокруг себя все частицы, обладающие таким свойством, как электрический заряд.

Конечно, в реальности электрическое поле не состоит из физических линий, но именно так проще всего представлять эту материю. К примеру, вокруг частиц с положительным электрическим зарядом линии направлены от частицы и это направление показывает, в какую сторону будут отталкиваться другие положительные заряды:

как частицы отталкивают другие частицы

Чем ближе к протону — тем больше линий, то есть, выше плотность их размещения и, соответственно, электрическое поле будет более сильным. Чем дальше от протона — тем реже встречаются линии, и тем слабее поле, то есть, оно толкает другие заряды с меньшей силой. Это даже интуитивно понятно, так как один согнутый «прутик» толкнет частичку гораздо слабее, чем сотня таких же натянутых «прутьев», сделанных из неизвестной науке материи.

Важно понимать, что «прутики» не толкают непосредственно частички, они на них вообще никак не влияют. Эти «прутики» взаимодействуют только с другими «прутьями» или линиями электрических полей, созданных другими заряженными частицами.

Поэтому, если у частицы нет заряда (например, у нейтрона), тогда она никак не будет реагировать на электрические поля в пространстве и сама не будет создавать вокруг себя этой материи.

То же касается и многих атомов, у которых одинаковое количество разноименных зарядов (протонов и электронов). Такие атомы электрически нейтральны, так как одни заряды компенсируют другие. Это становится более наглядным, если называть заряды положительными и отрицательными, ведь +1 и -1 в сумме дают 0.

Из какого именно вещества состоит электрическое поле и как оно выглядит — это бессмысленные вопросы. Поле не может состоять из вещества по определению. Ведь наша вселенная состоит из материи, которая в свою очередь делится на вещество и поле:

из чего состоит вселенная

Поэтому не нужно думать об электрическом поле, как о каком-то веществе, вроде электронов, атомов или жидкости. Это отдельная форма существования материи. Если в веществе может быть пустота (вакуум), то в поле не может быть пустот, так как поле не состоит из отдельных частиц.

Представьте, что всё пространство во вселенной, включая вакуум, заполнено какой-то неизвестно науке средой. Это не электрическое поле, а просто что-то, что заполняет всё вокруг. В таком случае элементарная частица, обладающая электрическим зарядом, будет деформировать эту среду. И вот эта деформация/изменение пространства и есть электрическое поле.

Что такое магнитное поле?

Раз элементарные частицы, обладающие электрическим зарядом, создают вокруг себя электрическое поле, то, должно быть, существуют элементарные частицы, обладающие магнитным зарядом и вот они-то и создают вокруг себя магнитное поле?

Хотя в этом и есть логика, но это не так. Не существует такого свойства частиц, как «магнитный заряд» и ни одна частица не обладает магнитным полем. Откуда же оно берется?

Прежде всего, магнитное поле — это еще один реально существующий вид материи, который может появляться из «ниоткуда» и исчезать в «никуда». Это примерно такое же изменение пространства, как и электрическое поле, но с небольшими отличиями.

Возьмем, к примеру, электрон. Это частица, имеющая электрический заряд. А раз так, она всегда создает вокруг себя электрическое поле и больше ничего. Но стоит электрону сдвинуться с места, то есть, начать движение и вокруг этого электрона, помимо постоянного электрического поля, тут же начнет появляться магнитное поле:

электрическое и магнитное поле

Как только электрон остановится, магнитное поле исчезнет. В отличие от электрического поля, магнитное поле не исходит от частицы, а окружает ее. Также линии магнитного поля замкнуты, а не направлены во все стороны (действие их силы показано стрелкой на картинке выше).

Когда электрон или другая заряженная частица пролетает, магнитное поле не исчезает мгновенно, а как бы тянется небольшим шлейфом впереди и позади электрона, причем поле тем сильнее, чем ближе оно к частице:

магнитное поле вокруг движущегося заряда

Если электрическое поле с силой действует на частицы с электрическим зарядом, то магнитное поле действует на эти же частицы, если они находятся в движении.

К примеру, мы можем взять два провода и пустить по ним ток, чтобы внутри по проводам поползли элементарные заряженные частицы (электроны). Как только они начнут свое движение, вокруг проводов появятся магнитные поля. То есть, два провода в буквальном смысле слова станут двумя магнитами.

Если электроны в двух проводах будут ползти в одну сторону, магнитные поля будут притягивать друг друга, словно вы прикладываете два магнита разными полюсами. Если же ток в двух проводах будет течь в разные стороны, «провода-магниты» будут отталкиваться:

провода превращаются в магниты

Заметьте, что электрические поля электронов не имеют никакого отношения к этому отталкиванию или притяжению. Это проявляются магнитные поля.

Что заставляет электроны ползти по проводам? Верно — электрическое поле! Так как на одном конце провода собралось очень много отрицательно заряженных частичек, а на втором — положительно заряженных, то именно электрическое поле и притягивает отрицательные заряды (электроны) к положительным, заставляя их ползти по проводу:

линии электрического поля в проводнике

Это и есть электромагнитные поля.

Но причем здесь излучение? Ведь электрическое и магнитное поле существуют только вокруг частичек, не так ли?

Что такое электромагнитное излучение? Или о том, как работает телефон

Снова наша логика подсказывает очень простой ответ. Если электромагнитное поле существует только вокруг элементарных частиц с зарядом (электронов и протонов), то электромагнитное излучение — это, наверное, полет электронов или протонов.

Наверное, во время звонка смартфон выбрасывает в пространство припасенные в аккумуляторе электроны, которые затем разлетаются во все стороны и создают при полете вокруг себя электромагнитные поля. Верно?

Может это звучит и логично, но в корне ошибочно. Всё куда интереснее и сложнее.

Дело в том, что наша вселенная устроена так, что изменяющееся электрическое поле порождает изменяющееся магнитное поле, а изменяющееся магнитное поле порождает изменяющееся электрическое поле.

Чтобы понять этот набор слов, давайте рассмотрим простой пример.

Вернемся к проводу, на одном конце которого собралось много положительно заряженных частиц, а на другом — с отрицательным зарядом. Так как линии электрического поля всегда выходят из положительных зарядов и входят в отрицательные, то наше электрическое поле упрощенно выглядит так:

линии электрического поля в проводнике

Естественно, такое поле оказывает влияние на все электроны в проводе и заставляет их двигаться по направлению к положительно заряженным частицам. Но когда все отрицательные частицы переходят вниз, то теперь внизу собрался отрицательный заряд, а вверху — положительный. И теперь электрическое поле изменило свое направление и выглядит так:

движение электронов в обратную сторону

Это и есть изменяющееся электрическое поле. Оно постоянно меняет свое направление (направление силовых линий) и силу.

Ну а что с магнитным полем?

Когда электрическое поле заставляет двигаться заряженные частички, вокруг этого движения возникает магнитное поле. Причем, когда все электроны находятся на одном из концов провода, магнитное поле исчезает, ведь движение электронов останавливается. А когда электроны начинают двигаться в противоположную сторону, магнитное поле снова увеличивается до максимума:

магнитное поле, вызванное переменным электрическим полем

Так как направление движения электронов каждый раз меняется, то меняется не только сила магнитного поля, связанная с движением электронов, но и направление его линий:

изменяющееся магнитное поле

Это и есть изменяющееся во времени магнитное поле!

Получается, у нас есть изменяющееся электрическое поле, которое порождает изменяющееся магнитное поле. А как мы помним, изменяющееся магнитное поле снова порождает изменяющееся электрическое поле. И тут происходит настоящая цепная реакция, словно падение костяшек домино:

электромагнитное излучение

Даже если в этот момент убрать провод и любые частицы, это уже не остановит волну порождений одного поля другим. Такая волна будет нестись в пространстве со скоростью света, по пути влияя на все остальные заряженные частицы.

К слову, именно это изменение электрического поля и показывают на графиках в виде волн:

изменение электрического поля на графике

Когда электроны начинают движение и собираются на одном конце провода, электрическое поле на графике направляется вверх и его сила увеличивается. Затем электроны начинают двигаться в обратном направлении и сила электрического поля на графике начинает снижаться до тех пор, пока электроны не соберутся на противоположной стороне провода.

Теперь график снова показывает максимальную силу электрического поля, но уже направленную в другую сторону:

движение тока и графическое представление волны

Иногда график рисуется более корректно, так как к нему добавляется еще магнитное поле, которое колеблется перпендикулярно относительно электрического поля:

электромагнитная волна (график)

Итак, мы видим, что электромагнитная волна не связана с полетом электронов или протонов. При помощи электронов мы лишь создаем в одной точке пространства изменяющееся электрическое поле и оно порождает цепную реакцию под названием электромагнитное излучение.

Никакое вещество не переносится в пространстве, идет просто возмущение/колебание пространства или условной среды, заполняющей всё пространство.

Именно это делают смартфоны, Bluetooth-наушники или фитнес-браслеты. Внутри этих устройств есть антенны — небольшие кусочки провода, по которым электроны бегают то в одну сторону, то в другую. Из-за этого создается переменное электрическое поле, которое создает переменное магнитное поле и запускается уже рассмотренная нами реакция.

А теперь представьте, что такая волна доходит до другого устройства. Кусок провода (антенна) внутри него начинает испытывать воздействие электрического поля. Вначале оно имеет максимальную силу и направлено вниз. Естественно, все электроны испытывают на себе это влияние и под действием силы начинают двигаться в одну сторону.

Затем электрическое поле угасает и движение останавливается, после чего разворачивается в другую сторону и все электроны снова начинают движение в противоположную сторону. А движение электронов — это ток. В итоге, в проводе возникает электричество или сигнал!

движение тока и графическое представление волны

Для провода и электронов нет разницы, подключили ли мы батарейку (источник электрического поля) или это электрическое поле пришло в виде волны, главное, что все электроны начинают испытывать на себе движущую силу.

Именно так мы и можем передавать энергию на расстоянии, просто посылая колебания электрического поля.

У электромагнитной волны есть несколько свойств. Например, скорость распространения волны составляет 300 тыс. километров в секунду (в вакууме). Длина волны — это расстояние между ее последовательными пиками:

длина волны

То есть, это время, за которое электрическое поле меняет свое направление.

Также у волны есть частота, которая говорит нам о том, как часто сменяется направление движения электронов в проводе (или направление электрического поля).

Если направление электрического поля меняется 50 раз в секунду, значит, мы имеем электромагнитную волну с частотой 50 Гц, а если направление тока меняется 2.4 миллиарда раз в секунду, электромагнитная волна имеет частоту 2.4 ГГц. Именно на такой частоте работает Bluetooth, Wi-Fi и микроволновка.

И именно от частоты зависит энергия волны. Одни волны могут буквально разрушать всё на своем пути, включая ДНК человека. Другие волны могут растягивать молекулы, а третьи — поворачивать их внутри нашего тела.

Но что такое энергия? Почему энергия зависит от длины волны (от того расстояния, которое нужно преодолеть электронам в антенне)? Откуда берется эта энергия и куда девается? Обо всем этом мы поговорим во второй части.

Алексей, глав. ред. Deep-Review

P.S. Не забудьте подписаться в Telegram на наш научно-популярный сайт о мобильных технологиях, чтобы не пропустить самое интересное!

Как бы вы оценили эту статью?

Нажмите на звездочку для оценки

Внизу страницы есть комментарии.

Напишите свое мнение там, чтобы его увидели все читатели!

Если Вы хотите только поставить оценку, укажите, что именно не так?

Где мои смарт-часы с глюкометром?! Или почему трекеры до сих пор не измеряют уровень сахара в крови

Что такое PDAF и Dual Pixel? Или как работает автофокус на смартфонах

Диагональ экрана — самый хитрый обман в истории?

Барометр в телефоне и смарт-часах для «чайников». Как он работает и для чего нужен?

Камера смартфона для «чайников» №2. Фокусное расстояние. Ох уж эти миллиметры…

Смартфоны и здоровый сон. Может ли экран сломать молекулярные часы человека?

Bluetooth-кодеки и беспроводной звук на смартфоне для «чайников»

Смартфон с «человеческими» характеристиками. Когда всё не так очевидно

Я в 9 классе. Благодаря этой статье поняла 17 параграфов из учебника по физике. Спасибо огромное

По сути, получается, что э/м поля — это лишь удобная абстракция, описывающая взаимодействие частичек вещества. Не объяснение, но по крайней мере надёжное описание тех законов, по которым эти частички ведут себя относительно друг друга.

Э/м волны это, в свою очередь, — ещё одна абстракция, описывающая распространяющиеся изменения полей. Причём эти волны могут быть вещественно вообще никак не выражены, — при распространении в вакууме.

Только если у нас будет второй проводник (принимающая антенна), то мы сможем наблюдать изменения в поведении его вещества и судить о внешнем воздействии. В приёмнике будет возникать электрический ток, хотя на вещественном уровне он с источником никак не связан.

Много материалов пересмотрел, но везде идет объяснение про электрическое и магнитное поле отдельно. И было не ясно, каким образом они взаимодействуют. В этой статье все максимально понятно, спасибо автору)))

«То же касается и многих атомов, у которых одинаковое количество разноименных зарядов (протонов и электронов). Такие атомы электрически нейтральны, так как одни заряды компенсируют другие. Это становится более наглядным, если называть заряды положительными и отрицательными , ведь +1 и -1 в сумме дают 0.»

Позволю себе позанудствовать!
Несмотря на электрическую нейтральность атомов мы, тем не менее, состоим из молекул, а это возможно только вследствие взаимодействия атомов. Любой атом имеет положительно заряженное ядро и оболочку из электронов. Так вот для создания молекулы, например, кислорода (О2), два атома по сути «делят» часть электронов. Это можно увидеть, погуглив картинки на тему «ковалентная связь».
Если же мы возьмем два атома с противоположных сторон таблицы Менделеева — пусть это будут натрий и хлор — мы получим уже ионную связь. Хлор не будет «делить» электрон с натрием, он его просто отберет. Поэтому в воде у нас и плавают ионы, молекулы воды облепляют положительные и отрицательные ионы, получившиеся из, казалось бы, нейтральных атомов. По этой причине, такую аналогию я бы все же не использовал ��

Здравствуйте!
Спасибо большое за статью.
Не очень понятен следующий момент:

Но когда все отрицательные частицы переходят вниз, то теперь внизу собрался отрицательный заряд, а вверху — положительный

Почему вверху собирается положительный заряд? Ведь положительно заряженные частицы остаются на месте. Или нет?

Почему вверху собирается положительный заряд?

Как Вы верно заметили, положительно заряженные частицы остаются на месте, а отрицательно заряженные уходят вниз. Из-за этого вверху образовывается («собирается») положительный заряд, так как без отрицательно заряженных частичек общий заряд будет становиться положительным. В общем, слово «собирается», видимо, не самое удачное, нужно было сказать образовывается. )

Очень классная статья, спасибо большое за нее! Все объяснено понятным языком! В первый раз поняла, в чем отличие положительных и отрицательных зарядов. И нет, такого не объясняют (по крайней мере не было у меня) на уроках физики, даже есть такое чувство, что многие учителя сами этого не особо понимают)

Шикарная статья! Автор лучший! Я из-за твоих статей злез со всех ресурсов.) Только тут сижу теперь. Ты один своими статьями тащишь на порядок мощнее чем ресурсы с десятком авторов.

Успехов тебе. Огромных успехов!

Спасибо большое, Иван! Очень рад, что Вам здесь нравится.

Но тогда радиоволны или тепло — это тоже фотоны/шарики?

Не увидел ответа на этот вопрос, но вообще, да — все электромагнитные волны распространяются посредством фотонов. Электроны антенн радиопередатчиков излучают фотоны определённой энергии, а электроны антенн радиоприёмников поглощают эти фотоны и начинают из-за этого движение, которое в итоге и приводит к возникновению тока.

Если бы человеческий глаз умел видеть в радиодиапазоне, то радиовышки мы бы воспринимали как очень яркие прожекторы, которые видно за десятки километров.

Хорошая статья! А где можно прочитать вторую часть?

Кажется, автор начал слишком издалека. Для большинства пользователей смартфонов это не нужно. А те, кто не прогуливал уроки физики в школе и так это знают.

К сожалению, не могу с Вами согласиться. Буквально на днях увидел в интернете забавный вопрос, корни которого растут как раз из того, что школьные уроки физики были неинтересны, а статьи в интернете начинаются не слишком издалека.

Так вот, человека интересовало, можно ли вывести из организма электромагнитное излучение, полученное от гаджетов…

В понимании этого человека, электромагнитное излучение является неким веществом, которое попадает в организм и находится там, пока его оттуда не выведешь. Вот для таких людей мы и начинаем обычно издалека.

Разумеется, уровень образования у каждого разный и то, что Вам кажется банальным и очевидным, для других становится настоящим откровением.

Спасибо огромное за статью. Физику изучаю в течении всей жизни и каждый раз пытаюсь погрузиться чуть глубже в понимание процессов, но все равно всегда остаются непонятные мне вещи.
Что подразумевается под концами проводов, ведь для движения частиц система должна быть замкнута?
В институте мне говорили, что при отключении провода от источника питания частицы никуда не деваются,а просто останавливают движение,
а из статьи можно сделать вывод, что они пропадают из провода, оказываясь на его концах

Что подразумевается под концами проводов, ведь для движения частиц система должна быть замкнута?

Нет, это совсем не обязательно. Для движения частиц нужна только сила, которая будет их толкать, а замкнут ли провод или разомкнут — не суть важно. Главное — где-то взять электрическое поле.

Для этого можно воспользоваться батарейкой — специальным устройством с электрическим полем. У батарейки на одном конце положительный заряд, а на другом — отрицательный. Если соединить эти два конца проводом, то все электроны ощутят на себе силу электрического поля и поплывут от отрицательного конца к положительному и будет ток.

Но в случае с электромагнитной волной, сам провод непосредственно «погружается» в электрическое поле. Когда волна «смотрит» вверх, все электроны внутри провода ощущают на себе силу, которая толкает их вниз. Затем волна проходит, электрическое поле исчезает и электроны останавливаются.

при отключении провода от источника питания частицы никуда не деваются, а просто останавливают движение

Безусловно, так и есть. Если быть более точным, то электроны никогда не останавливаются, они находятся в непрерывном движении внутри провода, так как там есть локальные электрические поля, создаваемые атомами и другими электронами. Просто электроны движутся хаотично во всех направлениях. А ток — это движение всех электронов в одном направлении.

из статьи можно сделать вывод, что они пропадают из провода, оказываясь на его концах

Смотрите, когда в определенный момент времени электрическое поле достигает максимума, электроны оказываются на одном из концов провода (того провода, который оказался «погруженным» в электрическое поле и который испытывает на себе его силу).

Это совершенно неестественное поведение для электронов. Они не могут собираться вместе, так как все они — отрицательно заряженные частицы. А одноименные заряды всегда отталкиваются. И именно электрическое поле силой удерживает их на одном из концов провода.

Но как только электрическое поле начнет ослабевать (а это волна, которая приходит и уходит), его силы будет уже недостаточно для того, чтобы удерживать все электроны в одном месте. Поэтому какие-то электроны начнут отлетать от конца провода. И чем слабее будет становиться поле, тем больше электронов будет отталкиваться друг от друга и занимать более свободное пространство внутри провода, где нет переизбытка одноименных зарядов.

К тому моменту, когда электрическое поле полностью исчезнет, все электроны уже будут равномерно распределены по проводу.

Именно это я пытался наглядно показать на рисунке, где схематически отображается электрическая волна, а под ней — то, что происходит в проводе. Обратите внимание, что когда волна спадает до нуля (на горизонтальной линии), электроны равномерно распределены по проводу.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *