Как заставить электродвигатель вращаться в другую сторону
Перейти к содержимому

Как заставить электродвигатель вращаться в другую сторону

  • автор:

 

Направление вращения электродвигателя

Как определить направление вращения двигателя? Вопрос простой для тех, кто знает) Сейчас расскажу, как определяю направление вращения я. Зачастую направление вращения принципиально важно для правильной работы любого механизма (привода), поэтому при первом пуске всегда первым делом проверяют направление, или, как ещё говорят, фазировку двигателя.

Понятно, что двигатель может вращаться “туда” и “сюда”. Говоря правильно, вправо и влево. Говоря научным языком, вращение бывает правое, и левое. Также говорят про вращение “вперед” и “назад“, либо “прямое” и “обратное“, либо “правостороннее” и “левостороннее“. Суть одна.

Поскольку множество литературы встречается на английском, скажу и про “ForwardReverse“, или FWDREV. Особенно часто это встречается в инструкциях к преобразователям частоты, о которых я много писал на блоге. Ну и до кучи упомяну, как в иностранной технической литературе обозначается вращение “по часовой стрелке” и “против часовой стрелки” – CW и CCW (Clock Wise и Counter Clock Wise). Удобно, я применяю.

В статье буду говорить только про трехфазный асинхронный (индукционный, по иностранным источникам) двигатель.

Кстати, Королевская Академия наук (что может быть авторитетнее в научном мире?) в позапрошлом веке официально утверждала, что асинхронный двигатель – нецелесообразный бесперспективняк. А сейчас этот двигатель применяется в промышленном оборудовании в 99% случаев. К чему это я? Не верьте даже самым официальным источникам! Проверяйте всё сами!

Что такое правое вращение двигателя

Большинство электродвигателей (более 90%), которые крутятся в станках, имеют “правое вращение”.

Но ведь у двигателя (точнее, у его ротора) есть два конца, на какой смотреть, чтобы определять направление? Правило такое: Вращение называется правым, когда, если двигателю посмотреть “в зад”, его ротор и вал будет вращаться по часовой стрелке.

Это правило я выучил назубок, когда Сергей Иваныч направлял меня в командировку на другой конец страны.

вращение электродвигателей

Как определить вращение электродвигателей. Первым делом – смотрим “в зад” (то есть на крыльчатку).

Пояснение к “прямому” направлению вращения из инструкции к преобразователю частоты Delta:

Forward - Reverse

Вращение Forward – прямое

Если со стороны вала – против часовой. Это будет Правое, или Прямое вращение ротора двигателя.

СамЭлектрик.ру в социальных сетях:

Подписывайтесь! Там тоже интересно!

Пример, почему важно обращать внимание на правильность направления вращения двигателя – в статье “Как мы сломали новый немецкий компрессор за много тысяч евро“.

Другой пример – как нелепо был сломан механизм перемещения ширины подачи на одном из станков. Всё работало как надо – двигатель включается “вправо”, доходит до правого концевого, останавливается. Включается “влево”, доходит долевого концевого, останавливается. Но однажды двигатель не остановился, а погнул и выломал металлические направляющие, принеся страдания нашим механикам))) Оказалось, электрику в ночную смену было поручено поменять вводной автомат, и он сделал это, не подумав о фазировке…

Коля, привет тебе большой, если читаешь эти строки!

“Левые” движки

И лишь несколько процентов двигателей по прихоти конструкторов имеют левое вращение – как на фото.

Двигатель с левым вращением вала

Двигатель с левым вращением. Это видно по стрелке

Поэтому на фото и наклеена стрелка – это нестандартный случай. В данном случае это гидростанция подъемника (поршень видно вверху фото), и если устроить ей “правое” вращение, она в лучшем случае не будет работать.

Вывод – если не знаешь, куда должен крутить двигатель – включай его на правое вращение, 90% что не ошибёшься! Но при первом включении обязательно нужно проверить вращение!

Как определить направление “на глаз”

Если двигатель крутится, его можно выключить, и на выбеге посмотреть на крыльчатку.

Если же остановка неприемлема, можно взять тонкую проволочку/бумажку/соломинку, и аккуратно вставить её в крыльчатку (так, чтобы её не поломать). По движению “тестера” станет всё ясно.

Как изменить вращение

Надеюсь, все знают, как изменить направление вращения двигателя? Если нет, то лучше поздно спросить , чем никогда знать!

Кто не знает: к трехфазному двигателю подключаются три провода, не считая заземления. Достаточно любые две фазы поменять местами, и двигатель будет крутиться в другую сторону!

Как изменить направление

Как изменить направление вращения электродвигателя?

Нетрудно сообразить, что есть всего три возможных варианта смены вращения. Все они абсолютна равнозначны, и приводят к одному и тому же – предыдущее направление меняется на противоположное. Это чем-то похоже на принцип работы схемы на проходных переключателях.

На всякий случай, приведу все три варианта:

  • L1 – L2 (вариант на рисунке),
  • L2 – L3,
  • L1 – L3.

На всякий случай: землю не трогаем, нейтрали в трехфазных асинхронных двигателях вообще нету. Менять только две любые фазы.

В преобразователях частоты реверс достигается тем же способом, только там фазы формируются и сдвигаются электронным образом.

Когда направление вращения неважно?

Чаще всего это не принципиально, когда в оборудовании есть два равнозначных направления, и они используются одинаково часто. При этом работает режим реверса.

Примеры на ум не приходят. Если вы знаете – напишите в комментариях.

Но даже в этом случае лучше всё же определиться – где у нас “право”, а где – “лево”.

Что говорит ГОСТ?

Я говорил в начале статьи, что никому верить нельзя? Блогерам в том числе)

Давайте глянем, что на этот счет говорит ГОСТ.

Читаем ГОСТ 22836-77 про направление вращения. Правда, он про двигатели внутреннего сгорания. Первый вопрос – где находится наблюдатель:

Местонахождение наблюдателя

Местонахождение наблюдателя направления вращения ДВС

Думаю, для электродвигателя больше подходит определение “промышленного”, и наблюдатель находится со стороны вала отбора мощности. Читаем дальше: “2.1. Направление вращения двигателя определяется как “правое” (по часовой стрелке) или “левое” (против часовой стрелки) при местонахождении наблюдателя в соответствии с требованиями разд.1 настоящего стандарта.”

Что-то не то. Смотрим другой, более подходящий документ – ГОСТ 26772-85 “Машины электрические вращающиеся. Обозначения выводов и направление вращения.”

А написано там фактически то же самое: “3.1 Правым направлением следует считать вращение по направлению вращения часовой стрелки. 3.2 Если машина имеет только один конец вала (или два конца разных диаметров), то направление вращения рассматривают со стороны единственного конца вала (или со стороны конца вала наибольшего диаметра).”

Получается, Сергей Иваныч неправильно меня учил?

Интересно, откуда пошла эта путаница? Как вы думаете? Кому интересно, вот как ответили на этот вопрос в ВК и в Дзене

Что такое блокировка

С направлением вращения тесно связано понятие блокировки. Очень важно, чтобы из-за человеческого фактора или поломки в схеме не включились оба направления сразу. Конечно, это не означает, что двигатель будет крутиться в обе стороны сразу) Просто могут включиться сразу оба контактора, а это уже серьезная авария – ведь произойдет межфазное замыкание! И даже если сработает защита, контакты контактора и автоматического выключателя (либо автомата защиты двигателя) подгорят, а это резко снизит их ресурс работы и надежность.

Впрочем, лучше посмотрите видео моего коллеги Максима с канала Фарадей, где он подробно рассказывает о механической блокировке при монтаже контакторов, как её установить, и для чего она нужна.

Кстати, блокировка может быть не только механической, но и электрической (при использовании НЗ контактов у контакторов и кнопок управления), и программной (установкой запрета одновременной активации выходов на разное направление вращения).

Голосование по теме статьи

А пока вы читаете статью, голосуете и пишете комментарии, я задам этот вопрос специалистам и продавцам частотников и двигателей. А если вас интересуют двигатели и их подключение, читайте мои статьи на эту тему. А если хотите почитать умные книжки по электродвигателям, их можно скачать отсюда.

Как поменять вращение на однофазном двигателе. Как поменять направление вращения однофазного двигателя

Чтобы механизмы на производстве или в быту, будь-то дерево или металлообрабатывающие станки, консольный насос, конвейерная лента, кран-балка, заточной станок, электрическая газонокосилка, кормоизмельчитель или другое устройство работали без поломок, необходимо, в первую очередь, чтобы вал электродвигателя вращался в правильную сторону.
Во избежание ошибок и не допуска вращения вала механизма в противоположную сторону согласно пункту 2.5.3 «Правил технической эксплуатации электроустановок потребителей» на корпусе самого механизма и приводном двигателе должны быть нанесены стрелки направления вращения электродвигателя.

Направление вращения вала электродвигателя


Определение направления вращения электродвигателя выполняется со стороны единственного конца вала. В том случае если двигатель имеет два конца вала, то вращение определяют со стороны вала, который имеет больший диаметр. Согласно ГОСТ 26772-85 правому направлению соответствует движение вала по часовой стрелке. У наиболее распространенных трехфазных двигателей с короткозамкнутым ротором вращение вала в правую сторону будет осуществляться, если последовательность фаз, по которым подается напряжение на концы обмоток статора, будет соответствовать алфавитной последовательности их маркировки – U1, V1, W1.

Для однофазных двигателей с короткозамкнутым ротором вращение вала по часовой стрелке будет выполняться при условии, когда фаза будет подаваться на конец рабочей обмотки.

Изменение направления вращения вала в трехфазных электродвигателях

Эксплуатация некоторых механизмов требует левостороннего вращения вала. Зная, как изменить направление вращения электродвигателя, это можно сделать без какой-либо доработки или переделки самого приводного двигателя. Для смены направления движения нужно:

  • обесточить электродвигатель;
  • снять крышку клеммной коробки;
  • переставить жилы силового кабеля в соответствие со схемой изображенной на рис. 3: жилу с изоляцией черного цвета (L3) переподключить на контакт V1 в клеммной коробке, а жилу коричневого цвета (L2) на контакт W1.


Левостороннее вращение

Если эксплуатация двигателя требует постоянного переключения двигателя с правостороннего вращения на левостороннее, его подключение осуществляют по специальной схеме,

Реверс однофазного электродвигателя

Запустить вращение однофазного асинхронного электродвигателя можно переподключив фазу на начало рабочей обмотки.


Зная, как поменять направление вращения электродвигателя, можно подключить однофазный электродвигатель с возможностью переключения правостороннего вращения на левостороннее с помощью трехконтактного переключателя.

Чтобы изменить направление вращения двигателя постоянного тока, нужно изменить направление вращающего момента М = смФ/я. Это можно сделать, изменив направление тока в обмотке якоря или направление магнитного потока в обмотке возбуждения. При одновременном изменении направления тока якоря и магнитного потока в обмотке возбуждения направление вращения не изменяется. Схемы соединений для изменения направления вращения представлены на рис. 6.1.

Основные неисправности

Искрение, возникающее между щетками и коллектором – самый главный вопрос, требующий внимания. Чтобы избежать неисправностей более серьезных, таких как их отслаивание и деформация или перегрев ламелей, сработавшуюся щетку необходимо заменить.

Помимо этого, возможно замыкание между обмотками якоря и статора, вызывающее сильное искрение на переходе коллектор-щетка или значительное падение магнитного поля.

Чтобы продлить срок службы двигателя, необходимо соблюдение двух условий – профессиональный изготовитель и грамотный пользователь, т.е. строгое соблюдение режима работы.

Видео: Коллекторный электрический двигатель

Мы вновь возвращаемся в мир занимательного — как электротехника, так как считаю, что эти знания нам просто всем необходимы в нашей повседневной жизни.

Читать также: Почему паяльник не нагревается

Постановка задачи

Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже.

Уточним важные моменты:

  • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
  • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
  • Направление вращения ротора обозначено с помощью стрелок.

Преимущества машин и недостатки

К достоинствам относят:

  • небольшие размеры;
  • универсальность, т.е. работу на напряжении постоянном и переменном;
  • большой пусковой момент;
  • независимость от сетевой частоты;
  • быстроту;
  • мягкую регулировку оборотом в широком диапазоне при варьировании напряжением питания.

Недостатки связаны и использованием щеточно-коллекторного перехода, влекущего:

  • уменьшение срока службы механизма;
  • возникновение между щетками и коллектором искры;
  • высокий уровень шума;
  • большое число коллекторных элементов.

Вариант 1: переподключение рабочей намотки

Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

  1. Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
  2. Вы увидите, что к этой паре подсоединены две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.

В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.

Вариант 2: переподключение пусковой намотки

Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

  1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
  2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.
    подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт

(который замыкается только на время пуска),
остальные два — на крайние (произвольно).
К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (
обратите внимание! не с общим
). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском ( , например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Достаточно часто режим работы вспомогательного механизированного оборудования требует понижения штатных частот вращения. Добиться такого эффекта позволяет регулировка оборотов асинхронного двигателя своими руками. Как это сделать на практике (расчет и сборку), используя стандартные схемы управления или самодельные устройства , попробуем разобраться далее.

Как изменить вращение однофазного электродвигателя с конденсатором

Схема подключения однофазного двигателя. Однофазный двигатель 220в

Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже (однофазный двигатель 220В)

Схема подключения однофазного двигателя. Однофазный двигатель 220в

Схема подключения однофазного двигателя

Уточним важные моменты:

  • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
  • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
  • Направление вращения ротора обозначено с помощью стрелок.

Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

    Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

Устройство однофазного электродвигателя

На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

Важное предупреждение

Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

Съемник подшипников электродвигателя

В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

Как состояние подшипников влияет на работу двигателя

Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

Обращайте особое внимание на состояние подшипников, выполнение нормативов по допускам и посадкам, качество смазки. Сухую и старую смазку обязательно необходимо заменять свежей.

Что надо учитывать в конструкции статорных обмоток и как их подготовить

Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

  • у трехфазных двигателей из статора могут выводиться: три жилы при внутренней сборке схемы треугольника;
  • или четыре — для звезды;
    три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
  • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

Как видите, судить о конструкции асинхронного двигателя по количеству выведенных проводов на клеммнике от обмоток статора можно, но вероятность ошибки довольно высока. Нужен более тщательный анализ его устройства.

Техническое состояние изоляции обмоток

Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

Сушка электродвигателя

Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

Однофазный

Теперь поговорим еще об одном виде асинхронных электродвигателей. Это однофазные конденсаторные машины переменного тока. У них две обмотки, из которых, после пуска, работает только одна из них. Такие двигатели имеют свои особенности. Рассмотрим их на примере модели АВЕ-071-4С.

По-другому они еще называются асинхронными двигателями с расщепленной фазой. У них на статоре намотана еще одна, вспомогательная обмотка, смещенная относительно основной. Пуск производится при помощи фазосдвигающего конденсатора.

Схема однофазного асинхронного двигателя

Из схемы видно, что электрические машины АВЕ отличаются от своих трехфазных собратьев, а также от коллекторных однофазных агрегатов.

Всегда внимательно читайте, что написано на бирке! То, что выведено три провода, абсолютно не значит, что это для подключения на 380 в. Просто спалите хорошую вещь!

Включение в работу

Первое, что нужно сделать, это определить, где середина катушек, то есть, место соединения. Если наш асинхронный аппарат в хорошем состоянии, то это сделать будет проще – по цвету проводов. Можно посмотреть на рисунок:

Если все так выведено, то проблем не будет. Но чаще всего приходится иметь дело с агрегатами, снятыми со стиральной машины неизвестно когда, и неизвестно кем. Здесь, конечно, будет сложнее.

Стоит попробовать вызвонить концы при помощи омметра. Максимальное сопротивление – это две катушки, соединенные последовательно. Помечаем их. Дальше, смотрим на значения, которые показывает прибор. Пусковая катушка имеет сопротивление больше, чем рабочая.

Теперь берем конденсатор. Вообще, на разных электрических машинах они разные, но для АВЕ это 6 мкФ, 400 вольт.

Если точно такого нет, можно взять с близкими параметрами, но с напряжением, не ниже 350 В!

Давайте обратим внимание: кнопка на рисунке служит для пуска асинхронного электродвигателя АВЕ, когда он уже включен в сеть 220! Другими словами, должно быть два выключателя: один общий, другой – пусковой, который, после его отпускания, отключался бы сам. Иначе спалите аппарат.

Если нужен реверс, то он делается по такой схеме:

Если все сделано правильно, тогда будет работать. Правда, есть одна загвоздка. В борно могут быть выведены не все концы. Тогда с реверсом будут сложности. Разве что разбирать и выводить их наружу самостоятельно.

Вот некоторые моменты, как подсоединять асинхронные электрические машины к сети 220 вольт. Схемы несложные, и при некоторых усилиях вполне возможно все это сделать собственными руками.

Для чего нужен реверс двигателя?

Многие механические действия в бытовых и промышленных устройствах, осуществляются с помощью асинхронного движка. В связи, с чем часто возникает необходимость изменения направления движения, исходя из выполняемых задач. Иногда функция реверса для механизма является постоянной, а иногда — временной.

  1. К первой разновидности относятся все грузоподъемные механизмы краны, электроприводы запорно-регулирующих устройств и исполнительных механизмов, работающих в режиме «открыть/закрыть».
  2. К другой разновидности реверса, относят механизмы, в которых данная функция используется очень редко, обычно в аварийных случаях: конвейеры, эскалаторы, насосные агрегаты.

Функцию реверса в электродвигателе иногда используют для торможения, поскольку при отсоединении его от электросети, ротор, располагая значительной инерционностью, продолжает свою работу. Такой кратковременный пуск реверса вызывает процесс торможения движка. Данный способ еще называют противовключением.

Изменение скорости АД с короткозамкнутым ротором

Существует несколько способов:

  1. Управление вращением за счет изменения электромагнитного поля статора: частотное регулирование и изменение числа пар полюсов.
  1. Изменение скольжения электромотора за счет уменьшения или увеличения напряжения (может применяться для АД с фазным ротором).

Частотное регулирование

В данном случае регулировка производится с помощью подключенного к двигателю устройства для преобразования частоты. Для этого применяются мощные тиристорные преобразователи. Процесс частотного регулирования можно рассмотреть на примере формулы ЭДС трансформатора:

Данное выражение означает, что для сохранения постоянного магнитного потока, означающего сохранение перегрузочной способности электромотора, следует одновременно с преобразованием частоты корректировать и уровень питающего напряжения. Если сохраняется выражение, вычисленное по формуле:

то это означает, что критический момент не изменен. А механические характеристики соответствуют рисунку ниже, если вы не понимаете, что значат эти характеристики, то в этом случае регулировка происходит без потери мощности и момента.

Однофазный двигатель 220В - как поменять вращение. Схема

Достоинствами данного метода являются:

  • плавное регулирование;
  • изменение скорости вращения ротора в большую и меньшую сторону;
  • жесткие механические характеристики;
  • экономичность.

Недостаток один — необходимость в частотном преобразователе, т.е. увеличение стоимости механизма. К слову, на современном рынке представлены модели с однофазным и трёхфазным входом, стоимость которых при мощности 2-3 кВт лежит в диапазоне 100-150 долларов, что не слишком дорого для полноценной регулировки привода станков в частной мастерской.

Переключение числа пар полюсов

Данный метод применяется для многоскоростных двигателей со сложной обмоткой, позволяющей изменять число пар ее полюсов. Самое широкое применение получили двухскоростные, трехскоростные и четырехскоростные АД. Принцип регулировки проще всего рассмотреть на основе двухскоростного АД. В такой машине обмотка каждой фазы состоит из двух полуобмоток. Скорость вращения изменяется при подключении их последовательно или параллельно.

Однофазный двигатель 220В - как поменять вращение. Схема

В четырехскоростном электродвигателе обмотка выполнена в виде двух независимых друг от друга частей. При изменении числа пар полюсов первой обмотки производится изменение скорости работы электромотора с 3000 до 1500 оборотов в минуту. При помощи второй обмотки производится регулировка вращения 1000 и 500 оборотов в минуту.

При изменении числа пар полюсов происходит и изменение критического момента. Для его сохранения неизменным, требуется одновременно с изменением числа пар полюсов регулировать и питающее напряжение, например, переключением схемы звезда-треугольник и их вариациями.

Вариант 1: переподключение рабочей намотки (однофазный двигатель 220В)

Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

  1. Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
  2. Вы увидите, что к этой паре подсоединяются две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.

Переподключение рабочей намотки (однофазный двигатель 220в)

Схема подключения однофазного двигателя
В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.

Как Изменить Направление Вращения Двигателя 220в

У реверсивного однофазного асинхронного двигателя

Прежде чем выбрать схему подключения для однофазного асинхронного двигателя, важно выяснить, нужно ли повернуть назад. Если вам часто нужно поменять на эту работу направление вращения а затем целенаправленно организовать обратное с помощью толкателя. Если вам достаточно одностороннего вращения, тогда подходит наиболее распространенная схема без переключения. Но что, если после подключения к нему вы решите, что вам все еще нужно изменить направление?

Постановка задачи

Представьте, что для асинхронного однофазного двигателя, который уже связан с пусковой мощностью, вращение вала первоначально происходит по часовой стрелке, как показано на рисунке ниже.

Как Изменить Направление Вращения Двигателя 220в

Уточняем основные моменты:

  • Точка A указывает начало начальной обмотки, а точка B указывает ее конец. Источник А подключен к кофейному проводу, а зеленый. к терминалу.
  • Точка C указывает на начало обмотки, а точка D указывает на ее конец. Красный провод подключен к выходному контакту, а синий провод к выходному контакту.
  • Направление вращения ротора указано стрелками.

Мы поставили перед собой задачу вращать однофазный двигатель, не открывая его корпус, чтобы позволить ротору вращаться в другом направлении (в этом примере, против часовой стрелки). Это можно решить тремя способами. Давайте внимательнее посмотрим на них.

Вариант 1: подключить рабочий барабан

Так сдача Направление вращения мотора позволяет поменять местами только начало и конец рабочей (неизменной) обмотки, как показано на рисунке. Вы можете подумать, что для этого вам придется открыть корпус, снять обмотку и повернуть ее. Вам это не нужно, потому что для работы с контактами внешне:

  1. Четыре провода должны выходить из корпуса. 2 из них соответствуют началу рабочей и пусковой обмоток, а 2. их концам. Определите, какая пара относится только к рабочей обмотке.
  2. Вы увидите, что к этой паре подключены две полосы: фаза и ноль. Когда двигатель выключен, поверните метод фазового сдвига от начального контакта обмотки до конца и от нуля до конца. Или наоборот.

READ Замена Подушки Двигателя Golf 5

В результате мы получаем диаграмму, где точки C и D меняются местами. Теперь ротор асинхронного двигателя будет вращаться в другом направлении.

КАК ИЗМЕНИТЬ НАПРАВЛЕНИЕ ВРАЩЕНИЯ ВИД В ОДНОФАЗНОМ ДВИГАТЕЛЕ

Мотор взят из бытовой мясорубки. направление

движение нас не устраивало, пришлось его менять. Вся информация

Как изменить направление вращения трехфазного Индукционный двигатель?

Посмотрим, как легко это изменить направление вращения

три фазы
двигатель
в противоположность.

Вариант 2: переподключить пусковую установку

Второй способ организовать реверс асинхронного двигателя с напряжением 220 Вольт. изменить начало и конец пусковой обмотки. Это делается по аналогии с первым вариантом:

  1. Из четырех проводов, выходящих из коробки двигателя, выясните, какой из них соответствует начальному спиральному слою.
  2. Первоначально конец B пусковой обмотки был подключен к началу C рабочей, а начало A было подключено к пусковому зарядному конденсатору. Можно вращать однофазный двигатель, подключив бак к клемме B и начиная с C до начала A.

После описанных выше шагов мы получаем схему, показанную выше: точки A и B поменялись местами, поэтому ротор начал вращаться в противоположном направлении.

READ Двигатель Змз 405 Не Развивает Мощность

Вариант 3. Измените пусковую обмотку на рабочую и наоборот.

Перевернуть однофазный электродвигатель 220 В, описанный выше, возможно только в том случае, если выходы обеих обмоток со всеми началами и концами выходят из корпуса: A, B, C и D. Но часто встречаются двигатели, в которых производитель намеренно осталось только 3 контакта. При этом он обезопасил устройство от различных «домашних продуктов». Но есть еще решение.

На рисунке выше показана схема такого «проблемного» двигателя. Только три провода выходят из корпуса. Они отмечены коричневым, синим и фиолетовым. Зеленая и красная линии, которые соответствуют концу начала и началу обмотки, соединены внутри. Мы не можем получить к ним доступ без демонтажа двигателя. Следовательно, невозможно изменить вращение ротора в одном из первых двух вариантов.

В В этом случае сделать следующее:

  1. Снимите конденсатор с начального выхода A;
  2. Подключите его к терминалу D;
  3. От проводов A и D, а также от фаз, начните смещение (вы можете повернуть назад ключом).

Посмотрите на картинку выше. Теперь, если вы подключите фазу к ветви D, ротор вращается в одну сторону. Если вы переместите фазный провод в ответвление А, вы можете изменить направление вращения. Обратное движение можно сделать, отсоединив и подключив провода вручную. Использование ключа поможет упростить вашу работу.

READ Как Узнать Модель Двигателя Мерседес

Важно! Последняя версия индукционной цепи асинхронного однофазного двигателя неверна. Он может быть использован только если:

  • Длина пусковой и рабочей обмоток одинакова;
  • Площадь их поперечного сечения соответствует друг другу;
  • Эти провода сделаны из одного материала.

Все эти значения влияют на сопротивление. Он должен быть постоянным на обмотках. Если вдруг длина или толщина проводов будут отличаться друг от друга, то, когда вы организуете обратное, обнаружится, что сопротивление рабочей обмотки будет таким же, как у пусковой установки, и наоборот. Это также может привести к запуску двигателя.

Предупреждение! Даже если длина, толщина и материал обмоток одинаковы, работа с измененным направлением вращения ротора не должна быть непрерывной. Это может привести к перегреву и неисправности двигателя. Эффективность также оставляет желать лучшего.

Обратный асинхронный двигатель 220V просто вытягивая концы обмоток из корпуса. Сложнее организовать, когда есть только три вывода. Мы считаем, что третий метод разворота подходит только для кратковременного подключения двигателя к сети. Если реверсирование является перспективным в течение длительного времени, мы рекомендуем открывать окно переключателя, используя методы, описанные в вариантах 1 и 2: это безопасно для устройства и эффективность сохраняется.

Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

Сопротивление обмоток двигателя

Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

Помечаем эти 3 конца уже понятной нам маркировкой:

  • О — общий;
  • П — пусковой;
  • Р — рабочий.

Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

Схема кнопки ПНВС

Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

Кнопка ПНВС

Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

Схема подключения асинхронного двигателя с пусковым конденсатором

При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

Тогда кнопку запуска отпускают:

  • пусковая обмотка отключается самовозвратом среднего контакта;
  • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

Все запуски электродвигателей и любого электрического оборудования всегда выполняйте с защитой этих цепей автоматическими выключателями. Они

предотвратят развитие аварийных ситуаций

при возникновении любых случайных ошибок.

С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

Реверс однофазного конденсаторного двигателя с пультом ДУ

Цифровая схема реверса однофазного асинхронного двигателя на микроконтроллере PIC12F629

Это несложное цифровое устройство было разработано для управления однофазным асинхронным электродвигателем типа 6АЕ80 номинальной мощностью 1100 Вт. Одним из условий было наличие проводного пульта дистанционного управления с кабелем длиной 5 — 6 метров, небольшой вес пульта и низковольтное управление (для электробезопасности оператора). Устройство можно использовать с любым однофазным асинхронным электродвигателем, но следует учитывать мощность мотора. Для более мощных двигателей, возможно, потребуется применение в схеме электромагнитных реле, способных коммутировать больший ток.

Чаще всего электрики делают подобные устройства на основе электромагнитных пускателей, представляющих собой практически мощные электромагнитные реле с обмотками на 220 вольт. Например, распространенных контакторах типа ПМЛ-1100. Это самое распространенное решение, но с точки зрения наших целей оно имеет ряд недостатков. Первое — это большие габариты устройства на электромагнитных контакторах, и второе — это необходимость тянуть к пульту управления (кнопочному пульту) силовые провода большого сечения, по которым течет сравнительно большой ток и присутствует опасное высокое сетевое напряжение 220 вольт. Ниже на картинке — фото одного из таких устройств:

устройствo на основе электромагнитных пускателей

Видим что такое устройство по размерам сопоставимо с размерами самого электродвигателя.

Я решил разработать небольшое по габаритам устройство с цифровым управлением на недорогом 8-пиновом микроконтроллере PIC12F629.

Применение микроконтроллера позволило реализовать управление двигателем всего двумя кнопками (вместо обычных трех кнопок в реверсе на пускателях). При этом оператору не нужно думать об остановке двигателя перед сменой направления вращения — об этом заботится программа, «зашитая» в микроконтроллер.

пульт управления двигателем

На фотографии — мой пульт управления двигателем. С блоком контроллера пульт соединяется мягким качественным кабелем длиной 6 метров (При необходимости длину кабеля можно увеличить). Применен микрофонный кабель с двумя жилами и экраном. Кабель имеет диаметр 6 мм (по изоляции) Такой кабель применяется ы звукотехнике для подключения микрофонов. В принципе можно использовать любой трехжильный провод. Я применил микрофонный, так как он качественный, стойкий к изгибам и обрывам, так как рассчитан на использование в «экстремальных» условиях живых концертов.

Микрофонный кабель (один из вариантов)

Микрофонный кабель (один из вариантов)

Пульт управления имеет две кнопки. Зеленая кнопка — вращение вперед, красная кнопка — реверс, то есть вращение в обратную сторону (следует учесть, что направления вращения — условные).

Если двигатель остановлен, то нажатие на любую из кнопок запускает двигатель в соответствующем направлении. Если во время вращения мотора нажать на любую из кнопок, то происходит выключение двигателя.

На корпусе пульта управления есть кольцо, предназначенное для того, чтобы пульт можно было повесить на стену или на шею оператора (желание заказчика). Двигатель используется с редуктором, в станке для гибки труб.

Корпуса пульта управления и самого контроллера разработаны в программе 3D моделирование SolidWorks и напечатаны на 3D принтере.

Корпус кнопочного пульта (слева) и контроллера (справа), распечатанные на 3D принтере

Корпус кнопочного пульта (слева) и контроллера (справа), распечатанные на 3D принтере.

Контроллер управления, закреплённый на пластиковой крышке распределительной коробки двигателя 6АЕ80.

Контроллер управления, закреплённый на пластиковой крышке распределительной коробки двигателя 6АЕ80.

Изменение направления вращения однофазного асинхронного двигателя

Существует несколько разновидностей асинхронных однофазных электродвигателей. В этой статье идет речь о двигателях с конденсаторным пуском. такой электродвигатель имеет две обмотки — рабочую (Р.О.) и пусковую (П.О.). рабочая обмотка включается в сеть 220 вольт напрямую, а пусковая — через специальн6ый пусковой конденсатор. Конденсатор позволяет создать сдвиг фаз переменного тока в пусковой обмотке относительно тока в рабочей обмотке.

Конденсатор позволяет создать сдвиг фаз переменного тока в пусковой обмотке относительно тока в рабочей обмотке

На этой схеме (и в распределительной колодке нашего двигателя 6АЕ80) начало и конец рабочей обмотки обозначены как U1 и U2, а начало и конец пусковой обмотки — Z1 и Z2. Для того, чтобы изменить направление вращения достаточно поменять местами начало и конец любой из обмоток. Обычно используется реверс по рабочей обмотке, однако совершенно все равно, начало и конец какой обмотки менять между собой. Мы будем менять между собой выводы рабочей обмотки, то есть U1 и U2. Итак, схема для реверсивного включения будет выглядеть следующим образом:

хема для реверсивного включения будет выглядеть следующим образом:

Следует иметь в виду, что изменение направления вращения такого двигателя возможно только в момент его старта. При этом якорь двигателя должен быть неподвижен. Если переключить обмотку и подать питание на мотор, не дождавшись остановки вращения его якоря, то двигатель запустится в том же направлении, в котором он вращался до этого, не зависимо от включения обмотки.

 

Принципиальная схема контроллера управления двигателем

Печатная плата разведена в программе DipTrace, поэтому принципиальная схема нарисована также в схемном редакторе DipTrace. Для того, чтобы увеличить схему, кликните на ней мышкой:

Принципиальная схема контроллера управления двигателем

В данной схеме всем рулит микроконтроллер PIC12F629. Это небольшая микросхема в 8-выводном корпусе. Микроконтроллер настроен для работы от внутреннего (встроенного) генератора частотой 4 МГц, поэтому дополнительный кварцевый резонатор здесь не нужен. Для управления двигателем используются два порта микроконтроллера. Порт GP4 (вывод 3) управляет электромагнитным реле (К1) включения и выключения питания двигателя. Направление вращения переключает реле (К2), управляемое портом GP5 (вывод 2) микроконтроллера. Микроконтроллер управляет обмотками реле через ключи на сравнительно мощных транзисторах Q1 и Q2. Эти транзисторы необходимы, так как выходной порт микроконтроллера не может обеспечить ток, достаточный для включения электромагнитного реле. Катушки электромагнитных реле включены в коллекторные цепи транзисторов Q1 и Q2. Диоды, вколоченные параллельно катушкам реле катодом к плюсу питания и анодом к коллектору транзистора, защищают переходы транзисторов от индукционных бросков напряжения, возникающего в обмотках в момент срабатывания реле.

Для отслеживания нажатий на кнопки управления задействованы порты микроконтроллера GP0 и GP1 (выводы 7 и 6). Эти выводы настроены как входы и подтянуты к источнику питания +5В через резисторы R5 и R6 сопротивлением 1 кОм. Сами кнопки на схеме не показаны, так как схема рисовалась для разводки печатной платы, а кнопок на печатной плате нет, они устанавливаются в пульт ДУ. Кнопки подключаются к контактам платы BTN_FWD (кнопка ВПЕРЕД), BTN_REV (кнопка НАЗАД) и к контакту GND (земля):

Схема пульта дистанционного управления

На корпусе контроллера установлены три светодиода, которых нет на схеме и печатной плате. Дело в том, что установить светодиоды я решил уже когда собрал контроллер. первый, синий светодиод светится когда включено питание (+5В) контроллера. Второй светодиод, красный, светится когда срабатывает реле, коммутирующее направление вращения (K2). Третий светодиод, зеленый, светится когда двигатель включен, то есть на него подано питание 220В.

Если вы хотите установить светодиоды, схема их включения показана ниже. Также, при желании вы сможете модифицировать печатную плату контроллера, все файлы вы найдете в конце этой статьи. Мне дорабатывать плату было лень и я просто допаял три резистора навесным монтажом а сами светодиоды закрепил в отверстиях на корпусе контроллера при помощи небольшого количества цианоакрилата (суперклей).

Схема подключения светодиодов

Схема подключения светодиодов

Питание контроллера

В качестве источника питания этого контроллера я использовал обычный импульсный адаптер для смартфона с выходным напряжением 5 В. Для работы контроллера достаточно, чтобы адаптер обеспечивал выходной ток в районе 500 — 600 мА. Мой адаптер оказался рассчитанным на 2 А. Единственная доработка адаптера — это замена micro USB разъема на обычный штекер питания, вот такой (папа):

такой разъем более надежен и практичен чем micro USB. На корпусе контроллера я установил ответную часть — гнездо «мама»

Можно купить готовый адаптер на 5 В с таким штекером. У нас в магазинах радиотоваров такой адаптер на максимальный ток 2 А стоит примерно 200..250 рублей.

Если у вас в хозяйстве есть небольшой сетевой трансформатор с напряжением на вторичной обмотке в районе 9 — 14В, вы можете собрать блок питания по классической схеме:

Схема адаптера питания контроллера

Но я думаю, что покупной импульсный адаптер — более дешевый и главное «быстрый» вариант. Можно также такой адаптер заказать в Китае, на Алиэкспресс:

Печатная плата

Печатная плата разведена в программе DipTracе. Бесплатную версию программы на 400 пинов вы можете . Ее функционала вполне достаточно для такой платы.

Ниже во фрейме вы видите трехмерное изображение печатной платы. Нажав на кнопку «плэй» в центре изображения, вы сможете «покрутить» плату в виртуальном 3D пространстве и подробно её рассмотреть:

Контроллер управления асинхронным двигателем by shantidas on Sketchfab

Большие контактные площадки над двумя оранжевыми реле — это высоковольтная часть платы. В центре этих круглых пинов я просверлил отверстия диаметром 3 мм, и с помощью крепежа на M3 (винт — гайка — шайба — шайба — гайка) закрепил провода от электродвигателя и от сети 220 вольт. Можно конечно просто эти провода припаять, если вам лень возиться с крепежом. При соединении высоковольтной части платы нужно соблюдать аккуратность и внимательность, чтобы не допустить замыкания по высоковольтным цепям.

Печатная плата контроллера вид со стороны деталей

Печатная плата — односторонняя. На ней есть три перемычки. Одна перемычка находится на низковольтной части платы (справа от резисторов R4 и R2). Она выполнена отрезком монтажного провода. Две другие перемычки находятся в высоковольтной части платы. Для их создания необходимо кусками изолированного провода сечением не менее 1 мм соединить точки на плате: A1 с A2 (первая перемычка) и B1 с В2. Будьте внимательны, в этих точках действует напряжение сети и через эти провода течет ток электродвигателя. Поэтому не используйте здесь тонкий провод

Подключение электродвигателя к плате

Подключение электродвигателя несложно, но повторяю, здесь нужно быть очень внимательным и проверять всё несколько раз, так как ошибка может вызвать замыкание и «бабах. », так как вы работаете с напряжением сети 220В.

Для успешного подключения электродвигателя из его корпуса в распределительную коробку должны быть выведены все 4 провода, то есть начало-конец рабочей обмотки и начало-конец стартовой обмотки. В некоторых двигателях общая точка соединения обмоток двигателей находится внутри корпуса и выведен просто один общий провод. такой двигатель подключить с реверсом не получится. У нашего двигателя 6АЕ80 все 4 конца выведены из корпуса а монтаж изначально сделан на трех-контактной монтажной колодке внутри распределительного отсека.

колодка внутри распределительного отсека

Синий и коричневый провода ведут к пусковому конденсатору. Оставим их как есть.

первое что нужно сделать, это отсоединить от схемы провода рабочей обмотки. В данном моторе они промаркированы U1 и U2. Их нужно отсоединить, удлинить дополнительными кусками провода (сечением 1.5 — 2 мм) и вывести наружу через «штуццер», пометив как U1 и U2. еще два куска такого же провода соединяем к колодке на место, куда были прикручены концы рабочей обмотки ( на фото это — левый и средний винты контактной колодки) и выводим тоже наружу, помечая как KU1 и KU2 (Колодка-U1 и Колодка-U2). Эти 4 провода соединяем с одноименными контактами на высоковольтной части печатной платы (за реле).

Схема подключения мотора к плате контроллера

Схема подключения мотора к плате контроллера

Толстыми линиями показаны провода, которые нужно добавить. Тонкие линии — то что внутри мотора.

Сеть 220 вольт подключаем к контактам 220-1 и 220-2 на плате контроллера.

U3 — микроконтроллер PIC12F629 Q1, Q2 — транзисторы BD139 K1, K2 — электромагнитное реле типа RT424005 с обмоткой на 5 вольт и коммутируемым током 8 A.

D1, D2 — диоды 1N4001 Все резисторы мощностью 0.125 — 0.25 Вт с номиналами, указанными на схеме. Конденсатор C1 — керамический на 0.1 мкФ Конденсатор С2 — электролитический на 47 мкФ 16В две нормально разомкнутые кнопки для пульта (я купил подходящие в радиомагазине по 15 рублей)

Внимание! Для управления двигателями большей мощности потребуются реле, способные коммутировать больший ток. Такие реле могут быть больших габаритов и из придется монтировать отдельно.

Программа для микроконтроллера

Прошивка для микроконтроллера PIC12F629 написана на языке Си в среде MikroC Pro For Pic. Для прошивки микроконтроллера вам потребуется любой из программаторов, способных прошивать микроконтроллеры PIC.

в архиве: Программа (прошивка) для микроконтроллера с исходными кодами Сама прошивка — это файл Revers_12F629.hex также в архиве найдете проект для симуляции в Proteus. Это файл Reves12F6298.pdsprj Проект печатной платы в формате DipTrace и 3D модели для печати корпусов контроллера и кнопочного пульта

Серия видео об изготовлении этого устройства:

Обзор моделей

Одними из наиболее популярных являются электродвигатели серии АИР. Существуют модели, исполненные на лапах 1081, и модели комбинированного исполнения – лапы + фланец 2081.

Электродвигатели в исполнении лапы+фланец обойдутся примерно на 5% дороже, чем аналогичные на лапах.

Как правило, производители предоставляют гарантию от 12 месяцев.

Читать также: Какие бывают ножницы по металлу ручные

Для электродвигателей, имеющих высоту вращения 56-80 мм, исполнение станины алюминиевое. Двигатели с высотой вращения более 90 мм представлены в чугунном исполнении.

Модели различаются между собой по мощности, частоте вращения, высоте оси вращения, КПД.

Чем мощнее двигатель, тем выше его стоимость:

  1. Двигатель с мощностью 0.18 кВт можно приобрести за 3 тыс. рублей (электродвигатель АИРЕ 56 B2).
  2. Модель с мощностью 3 кВт будет стоить уже около 10 тыс. рублей (АИРЕ 90 LB2).

Высота оси вращения для моторов с 1 фазой варьируется от 56 мм до 90 мм и напрямую зависит от мощности: чем мощнее двигатель, тем больше высота оси вращения, а значит и цена.

Различные модели имеют разный КПД, обычно от 67% до 75%. Больший КПД соответствует большей стоимости модели.

Следует обратить внимание также на двигатели, выпускаемые итальянской компанией ААСО, основанной в 1982 году:

  1. Так, электромотор ААСО серии 53, рассчитан специально для применения в газовых горелках. Эти моторы также могут быть использованы в установках для мойки, генераторах теплого воздуха, системах централизованного обогрева.
  2. Электромоторы серий 60, 63, 71 разработаны для использования в установках водоснабжения. Также, фирма предлагает универсальные двигатели серий 110 и 110 компакт, которые отличаются разнообразной сферой применения: горелки, вентиляторы, насосы, подъемные устройства и другое оборудование.

Купить моторы производства компании ААСО можно по цене от 4600 рублей.

Схема Подключения Однофазного Двигателя

По общепринятым нормам, обеспечит запуск 30 раз в час длительностью 3 секунды каждый. Модели различаются между собой по мощности, частоте вращения, высоте оси вращения, КПД.


Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями.


Такие, шли на некоторых моделях стиральных машин, да и не только. Можно рукой раскрутить вал и подать напряжение сети, тогда двигатель наберёт обороты. Подключение электродвигателя от старой стиральной машинки через конденсатор.

Ротор имеет короткозамкнутые витки. Реверс направления движения двигателя Не исключено, что после подключения однофазные электродвигатели будут вращаться в направлении, обратном необходимому.


Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Конденсаторная обмотка, отличаясь от пусковой, работает непрерывно.


То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.


Представляет собой асинхронный электромотор , на неподвижной составляющей которого имеется одна рабочая обмотка, подключаемая к источнику однофазного переменного тока. Запускается и работает через конденсатор; RSIR.


Пусковая обмотка наматывается двойным проводом, снижая реактивное сопротивление.


Как подключить двигатель от СТИРАЛЬНОЙ МАШИНЫ к 220 БЕЗ КОНДЕНСАТОРА

Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующий стандарт:

ГОСТ 23851-79 Двигатели газотурбинные авиационные. Термины и определения

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», опубликованном по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

Как можно инвертировать однофазный двигатель для вращения в другую сторону

Как изменить направление вращения однофазного асинхронного двигателя

Асинхронные двигатели переменного тока широко используются во многих отраслях, где используются электрические машины. Благодаря высокому КПД, простоте конструкции и в обслуживании, такие моторы заняли прочную энергетическую нишу. При этом они различаются по количеству фаз, на которые влияет число обмоток и многие другие факторы. Наиболее широко распространены трёх- и однофазные двигатели, причём последние не только имеют упрощённый принцип работы, но и способны подключаться к сети 220 Вольт без каких-либо преобразователей. В этой статье мы рассмотрим принцип работу однофазного двигателя и каким образом можно заставить его вращаться в принципиально обратную сторону

Принцип работы

Однофазным асинхронным двигателем называют машину, имеющую лишь одну обмотку на статоре, которая питается всего лишь от одной фазы. На самом деле обмоток даже в самой простой конструкции две, однако вторая выступает в качестве вспомогательной и работает исключительно при запуске двигателя, отключаясь в процессе. Таким образом пусковая обмотка придаёт ротору необходимый импульс, выводя систему из равновесия — это наиболее простой и распространённый способ столкнуть его.

Пусковая обмотка также отличается от рабочей размерами — обычно в ней вдвое меньше пазов. Как и в двухфазных системах, обе обмотки расположены друг относительно друга под прямым углом. Это позволяет генерировать необходимое усилие при старте работы, затем пусковая фаза отключается, и дальше двигатель поддерживает работу исключительно как однофазный.

Конструкция машины имеет ротор и статор причём первый должен постоянно вращаться, а второй — оставаться неподвижным. Это нужно для генерации магнитного поля, которое будет изменяться со временем. Именно на статоре располагаются обмотки, в то время как ротор своим вращением обеспечивает работу всего механизма. В однофазном двигателе устанавливается один из двух типов роторов:

  • короткозамкнутый — также известный как “беличье колесо”. Он состоит из ряда алюминиевых стержней, замкнутых при помощи колец на торцах;
  • цилиндрический — полый внутри, он представляет собой пустой цилиндр.

Отметим, что при вращении ротора без использования пусковой обмотки он попадает в пронизывающий магнитный поток, который генерируется пульсирующим полем. Если же система находится в состоянии покоя, то ротор не запустится в принципе, поскольку суммарный вращательный момент равен нулю, а обе силы Ампера, действующие на ротор, полностью друг друга компенсируют.

Ситуация меняется, если ротор толкают — она начинает двигаться в направлении стартового толчка. Начинает работать закон электромагнитной индукции, вследствие чего система генерирует соответствующие токи в направлении толчка. Однако возникает вопрос — от чего зависит его направление?

Для этого нужно учитывать два фактора:

  • размещение пусковой обмотки относительно ротора;
  • сдвиг тока по фазе относительно рабочей обмотки.

Если оба фактора удовлетворяют показателям системы, то их совместного действия будет достаточно для генерации пульсирующего и вращающегося магнитного поля. Это и приводит двигатель в движение, после чего пусковая фаза отключается, и дальше он работает лишь на одной — её достаточно для поддержания заданной скорости вращения.

Смещение в большинстве случаев производится при помощи специального конденсатора, встроенного в систему. Подключённый с пусковой обмоткой в последовательной цепи, он создаёт сдвиг фаз, равный 90 градусам. С технической точки зрения оператор машины должен нажать на кнопку выключателя, подающего питание к цепи, и отпустить её только в тот момент, когда обороты станут равно соответствующему номиналу, указанному в данной частоте цепи.

Таким образом для конденсаторного пуска реверс осуществляется при создании условия, при которых толчок, запускающий ротор, производится в обратном направлении, нежели в обычных условиях. Добиться этого можно, если правильно чередовать фазы в обеих обмотках, что требует тонкой настройки. Для этого требуется переключить между собой пусковую и рабочую обмотки, чтобы изменить общую полярность подключения. Выполнить подобную процедуру можно и вручную, просто сменив выведенные наружу клеммы. Чтобы понять, какая из них к какой обмотке относится, используйте мультиметр — меньшее активное сопротивление, по которому и получится найти рабочую.

Подключение мотора 220В к однофазной сети в реверс

Добиться реверса движения вала двигателя в этом случае возможно, если есть доступ к выводам его пусковой и рабочей обмоток. Эти моторы имеют 4 вывода: два на пусковую обмотку, подключенную с конденсатором, два на рабочую.

Если нет информации о назначении обмоток, ее можно получить методом прозвонки. Сопротивление пусковой обмотки всегда будет больше, чем рабочей за счет меньшего сечения провода, которым она намотана.

В упрощенном варианте схемы подключения мотора 220 В подают на рабочую обмотку, один конец пусковой обмотки на фазу или ноль сети (без разницы). Двигатель начнет вращаться в определенную сторону. Чтобы получить схему реверса, нужно отсоединить конец пусковой обмотки от контакта и туда подключить другой конец той же обмотки.

Реверс двигателя при помощи кнопки ПНВ

В широком смысле реверс означает изменение движения ротора в обратную сторону относительного его обычного старта. Отметим, что это довольно важная функция, которая является необходимой в подавляющем большинстве систем. Осуществить реверс можно в электродвигателе любого типа, как асинхронного, работающего от переменного тока, так и для мотора на постоянном токе.

Поскольку асинхронные двигатели, в том числе и однофазные, применяются в большинстве сфер деятельности и даже в бытовых приборах, реверс является необходимой функцией для выполнения базовых механических действий. Ярким примером могут служить грузоподъёмные механизмы, которым нужно двигаться во всех направлениях, разнообразные запорные устройства формата “открыть-закрыть” и подобные исполнительные конструкции. Для них необходимость в реверсе ротора является постоянной, поскольку его движение в обоих направлениях является базовой функцией, без которой они не смогут выполнять свои обязанности.

Временный реверс применяется не так часто, и обычно нужен в аварийных ситуациях. Например, асинхронные двигатели, установленные в конвейерах, на эскалаторах и в насосах работают строго в одну сторону. Однако если механизм сломался или заедает, включается реверс, позволяющий остановить или обратить работу системы.

Также реверс используется для резкого и быстрого торможения электродвигателя. В обычных случаях ротор продолжает вращаться даже после отключения механизма от сети, поскольку набранная за время работы инерция тратится очень неохотно. Таким образом мотор работает и после отключения сети, что в ряде случаев крайне нежелательно. Кратковременный запуск реверса создаёт противонаправленную силу, поглощающую инерцию, в результате чего ротор удаётся остановить гораздо быстрее, чем он прекратил вращаться естественным способом. В профессиональной среде такой тормоз называется противовключением.

Как поменять вращение на однофазном двигателе

Перед выбором схемы подключения однофазного асинхронного двигателя важно определить, сделать ли реверс. Если для полноценной работы вам часто нужно будет менять направление вращения ротора, то целесообразно организовать реверсирование с использованием кнопочного поста. Если одностороннего вращения вам будет достаточно, то подойдет самая простая схема без возможности переключения. Но что делать, если после подсоединения по ней вы решили, что направление нужно все же поменять?

Постановка задачи

Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже.

Уточним важные моменты:

Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.

Вариант 1: переподключение рабочей намотки

Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.

Вариант 2: переподключение пусковой намотки

Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

Вариант 3: смена пусковой обмотки на рабочую, и наоборот

Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

В этом случае поступают так:

Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.

Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:

Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.

Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.

В чём состоит принцип реверсивного движения

Поскольку принцип работы электродвигателя переменного тока построен на вращении магнитных полей в определённом направлении, то и для его изменения придётся менять магнитные поля. Сам принцип работы реверса невероятно прост — необходимо поменять местами провода, отвечающие за основное вращение и запуск. Поскольку каждый из них подключён как к плюсу, так и к минусу, смена проводом полностью инвертирует полярность магнитного поля. В свою очередь это значит, что двигаться оно начнёт в обратном направлении, увлекая за собой ротор, а вместе с этим и всю систему в принципе.

Что такое чередование фаз?

Под чередованием фаз следует понимать последовательность, в которой напряжение нарастает в каждой из них. Во всех трехфазных цепях напряжение представляет собой синусоидальную кривую. В каждой линии напряжение отличается на 120º от остальных.


Рис. 1. Напряжение в трехфазной сети

Как видите, на рисунке 1, там где а) — показаны кривые напряжения во всех фазных проводах, смещенные на 120º. На соседнем рисунке б) изображена векторная диаграмма этих напряжений, На обоих рисунках показана разница между фазным и линейным напряжением.

Если взять за основу, что из нулевой точки на рисунке а) выходит U­A, то эта фаза является первой, на диаграмме б) наглядно стрелками показано, что очередность нарастания напряжения переходит от U­A к U­B, а за ним к U­C. Это означает, что фазы чередуются в порядке A, B, C. Такой порядок чередования считается прямым.

Прямое и обратное чередование фаз

В трехфазной сети порядок чередования фаз может отличаться в зависимости от способов подключения к силовым трансформаторам на подстанциях, от последовательности включения обмоток генератора, из-за несоответствия выводов кабеля и по прочим причинам.


Рисунок 2: Прямая и обратная последовательность

Обратите внимание, цветовая маркировка определяет последовательность в соответствии их очередностью в алфавите по первым буквам цвета:

  • Желтый – первый;
  • Зеленый – второй;
  • Красный – третий.

На рисунке 2 изображен классический вариант прямой последовательности A – B – C (где A имеет желтый цвет и является первой, B – зеленый и является второй, а C – красный и является третей) и классический вариант обратной последовательности C – B – A. Но, помимо них на практике могут встречаться и другие варианты, прямого: B – C – A, C – A – B, и обратного чередования: A – C – B, B – A – C. Соответственно, в каждом из приведенных примеров чередование фаз будет начинаться с первой.

Схема реверса — реализация на практике

Чтобы ротор начал вращаться в противоположную сторону, необходимо поменять вторую и третью фазу местами. Отметим, что сначала он будет продолжать двигаться в первоначальном направлении по инерции, и лишь спустя некоторое время перейдёт в состояние равновесия, из которого сменит направленность.

Полярность пусковой обмотки, необходимой для задания направления, можно выполнить по схеме с использованием специального управляющего тумблера. Прежде всего его необходимо подобрать, исходя из разрешённого напряжения мотора и токовой нагрузке, а также необходимых зафиксированных положений — 2 или 3. Ток на тумблер стоит выводить от стартовой обмотки, поскольку она работает не так долго и в целом экономит ресурс. Таким образом можно сократить расходы на обслуживание всей системы и контактной группы в частности.

Специалисты советуют выполнять реверс асинхронного двигателя следующим образом:

  • если пуск предполагается тяжёлый, то его можно упростить при помощи добавочного конденсатора. Это актуально только для схем, которые используют подключение с самовозвратом ПНВ. Тогда тумблер реверса будет осуществлять включение только если ротор заторможен, но не во время работы, повышая эффективность и стабильность системы;
  • посадочное место тумблера для реверса должно быть защищено от случайного срабатывания. Поскольку это сопровождается огромными скачками тока, подобное позволит сэкономить энергию и моторесурс двигателя;
  • если механизм не выполняет реверс нужным образом, то после подключения нужно проверить правильность подключения проводов — нередко клеммы путают и вся схема сбивается. Также работоспособность зависит от целостности проводки.

С учётом того факта, что даже мельчайшие проблемы могут привести к сбою работы реверса, важно хорошо проверить весь механизм перед запуском. Это позволить избежать поломок и аварийных ситуаций.

Постановка задачи

Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже.

Уточним важные моменты:

  • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
  • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
  • Направление вращения ротора обозначено с помощью стрелок.

Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.

Коллекторные однофазные двигатели и их особенности

Однофазный двигатель является наиболее распространённым в бытовых условиях двигателем, который часто воспроизводят своими руками. Причина этого кроется в однофазной сети на 220В, подведённой к большинству мастерских, домов и частных участков. Однако перед началом работы важно определить, какого типа перед вами мотор — коллекторный или асинхронный. В большинстве ситуацию на механизме присутствует маркировка, но если в вашу руки он попал после ремонта или перестройки, то надёжнее будет обратить внимание на наличие щёток в механизме, расположенных возле коллектора, а также медного барабана, который разделён на равные секции.

Коллекторные двигатели исключительно однофазные и весьма распространены в бытовой технике. Из их преимуществ стоит выделить:

  • быстрый старт — сразу после подачи электричества мотор начинает разгоняться с большим числом оборотов;
  • удобство реверса — благодаря системе, обратить движение ротора в обратную сторону не составляет труда. Для этого нужно поменять полярность магнитного поля;
  • регулировка скорости вращения — меняя амплитуду напряжения и угла отсечки, можно контролировать интенсивность работы ротора.

По этим причинам коллекторные двигатели находят своё применение в бытовой и строительной технике. Однако они имеют и ряд недостатков:

  • высокая шумность — при выходе на большие обороты движок начинает очень сильно шуметь. Это сглаживается на малых вращениях, но не так часто;
  • сложность техобслуживания — коллекторный двигатель нужно регулярно проверять и чистить. Графит от стирающихся щёток загрязняет токоприёмник и выводит всю систему из строя.

Строение и принцип работы асинхронных двигателей мы уже рассматривали выше. В отличие от коллекторных, такие движки работают практически незаметно даже при большом числе оборотов. Поэтому их используют в технике, которой критично иметь низкие шумовые пределы при продолжительной работе — например, холодильники, кондиционеры и климатические системы.

Способы изменения направлений в коллекторном двигателе со схемами применения

Большая доля инструментов располагает в составе коллекторный двигатель. Это один из обычных и позволяемых по цене каждому движков, у которого есть отличные характеристики. Собственно этим, да ещё низкой ценой, определена его значительность.

Электродвигатели стали неотъемлемой частью жизни людей, которые упрощают ее и берут много работы на себя. Они обеспечивают произведение обыденной и строительной техники, представлены одной из вспомогательных частей производственного оборудования.

Что такое коллекторный двигатель и его особенности

Коллектором нарекают элемент двигателя, контактирующую с щетками. Данный отдел гарантирует передачу электроэнергии в рабочее деление агрегата. Коллекторный мотор хронического тока — вертящийся электрический аппарат постоянного тока, перерабатывает энергию непрерывного тока в машинную энергию, где одна обмотка, которая содействует в процессе вырабатывания энергии, сплочена с теплообменником. Функционирует через постоянный и не устойчивый поток энергии, сила 300–800 Вт, количество разворотов якоря 11 500–15 000 об/мин.

Коллекторные электродвигатели бывают: постоянного и переменного тока;

Последние универсальные функционируют, как и от неизменного, так и от сменного потока. Они сохраняют популярность, даже если имеют щётки. Известно, что щетки не очень удобны, так как они стираются и искрят. За этим элементом необходимо непрерывное наблюдение и промышленное обслуживание.

К достоинствам коллекторных движков причисляют вероятность мягкой регулировки быстроты в обширных пределах, низкую стоимость. Как и остальные электромоторы, коллекторный складывается из статора и ротора (часто нарекают «якорь»). Его отличительной особенностью представляется существование на валу коллекторного узла, сквозь какой на автомат передаётся электропитание. Механизм коллекторных двигателей долговременного и переменного тока почти одинаковы, но имеют некоторые отличия.

Коллекторный двигатель долговременного тока

Наиболее малые движки предоставленного типа (единицы Ватт) хранят в корпусе:

· трёхполюсной ротор на подшипниках скольжения;

· коллекторный отдел из 2-х щёток, которые присоединены между собой с 3-мя медными пластинами;

· двухполюсной статор из непрерывных магнитов.

Такие двигатели используются, в основном, в младенческих игрушках, музыкальных плеерах, сушках, электрических бритвах, аккумуляторных отвертках и т. (рабочее усилие 3-9 вольт).

Движки более сильной мощности (десятки Ватт), соответственно складываются из:

· семиполярный ротор на подшипниках; коллекторный узел из четырёх графитовых щёток;

· четырехполюсный статор из постоянных магнитов.

Впрочем, такая консистенция аппарата используется в большинство электродвигателей в новых автомобилях (рабочее усилие 12 либо 24 Вольт): препровождение пропеллеров систем охлаждения и вентиляции, «дворников», насосов омывателей.

Коллекторный мотор переменного потока

Коллекторный двигатель переменного тока является довольно специфическим прибором, которое располагает все совершенства механизма долговременного тока и, вне зависимости, характеризовано совпадающими свойствами. Различие данных агрегатов складывается в том, что обивка статора двигателя неустойчивого тока для снижения издержек на вихревой энергетике, производится из раздельных листов электротехнической стали. Обмотки побуждения аппаратуры вводятся поочередно ради оптимизации произведения в бытовой сети 220в.

Существуют также трехфазные, чьи способности действовать от постоянного и переменного тока именуются ещё и универсальными данными. Выключая статор и ротор, механизм содержит щеточно-коллекторный аппарат и тахогенератор. Циркуляция ротора в коллекторном моторе завязывается впоследствии совместной работоспособности потока якоря и магнитного тока намотки возбуждения.

Посредством использования щетки ток перенаправляется на теплообменник, организованный из пластинок трапецеидального разделения и представляется одним из узлов ротора, поочередно объединенного с намотками статора.

Принцип произведения

Инструмент сочетает в себе неподвижную часть, это статор и сменную часть – ротор. В статоре размещаются возбуждающие обвивки, ротор следит за передачей появляющейся машинной силы. Также часть ротора это вал.

Собственно, принцип поведение не различается от прочих движков, ротор инициирует ворочения в магнитной сфере, вследствие индуцированным на нём токам. Но как собственно и зачем данные тока наводятся? Для понимания нужно вспомнить, как создается электродвижущая мощь в постоянном магнитном поле. Ежели поле непрерывного магнита установить прямоугольную рамку, под действием завязывающегося в ней тока она начинает вращение. Направление вращения определяется по правилу буравчика. Для постоянного поля в нем говорится так, ежели установить правую руку в поле так, чтобы магнитные очертания вмещались в ладонь, вытянутые пальцы покажут направленность движения.

Как поменять движение в коллекторном движке

Первая из токоснимающих щеток соединяется к обмотке статора, а питающее усилие направляется на другую щетку и другой шнур статорной обмотки. Чтобы произошло изменение расположения штепсельной вилки в розетке, случается синхронная смена полюсов магнитов ротора и статора. Следовательно, курс вращения не изменится. К тому же, как это случается в движке долговременного тока с одновременным изменением полярности питающей силы на обмотке возбужденности и якоря. Поменять распорядок следования «фаза – ноль» надобно исключительно производить на один элемент электрического автомата – коллектора, что гарантирует и пространственное, и электрическое разделение проводов – обвивки якоря защищены.

Такое можно совершить парой способов:

· Ручной сменой места конструкции щеток. Это редкость, ибо похоже на внесения изменений в состав устройства. Тем более, итогом будет досрочный выход щеток из строя, ибо фигура выработки на их способном выходе не будет такая, как форма плоскости коллектора.

· Замена расположения переключателя среди щеточного узла и обмоткой в клеммной коробке, а далее точки включения сетевого провода. Дозволено создать с силой одного многопозиционного выключателя либо парой магнитных пускателей.

Как плавно изменить курс вращения коллекторного движка

Если попросту поменять противоположность подводящего усилия на коллекторном двигателе, направленность верчения ротора не изменится. Вдобавок нужно понимать, что в моторах сильной мощности переключат обмотку якоря. При переключении обмоток статора появляется сила самоиндукции, что долетает величин, оно может исключить сердце из строя. Надлежит сменить местами выводы обмотки возбуждения. Когда присутствует третий шнур, то его не используют.

Не на всяком коллекторном двигателе дозволено реализовать реверс, ежели в корпусе направлен указатель вращения, то его невозможно приспособлять в реверсивных устройствах. Все двигатели, обладающие высокими витками, специализированы для вращения в одну сторону. Например, у электродвигателя, констатирующего в болгарках. У двигателя, что обладает незначительными оборотами, циркуляция возможна в разные стороны. Программа включения его обмоток подобна той, что и на двигателях непрерывного тока с последовательным возбуждением.

Реально весь электрический ассортимент моторов для бытового использования, дома или на даче, одновременные — коллекторные. Редко могут быть асинхронные. Коллекторный двигатель употребляется в стиральных аппаратах для прокрутки барабана, электродрелях и так далее. Такие движки имеют крепление к обмотке и не двигаются. Вдобавок в данном моторе на якоре имеется обмотка. На обе эти обмотки направляется сила с коллектора. Чинить такой двигатель дешево, при этом он элементарен для реализации в домашних условиях. Только оно нуждается в понимании устройства и соблюдение техники безопасности. Еще желательно проверять клавиши подключения на работоспособность устройства и питающие шнура. Данные характеристики можно исследовать с помощью индикаторной отвертки или мультиметра.

Схемы включения

Стандартная методика включения предугадывает заключение на контактную планку до 10 контактов. Текущий стороной одной из щеток течение L устраивается на коллектор и якорь, дальше проходит к обмоткам статора сквозь вторую щетку и перемычку, высовываясь в нейтраль N. Реверса двигателя похожий метод подключения не предугадывает, поелику соединение обмоток синхронное приводит к одновременной перемене полюсов в магнитных полях.

Следственно, направленность обстоятельства постоянно такое. Скорректировать направленность верчения возможно, когда можно сменить выходы на контактной планке местами в обмотке. Начистоту двигатель соединяют если провода ротора и статора соединены к щеточно-коллекторный аппарату. Для переключения второй быстроты применяются шнуры только полу обмотки.

Важно помнить, что с фактора подобного включения сердце инструмента действует на наибольшей мощности, следовательно, время его эксплуатации никак не должен превосходить 15 сек. Примитивно данный метод дозволено изобразить подобными пунктами:

· на затвор симистора сервируется команда от электрической схемы;

· заслонка открывается, поток идет по намоткам статора, активизируя циркуляцию якоря двигателя М;

· моментальные величины частоты кручения реорганизуются тахогенератором в электронные сигналы, которые создают с импульсами управления возвратную связь;

· В итоговом моменте обращение ротора при любой прочности, остается равномерным;

· с дополнительным использованием реле R и R1 исполняется реверсирование мотора.

Модифицирование вращения

Перед тем как «менять щётки» или другие провода, приглядитесь, каким способом приспособлены щётки касательно коллектора. Ежели, щетки поставлены вертикально к поверхности цилиндра, какой образует коллектор, дальше позволено любым методом изменять направленность верчения двигателя технологий только два: изменить положение проводов между собой, подходящие к щеткам, или провода , которые установлены к обмотке возбужденности (статору). Но когда щётки введены не вертикально , дальше обменивать направления верчения очень не желательно. Ротор кружиться будет, однако будет увеличенное выделение искр и скорый износ щеток.

Обследовать конструкцию щеток легко: убираем щетку и смотрим разрез выработки, если он симметричный -щётки находятся перпендикулярно, поэтому наоборот. Дозволено еще послушать звук, организовывается щетками при верчении теплообменника вручную — при инвариантной установке он будет один для любого направления вращения.

Регулятор частоты вращения коллекторного движка

Если движок переменчивого тока включается на абсолютную мощность, случается передача тока с целой мощностью нагрузки, что повторяется 7-8 раз. Данное течение нагибает обмотки мотора и производит тепло, что будет отходить длительное время. Это может существенно уменьшить живучесть двигателя. Короче говоря, преобразователь – это такой ступенчатый инвертор, какой гарантирует парную смену энергии.

Рекомендуемый стабилизатор частоты вращения специализирован для произведения совместно с коллекторными движками и является безоглядно аналоговое устройство. Регулятор обладает возвратной связью по частоте вращения, также ему не нужны приборы никакого тахогенератора дополнительно. Преимущественно известной разновидностью стабилизаторов частоты циркуляции основного мотора кассетных магнитофонов, представляется стабилизатор с положительной возвратной связью потока. Регулирование проистекает параметрические, следовательно, гармоника достаточно крепко модифицируется при изменении перегрузки на валу двигателя.

Чтобы сделать качества работы больше в стабилизаторе, надо установить возвратную связь по частоте вращения. Нормально при таких данных для вала двигателя ставить особенный датчик. В основном только оптический . Подобный преобразователь охватывает в себе оптопару, оптическое течение что останавливается крыльчаткой (или диском с отверстиями), и дальше он насаживается на вал двигателя. Крыльчатка останавливает оптический поток, и на конце оптопары складываются импульсы с частотой верчения двигателя, поднятой на сумму прорезей в крыльчатке.

Временами приспосабливается и другая разновидность датчиков — магнитные. Когда на вал мотора ставится шестерня из ферромагнитного материала, вблизи которой укрепляется головка с магнитом. При воздействии вращения шестерни на выводах головки, является неустойчивое усилие с амплитудой возле милливольта, и частотой, равновеликой частоте верчения двигателя, поднятой на сумму зубьев на шестерне. Это течение включает в себе неустойчивую составляющую, в которую входит гармоника, что обладает частотой, равноправную частоте циркуляции двигателя, поднятую на количество пластинок коллектора. Двигатели, какие чаще приспосабливаются в магнитофонах, располагают три пластины коллектора. Следовательно данная гармоника равновелика утроенной частоте верчения двигателя. Только на данном принципе и построен регулятор.

Как выбрать редуктор

Имеется изрядно пару характеристик, которые помогут подбирать регулятор:

· Тип управления. Для коллекторного электродвигателя бывают регуляторы с векториальной либо скалярной системой руководства. Главные чаще применяются, однако, другие числятся надежнее;

· Один из желательных факторов при выборе гальванического преобразователя частот. Нужно выбирать частотник с силой, что отвечает максимально дозволенной на оберегаемом инструменте. Но для мало вольтового мотора предпочтительно, подобрать стабилизатор сильнее, нежели допустимое значение Ватт;

Конечно, тут все предусмотрено для каждого по отдельности, но по способности необходимо приобрести редуктор витков ради электродвигателя, у которого базисная схема располагает просторный спектр дозволительных напряжений;

· Охват частоты. преображение частоты – это ключевая тема предоставленного агрегата, следовательно постарайтесь найти тип, что будет предельно отвечать Вашим нуждам. Примерно, ради ручного фрезера довольно хорошими данными будут 1000 Герц;

· По иным критериям. Это срок гарантии, сумма входов, охват (для станков и ручных приборов имеется специфическая приставка). При этом еще необходимо понимать, что имеется так именованный всеобъемлющий стабилизатор циркуляции. Это частотный агрегат для бесколлекторных движителей.

Совершенства и недостатки коллекторов

Достоинства коллекторных электромоторов такие:

· Благородная скорость до 10 000 об/мин.

· Доброкачественный вращающий момент и на малых оборотах.

· Вероятность координировать поспешность в пространных пределах.

· Невысокие отправные флюиды и нагрузки.

В роторе можно увидеть, что каждая обвивка представляет собой подобную рамку. Лишь складывается она не из одного провода, а из нескольких, но сути это не меняет. При помощи коллекторного узла, в каком-то пункте времени, обвивка подключается к давлению и, по ней проходит течение и вокруг проводника завязывается магнитное поле. Оно содействует с полем статора. Зависит от типа, используются там долговременные магниты или тоже течет безостановочный ток в обмотках, создавая на полюсах свое магнитное поле.

Аппарат ротора и статора рассчитан так, что при содействии они «проталкивали» ротор в нужную сторону. Чем больше силы сервируется на обмотки ротора, тем сильнее мощная сфера производит статор, тем более сильная их реакцию и скорее ворочается ротор, потому что он сталкиваются с огромной силой. Также при способе уменьшения усилия — взаимодействие уменьшается, итоговая быстрота вращения тоже. Поэтому все что надо, координировать напряжение, такое позволяют сделать с помощью даже несложного авто потенциометр (переменное сопротивление).

Удовлетворительные качества, но просматриваются и минусы, причем они вполне серьёзные. Минусы коллекторных электродвигателей такие:

· Большая степень гулов при движении.

· В особенности при воздействии на больших скоростях.

· Щетки стираются о аппарат триммера, вследствие образуя шумы.

· Щеточки искрятся и изнашиваются

· Потребность периодического поддержания коллекторного узла.

· Мало устойчивость характеристик при изменении нагрузки.

· Рослая частотность отказов через присутствие коллектора и щеток, небольшой промежуток работоспособности данного узла.

В целом, коллекторное сердце хороший выбор, по-другому его не ставили бы на хозбытовой технике. При обычном свойстве работы, функционируют подобные моторы годами. Могут и 10-15 лет работать нормально без аварий.

Проверка коллекторного электродвигателя на повреждение

Самая трудная задача, что поднимется с таким аппаратом это разбор. Как ни странно, коллекторный мотор непросто разбирать. Приводить анализ демонтажа мотора для всех вариантов устройств долгое время, предпочтительно определить особое руководство естественно под ваш тип механизма. Важно не пренебрегать техникой безопасности, все приборы при разборе обязаны быть выключены.

Берите инструменты с изоляционным материалом. Если электромотор демонтирован, пробуйте дать на него напряжение. Ежели он работает, однако искры в щеточках увеличились (хвосты искр при кружении неравномерны, облегают временами больше 90°), быстрее всего, наступил период их сменить либо откорректировать прикрепление аппарата.

При нестабильном соединении могут обнаруживаться неполадки. Также это может значить и межвитковое перемыкание внутри. Заменять приборы должны исключительно на такие же как предыдущие. Щетки в принципе укрепляются фиксатором либо болтами. Порой они зафиксированы на особом рычаге. Когда щетки в норме, но плохо прикреплены, требовательно прикрепить пружины.

Когда контакты на аппарате потемнели, нужно совершить чистку. Хорошим способом будет использование наждачной бумаги с небольшой крошкой. Когда таков метод не посодействовал, тогда источником поломки может быть износ подшипников. Также когда заметен слишком большой шум, лишнюю вибрацию, то вполне вероятно и надобно сменить подшипники.

Когда агрегат нельзя никак включить, посмотрите зрительно целость обмоток, лишение почернения. Сгоревшую изоляцию требовательно почистить, в случае присутствия графитовой пыли все тщательно прочистить. Прах вызывает замыкание. Всю проводку надо опробовать мультиметром. Когда обвивка не дает проводимости, возможно в этом случае реставрация агрегата станет дороже нового.

Реверс конденсаторного двигателя

Из-за особенностей механизма, конденсаторный движок подключает реверс только при наличии конденсаторов. Если исключить их из системы, мотор будет включаться, но запуска не произойдёт, так как не генерируется достаточная для старта сила.

Первая схема включает конденсатор, установленный в цепи питания пусковой обмотки. Имея отличный старт, такой механизм сильно проседает в мощности, которая оказывается ниже номинальной. Вторая схема подключения действует обратным образом — подключая конденсатор в цепь рабочей обмотки, вы получаете сравнительно тяжёлый старт, но рабочие характеристики остаются на высоком уровне. Таким образом обе схемы находят своё применение в разных условиях — первая нужна для устройств с тяжёлым пуском, а вторая в устройствах, которым жизненно необходимо рабочие характеристики.

Третий вариант предусматривает установку сразу двух конденсаторов. Чаще всего выбирают именно этот вариант, поскольку он берёт лучшее от обеих схем — отличный старт и приличные рабочие характеристик, но взамен требует более тщательной настройки, регулярного техобслуживания и специальной кнопки ПНВС. При работе активными остаются обе обмотки, и пусковая, и рабочая, причём первая даже при отключении продолжает работать через конденсатор.

Ключевым моментом в реализации реверса при помощи конденсаторов — их правильный выбор. Чтобы правильно рассчитать их характеристики, специалисты используют сложную формулу с несколькими переменными. Однако на практике всё оказывается проще, если соблюдать пару рекомендаций:

  • для рабочего конденсатора следует выбирать характеристики в районе 70-80 мкФ на 1 кВт полной мощности двигателя;
  • для пускового конденсатора такие показатели должны быть в 2, а то и 3 раза выше;
  • напряжение конденсатора должно превосходить напряжение сети минимум в полтора раза. Например, для стандартной однофазной сети в 220 В следует подобрать ёмкость в 330, 380 В или больше.

Отметим, что на рынке электроники присутствуют специализированные конденсаторы, изначально рассчитанные под старт. Они имеют соответствующую маркировку и обеспечивают плавный пуск.

Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

Конденсатор подключают к выводам пусковой и рабочей обмоток.

В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

Здесь получается, что:

  • главная обмотка работает напрямую от 220 В;
  • вспомогательная — только через емкость конденсатора.

Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

Где взять номиналы главного и вспомогательного конденсаторов?

Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

Владелец видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

Схемы реверса однофазного асинхронного двигателя без вскрытия корпуса

Если вмешиваться в систему автоматического асинхронного двигателя не хочется, по той или иной причине доступ под корпус отсутствует, можно воспользоваться одним из трёх достаточно простых способов реверса.

Переподключение рабочей намотки

Подобную схему подключения мы уже рассматривали выше — он используется чаще всего ввиду простоты. Для него не требуется вскрывать корпус или переворачивать намотку — достаточно просто переподключить клеммы рабочих проводов так, чтобы фаза перешла с начального на конечный контакт, а нуль — наоборот.

Переподключение пусковой обмотки

Система такая же, как и в предыдущем варианте, но с той разницей, что поменять провода придётся уже у пусковой обмотки. После переподключения крутящий момент ротора также должен смениться.

Полная замена обмотки

Если вы хотите создать надёжное подключение, или модель мотора нетипичная (например, с тремя проводами вместо четырёх), стоит полностью заменить обмотку. Для этого используется конденсатор, который присоединяется к конечному выводу, а от проводов пускают реверс-отводки. Плюсом данной схемы является тот факт, что реверс можно контролировать, если соединять провода вручную.

Вариант 1: переподключение рабочей намотки

Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

  1. Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
  2. Вы увидите, что к этой паре подсоединены две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.

Выводы

Как можно заметить, реверс однофазного двигателя не является чем-то сложным — наоборот, он широко используется во многих системах и механизмах как часть работы движка. Однако в тех случаях, когда обратное вращение не предусмотрено, приходится искать альтернативный способ реверсировать вращение. В зависимости от конструкции мотора, сделать это можно без разбора всего механизма. Важно только проводить работу с большим вниманием к деталям и со знанием дела, начертить схему, чтобы не возникало проблем и аварийных ситуаций в будущем.

Вариант 2: переподключение пусковой намотки

Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

  1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
  2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

Тематическое видео

Перед выбором схемы подключения однофазного асинхронного двигателя важно определить, сделать ли реверс. Если для полноценной работы вам часто нужно будет менять направление вращения ротора, то целесообразно организовать реверсирование с использованием кнопочного поста. Если одностороннего вращения вам будет достаточно, то подойдет самая простая схема без возможности переключения. Но что делать, если после подсоединения по ней вы решили, что направление нужно все же поменять? Однофазный двигатель 220В — как поменять направление вращения?

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *