Нагревательный элемент что это
Перейти к содержимому

Нагревательный элемент что это

  • автор:

Нагревательные элементы

Огонь был одним из самых ранних и величайших открытий человечества — примерно один или два миллиона лет назад. В наш современный век реактивных двигателей, космических ракет, стальных небоскребов и синтетических пластмасс дым и пламя могут показаться доисторическими. Но все четыре из этих изобретений — и десятки других — в той или иной степени полагаются на огонь.

Иногда на то, чтобы разжечь огонь, уходит много времени: например, угольные паровозы нужно разжечь за несколько часов до того, как они потянут поезда. В других случаях пожар вспыхивает тогда, когда вы меньше всего этого ожидаете, угрожая жизни, зданиям и всему, что вам дорого. Разве не было бы замечательно, если бы огонь можно было контролировать так же легко, как электричество, чтобы вы могли включать и выключать его в любой момент? Это основная идея нагревательных элементов. Они — «огонь» внутри таких вещей, как электрические обогреватели, душевые , тостеры , плиты, фены, сушилки для одежды, паяльники и всякая другая бытовая техника. Нагревательные элементы дают нам силу огня с удобством электричества. Давайте подробнее разберемся, что это такое и как они работают!

Нагревательные элементы информационная статья компании Полимернагрев

На фото: электрический нагреватель с открытой спиралью. При нагревании спираль начинает светиться красным.

Производство тепла из электричества

В школе мы узнаем, что одни материалы хорошо переносят электричество, другие — плохо. Хорошие носители электричества называются проводниками, а плохие носители — изоляторами. Проводники и изоляторы часто лучше описывать, говоря о том, какое сопротивление они оказывают, когда через них протекает электрический ток. Таким образом, проводники имеют низкое сопротивление (через них легко проходит электричество), в то время как изоляторы имеют гораздо более высокое сопротивление (это настоящая борьба за прохождение электричества). В электрической или электронной схеме мы можем использовать устройства, называемые резисторами, для контроля протекания тока; используя циферблат, чтобы увеличить сопротивление и снизить ток. В схеме громкоговорителя, например, это способ уменьшения громкости.

Нагревательные элементы информационная статья компании Полимернагрев

На фото: крупный план скрученной вольфрамовой нити в лампе накаливания, которая излучает свет, выделяя большое количество тепла. Количество света, излучаемого нитью накала, напрямую зависит от ее длины: чем длиннее нить, тем больше света она излучает. Вот почему он скручен: катушка помещает больше длины (и света) в то же пространство.

Резисторы работают путем преобразования электрической энергии в тепловую; другими словами, они нагреваются, когда через них проходит электричество. Но это делают не только резисторы. Даже тонкий кусок проволоки нагреется, если вы пропустите через него достаточное количество электричества. Это основная идея ламп накаливания (старомодных ламп в форме лампочек). Внутри стеклянной колбы находится очень тонкий моток проволоки, называемый нитью накала. Когда через него проходит достаточно электричества, он становится раскаленным добела, очень ярко — так что он действительно излучает свет, выделяя тепло. Около 95 процентов энергии, потребляемой такой лампой, превращается в тепло и полностью расходуется (при использовании энергосберегающей люминесцентной лампы намного более эффективен, потому что большая часть потребляемой лампой электроэнергии преобразуется в свет без потери тепла).

А теперь забудьте о свете — что, если бы нас действительно интересовало тепло? Внезапно мы обнаруживаем, что наша расточительная лампа накаливания на самом деле очень эффективна, потому что она преобразует 95 процентов энергии, которую мы в нее подаем, в тепло. Фантастика! Только вот проблема. Если вы когда-либо приближались к лампе накаливания, вы знаете, что она становится достаточно горячей, чтобы обжечь вас, если вы дотронетесь до нее (не поддавайтесь соблазну попробовать). Но если вы встанете даже на метр или около того, тепло от чего-то вроде 100-ваттной лампы будет слишком слабым, чтобы достичь вас.

Итак, что, если бы мы хотели создать электрический обогреватель по той же схеме, что и электрическую лампу? Нам понадобится что-то вроде увеличенной в масштабе нити накала лампы — может быть, в 20–30 раз мощнее, чтобы мы действительно могли чувствовать тепло. Нам понадобится довольно прочный материал (тот, который не плавится и прослужит долгое время при многократном нагревании и охлаждении), и он нам понадобится, чтобы выделять много тепла при разумной температуре. Здесь мы говорим о сути нагревательного элемента: прочного электрического компонента, предназначенного для отвода тепла, когда через него протекает большой электрический ток.

Что такое нагревательный элемент?

Нагревательные элементы информационная статья компании Полимернагрев

На фото: нагревательный элемент, скрытый внутри керамической варочной панели. Это один непрерывный элемент, начинающийся с синей точки и изгибающийся в форме лабиринта, пока не достигнет красной точки. Нет никакого смысла в том, чтобы этот элемент имел другую форму или размер: он должен концентрировать тепло именно под сковородой — и это наиболее эффективный способ добиться этого.

Типичный нагревательный элемент обычно представляет собой катушку, ленту (прямую или гофрированную) или полоску проволоки, которая излучает тепло, как нить накала лампы. Когда через него протекает электрический ток, он накаляется докрасна и преобразует проходящую через него электрическую энергию в тепло, которое излучается во всех направлениях.

Нагревательные элементы обычно изготавливаются на основе никеля или железа. Сплавы на основе никеля обычно представляют собой нихром, сплав, состоящий примерно из 80 процентов никеля и 20 процентов хрома (доступны другие составы нихрома, но смесь 80–20 является наиболее предпочтительной). Нихром является наиболее популярным материалом для нагревательных элементов по разным причинам:

он имеет высокую температуру плавления (около 1400 ° C),

не окисляется (даже при высоких температурах),

не слишком расширяется при нагревании,

имеет разумное (не слишком низкое, не слишком высокое и достаточно постоянное) сопротивление (оно увеличивается только примерно на 10 процентов между комнатной температурой и максимальной рабочей температурой).

Сплав на основе железа называется фехраль. Это железо-хромо-алюминиевый сплав с незначительным включением никеля (примерно 0,6%). Он также часто используется в нагревательных элементах, потому как имеет ряд преимуществ перед нихромом:

Низкая стоимость (в несколько раз ниже, чем у нихрома)

Высокая температура плавления (около 1500° C)

Однако у фехрали есть и недостатки:

Меньшая прочность, повышенная хрупкость

Меньший срок службы нагревателей из этого материала

Типы нагревательных элементов

Есть много разных видов нагревательных элементов. Иногда спирали из нихрома или фехрали используется как таковой; в других случаях спирали встроены в керамический материал, чтобы сделать его более прочным и долговечным (керамика отлично справляется с высокими температурами и не боится большого нагрева и охлаждения), или изолированы в миканите и помещены в металлический корпус (к примеру, кольцевые и плоские нагреватели для экструдеров).

Размер и форма нагревательного элемента в значительной степени определяется размерами прибора, внутри которого он должен помещаться, и площадью, на которой он должен производить тепло. Щипцы для завивки волос имеют короткие спиральные элементы, потому что они должны выделять тепло через тонкую трубку, вокруг которой можно обернуть волосы. Электрические радиаторы имеют длинные стержневые элементы, потому что они должны рассеивать тепло через большую площадь комнаты. Электрические плиты имеют спиральные нагревательные элементы, подходящие по размеру для нагрева кастрюль и сковородок (часто элементы плиты покрыты металлическими, стеклянными или керамическими пластинами, чтобы их было легче чистить). Нагреватели нефтепродуктов для больших емкостей или цистерн представляют собой огромные металлические трубы с керамическими нагревательными элементами, потому что они должны производить мягкий нагрев на большой площади соприкосновения с легко воспламеняемыми жидкостями.

Нагревательные элементы информационная статья компании Полимернагрев

На фото: два вида нагревательных элементов. 1) Светящиеся нихромовые ленты внутри инфракрасного кварцевого нагревателя для сушки. 2) Вы можете четко видеть спиральный электрический ТЭН внизу чайника. Он никогда не накаляется докрасна так же, как провода ик обогревателя, потому что обычно он недостаточно нагревается. Однако, если вы достаточно глупы, чтобы включить чайник без воды внутри (как я однажды случайно сделал), вы обнаружите, что элемент чайника вполне может раскалиться докрасна. Этот опасный и катастрофический эпизод навсегда повредил мой чайник и мог поджечь мою кухню.

В некоторых приборах нагревательные элементы хорошо видны: в электрическом тостере легко заметить ленты из нихрома, встроенные в стенки тостера, потому что они раскалены докрасна. Электрические радиаторы выделяют тепло с помощью светящихся красных полос (по сути, просто спиральные, проволочные нагревательные элементы, которые выделяют тепло за счет излучения), в то время как электрические конвекторные нагреватели обычно имеют концентрические круглые нагревательные элементы, расположенные перед электрическими вентиляторами (поэтому они быстрее переносят тепло за счет конвекции).

У некоторых приборов есть видимые элементы, которые работают при более низких температурах и не светятся; электрические чайники, которым никогда не нужно работать выше точки кипения воды (100 ° C), являются хорошим примером. В других приборах нагревательные элементы полностью скрыты, как правило, из соображений безопасности. Электрический душ и щипцы для завивки волос имеют скрытые элементы, поэтому (надеюсь) нет риска поражения электрическим током.

Проектирование нагревательных элементов

Все это делает нагревательные элементы очень простыми и понятными, но на самом деле существует множество различных факторов, которые инженеры-электрики должны учитывать при их проектировании. В своей превосходной книге по этому вопросу Тор Хегбом перечисляет примерно 20–30 различных факторов, которые влияют на работу типичного нагревательного элемента, включая такие очевидные вещи, как напряжение и ток, длина и диаметр элемента, тип материала и рабочая температура. Есть также определенные факторы, которые необходимо учитывать для каждого типа элемента. Например, для витого элемента из круглой проволоки диаметр проволоки и форма витков (диаметр, длина, шаг, растяжение и т. д.) являются одними из факторов, которые критически влияют на производительность. С элементом ленты толщина и ширина ленты.

И это только часть истории, потому что нагревательный элемент не работает изолированно: вы должны учитывать, как он впишется в более крупный прибор и как он будет вести себя во время использования (когда он используется или неправильно используется по-разному) . Как, например, ваш элемент будет поддерживаться внутри устройства изоляторами? Насколько большими и толстыми они должны быть, и повлияет ли это на размер производимого вами прибора? Например, подумайте о различных типах нагревательных элементов, которые вам понадобятся в паяльнике, размере ручки и большом нагревателе конвектора. Если у вас есть элемент, «задрапированный» между опорными изоляторами, что произойдет с нагревательным элементом при сильном нагреве? Не будет ли он слишком сильно провисать, и это вызовет проблемы? Вам нужно больше изоляторов, чтобы это не произошло, или вам нужно изменить материал или элемент? размеры?

Если вы разрабатываете что-то вроде электрического камина с несколькими близко расположенными нагревательными элементами, что произойдет, когда они будут использоваться по отдельности или в комбинации? Если вы разрабатываете нагревательный элемент, через который проходит воздух (например, конвекторный обогреватель или фен), сможете ли вы создать достаточный поток воздуха, чтобы остановить его перегрев и значительно увеличить срок его службы? Все эти факторы должны быть сбалансированы, чтобы сделать продукт эффективным, экономичным, долговечным и безопасным.

Нужно ли нагревательному элементу высокое или низкое сопротивление?

Вы можете подумать, что нагревательный элемент должен иметь действительно высокое сопротивление — в конце концов, именно сопротивление позволяет материалу выделять тепло. Но на самом деле это не так. Тепло генерирует ток, протекающий через элемент, а не сопротивление, которое он испытывает. Получение максимального тока, протекающего через нагревательный элемент, намного важнее, чем проталкивание этого тока через большое сопротивление. Это может показаться запутанным и нелогичным, но довольно легко понять, почему это (и должно быть) истина, как интуитивно, так и математически.

Интуитивно .

Предположим, вы сделали сопротивление вашего нагревательного элемента настолько большим, насколько это возможно — фактически бесконечно большим. Тогда закон Ома (напряжение = ток ∙ сопротивление или V = I ∙ R) говорит нам, что ток, протекающий через ваш элемент, должен быть бесконечно малым (если I = V / R, I приближается к нулю, когда R приближается к бесконечности). У вас будет колоссальное сопротивление, отсутствие тока и, следовательно, отсутствие тепла. Итак, что, если мы впадем в противоположную крайность и сделаем сопротивление бесконечно маленьким. Тогда у нас была бы другая проблема. Хотя ток I может быть огромным, R будет практически равным нулю, поэтому ток будет проходить через элемент, как скоростной поезд, даже не останавливаясь, не производя тепла вообще.

Поэтому в нагревательном элементе нам нужен баланс между двумя крайностями: сопротивление, достаточное для выработки тепла, но не такое, чтобы оно слишком сильно уменьшало ток. Нихром и фехраль — отличный выбор. Сопротивление нихромовой проволоки (примерно) в 100 раз выше, чем у проволоки того же диаметра, сделанной из меди (отличный проводник), но только на четверть меньше, чем у графитового стержня аналогичного размера (довольно хороший изолятор) и может быть, только в миллионную триллионную часть меньше действительно хорошего изолятора, такого как стекло. Цифры говорят сами за себя: нихром — это средний проводник с умеренным сопротивлением, и никак не изолятор!

Математически.

Мы можем прийти к точно такому же выводу с помощью математики. Мощность, производимая или потребляемая потоком электричества, равна напряжению, умноженному на ток (ватты = вольт∙ ампер или P = V ∙ I). Мы также знаем из закона Ома, что V = IR. Исключите V из этих уравнений, и мы обнаружим, что мощность, рассеиваемая в нашем элементе, равна I 2 R. Другими словами, тепло пропорционально сопротивлению, но также пропорционально квадрату тока. Таким образом, ток оказывает гораздо большее влияние на выделяемое тепло, чем сопротивление. Удвойте сопротивление, и вы удвоите мощность (отлично!), Но удвоите ток, и вы увеличите мощность в четыре раза (фантастически!). Так что ток — вот что действительно важно.

Несложно подсчитать, что сопротивление нити накаливания типичной лампы накаливания составляет несколько сотен Ом.

Нагреватели сопротивления?

Мы часто называем электрический нагрев — то, что делают нагревательные элементы — «джоулевым нагревом» или «резистивным нагревом», как будто сопротивление является единственным фактором, который имеет значение. Но на самом деле, как я объяснил выше, существует множество взаимосвязанных факторов, которые следует учитывать при разработке нагревательного элемента, который эффективно работает в конкретном приборе. Сопротивление не всегда является тем, что вы контролируете и определяете: оно часто определяется для вас вашим выбором материала, размерами нагревательного элемента и т. д.

Электрические нагревательные элементы

Электрические нагревательные элементы применяются в бытовой и промышленной технике. Применение различных нагревателей известно всем. Это электрические плиты, жарочные шкафы и духовки, электрокофеварки, электрические чайники и отопительные приборы всевозможных конструкций.

Электрические водонагреватели, чаще именуемые бойлерами, тоже содержат нагревательные элементы. Основой многих нагревательных элементов служит проволока с высоким электрическим сопротивлением. И чаще всего эта проволока изготовлена из нихрома.

Открытая нихромовая спираль

Самым старым нагревательным элементом является, пожалуй, обычная нихромовая спираль. Когда-то давно, в ходу были самодельные электрические плитки, кипятильники для воды и обогреватели типа «козёл». Имея под рукой нихромовый провод, которым можно было «разжиться» на производстве, изготовить спираль требуемой мощности не представляло никаких проблем.

Известно было, какого диаметра провод и какая длина требуется для намотки спирали нужной мощности. Эти магические числа до сих пор можно найти в сети интернет. На рисунке показана таблица, где приведены данные о спиралях различной мощности при напряжении питания 220В.

Электрические нагревательные элементы

Расчет электрической спирали нагревательного элемента

Здесь все просто и понятно. Задавшись требуемой мощностью и диаметром нихромового провода, имеющимся под рукой, остается только отрезать кусок нужной длины и навить его на оправку соответствующего диаметра. При этом в таблице указана длина получившейся спирали. А что делать, если имеется провод с диаметром не указанным в таблице? В этом случае спираль придется просто рассчитать.

Как рассчитать нихромовую спираль

При необходимости рассчитать спираль достаточно просто. В качестве примера приведен расчет спирали из нихромовой проволоки диаметром 0,45 мм (такого диаметра в таблице нет) мощностью 600 Вт на напряжение 220 В. Все расчеты выполняются по закону Ома.

Сначала следует рассчитать ток, потребляемый спиралью.

I = P/U = 600/220 = 2,72 A

Для этого достаточно заданную мощность поделить на напряжение и получить величину тока, проходящего через спираль. Мощность в ваттах, напряжение в вольтах, результат в амперах. Все согласно системе СИ.

По известному теперь току рассчитать требуемое сопротивление спирали достаточно просто: R = U/I = 220/2,72 = 81 Ом

Формула для подсчета сопротивления проводника R=ρ*L/S,

где ρ – удельное сопротивление проводника (для нихрома 1.0÷1.2 Ом•мм2/м), L — длина проводника в метрах, S – сечение проводника в квадратных миллиметрах. Для проводника диаметром 0,45 мм сечение составит 0,159 мм2.

Отсюда L = S * R / ρ = 0.159 * 81 / 1.1 = 1170 мм, или 11,7 м.

В общем, получается не столь уж сложный расчет. Да собственно и изготовление спирали не так уж и сложно, что, несомненно, является достоинством обычных нихромовых спиралей. Но это достоинство перекрывается множеством недостатков, присущих открытым спиралям.

Прежде всего, это достаточно высокая температура нагрева – 700…800˚C. Нагретая спираль имеет слабое красное свечение, случайное прикосновение к ней может причинить ожог. Кроме того возможно поражение электрическим током. Раскаленная спираль выжигает кислород воздуха, привлекает к себе пылинки, которые выгорая, дают весьма неприятный аромат.

Но главным недостатком открытых спиралей следует считать их высокую пожароопасность. Поэтому пожарная охрана попросту запрещает применение обогревателей с открытой спиралью. К таким обогревателям, прежде всего, относится, так называемый «козел», конструкцию которого можно посмотреть на видео.

Вот такой вот получился дикий «козел»: сделан он нарочито небрежно, просто, даже очень плохо. Пожара с таким обогревателем ждать придется недолго. Более совершенная конструкция подобного отопительного прибора показана на рисунке ниже.

Электрические нагревательные элементы

Обогреватель типа ПЭТ 1 кВт, 220 В

Нетрудно видеть, что спираль закрыта металлическим кожухом, именно это предотвращает прикосновение к разогретым токоведущим частям. Пожароопасность такого устройства намного меньше, чем показанного на предыдущем видео.

Когда-то давно в СССР выпускались обогреватели-рефлекторы. В центре никелированного отражателя имелся керамический патрон, в который наподобие лампочки с цоколем E27, вворачивался нагреватель мощностью 500Вт. Пожароопасность такого рефлектора тоже очень высока. Ну, вот как-то не задумывались в те времена, к чему может привести использование таких обогревателей.

Электрические нагревательные элементы

Обогреватель рефлекторного типа

Совершенно очевидно, что различные обогреватели с открытой спиралью можно, вопреки требованиям пожарной инспекции, использовать лишь под неусыпным присмотром: ушел из помещения – выключи обогреватель! Еще лучше просто отказаться от использования обогревателей подобного типа.

Электрические нагревательные элементы с закрытой спиралью

Чтобы избавиться от открытой спирали, были изобретены Трубчатые Электрические Нагреватели – ТЭНы. Конструкция ТЭНа показана на рисунке ниже.

Электрические нагревательные элементы

Конструкция ТЭНа

Нихромовая спираль 1 спрятана внутри тонкостенной металлической трубки 2. Спираль изолирована от трубки наполнителем 3 с высокой теплопроводностью и высоким электрическим сопротивлением. В качестве наполнителя чаще всего применяется периклаз (кристаллическая смесь окиси магния MgO, иногда с примесями других окислов).

После заполнения изолирующим составом трубку опрессовывают, и под большим давлением периклаз превращается в монолит. После такой операции спираль жестко фиксируется, поэтому электрический контакт с корпусом – трубкой исключен полностью. Конструкция получается настолько прочной, что любой ТЭН можно изгибать, если того требует конструкция отопительного прибора. Некоторые ТЭНы имеют весьма причудливую форму.

Спираль соединяется с металлическими выводами 4, которые выходят наружу через изоляторы 5. Подводящие провода присоединяются к резьбовым концам выводов 4 с помощью гаек и шайб 7. Крепление ТЭНов в корпусе устройства осуществляется при помощи гаек и шайб 6, обеспечивающих, при необходимости, герметичность соединения.

При соблюдении условий эксплуатации подобная конструкция достаточно надежна и долговечна. Именно это и привело к весьма широкому применению ТЭНов в устройствах различного назначения и конструкции.

Электрические нагревательные элементы

Трубчатые электрические нагревательные элементы

По условиям эксплуатации трубчатые электрические нагревательные элементы делятся на две большие группы: воздушные и водяные. Но это просто такое название. На самом деле воздушные ТЭНы предназначены для работы в различных газовых средах. Даже обычный атмосферный воздух является смесью нескольких газов: кислорода, азота, углекислого газа, имеются даже примеси аргона, неона, криптона и т.д.

Воздушная среда бывает самой разнообразной. Это может быть спокойный атмосферный воздух или поток воздуха, движущийся со скоростью до нескольких метров в секунду, как в тепловентиляторах или тепловых пушках.

Разогрев оболочки ТЭНа может достигать 450 ˚C и даже более. Поэтому для изготовления внешней трубчатой оболочки применяются различные материалы. Это может быть обычная углеродистая сталь, нержавеющая сталь или жаропрочная, жаростойкая сталь. Все зависит от окружающей среды.

Для улучшения теплоотдачи некоторые ТЭНы снабжаются ребрами на трубках в виде навитой металлической ленты. Такие нагреватели называются оребренными. Применение таких элементов наиболее целесообразно в движущейся воздушной среде, например, в тепловентиляторах и тепловых пушках.

Водяные трубчатые электрические нагревательные элементы также применяются не обязательно в воде, это общее название различных жидкостных сред. Это может быть масло, мазут и даже различные агрессивные жидкости. Жидкостные трубчатые электрические нагревательные элементы применяются в электрических котлах, дистилляторах, электрических опреснителях морской воды и просто в титанах для кипячения питьевой воды.

Теплопроводность и теплоемкость воды намного выше, нежели у воздуха и других газовых сред, что обеспечивает, по сравнению с воздушной средой, лучший, более быстрый, отвод тепла от ТЭНа. Поэтому при одинаковой электрической мощности водяной нагреватель имеет меньшие геометрические размеры.

Как избавиться от накипи и продлить срок жизни ТЭНа

Кроме химических средств для защиты от накипи используются различные устройства. Прежде всего, это магнитные преобразователи воды. В мощном магнитном поле кристаллы «жестких» солей меняют свою структуру, превращаются в хлопья, становятся мельче. Из таких хлопьев накипь образуется менее активно, большая часть хлопьев просто вымывается потоком воды. Этим и достигается защита нагревателей и трубопроводов от накипи. Магнитные фильтры-преобразователи выпускаются многими зарубежными фирмами, такие фирмы существуют и в России. Подобные фильтры выпускаются как врезного, так и накладного типа.

Электронные умягчители воды

В последнее время все более популярными становятся электронные умягчители воды. Внешне все выглядит очень просто. На трубу устанавливается небольшая коробочка, из которой выходят провода-антенны. Провода накручиваются вокруг трубы, при этом даже не надо счищать краску. Установить прибор можно в любом доступном месте, как показано на рисунке ниже.

Электрические нагревательные элементы

Электронный умягчитель воды

Единственное, что потребуется для подключения прибора, это розетка на 220В. Прибор рассчитан на долговременное включение, его не надо периодически отключать, поскольку выключение приведет к тому, что вода снова станет жесткой, опять будет образовываться накипь.

Принцип работы прибора сводится к излучению колебаний в диапазоне ультразвуковых частот, которые могут достигать до 50КГц. Частота колебаний регулируется с помощью пульта управления прибора. Излучения производятся пакетами по нескольку раз в секунду, что достигается использованием встроенного микроконтроллера. Мощность колебаний невелика, поэтому никакой угрозы для здоровья человека подобные приборы не представляют.

Целесообразность установки подобных приборов определить достаточно легко. Все сводится к тому, чтобы определить, насколько жесткая вода течет из водопроводной трубы. Тут даже не надо никаких «заумных» приборов: если после мытья ваша кожа становится сухой, от брызг воды на кафельной плитке появляются белые разводы, в чайнике появляется накипь, стиральная машина стирает медленнее, чем в начале эксплуатации – однозначно из крана течет жесткая вода. Все это может привести к выходу из строя нагревательных элементов, и, следовательно, самих чайников или стиральных машин.

Жесткая вода плохо растворяет различные моющие средства – от обычного мыла до супермодных стиральных порошков. В результате порошков приходится класть больше, но это помогает мало, так как кристаллы солей жесткости задерживаются в тканях, качество стирки оставляет желать лучшего. Все перечисленные признаки жесткости воды красноречиво говорят о том, что необходимо устанавливать умягчители воды.

Подключение и проверка ТЭНов

При подключении ТЭНа должен использоваться провод подходящего сечения. Здесь все зависит от тока, протекающего через ТЭН. Чаще всего известны два параметра. Это мощность самого нагревателя и напряжение питания. Для того, чтобы определить ток, достаточно разделить мощность на напряжение питания.

Простой пример. Пусть имеется ТЭН мощностью 1 КВт (1000 Вт) на напряжение питания 220 В. Для такого нагревателя получается, что ток составит

I = P/U = 1000/220 = 4,545A.

Согласно таблицам, размещенным в ПУЭ, такой ток может обеспечить провод сечением 0,5 мм2 (11 А), но с целью обеспечения механической прочности лучше применить провод сечением не менее 2,5 мм2. Как раз таким проводом чаще всего выполняется подвод электричества к розеткам.

Но перед тем, как производить подключение, следует убедиться в исправности даже нового, только что купленного ТЭНа. Прежде всего, надо измерить его сопротивление и проверить целостность изоляции. Сопротивление ТЭНа достаточно просто рассчитать. Для этого надо напряжение питания возвести в квадрат, и поделить на мощность. Например, для нагревателя мощностью 1000 Вт этот расчет выглядит так:

Такое сопротивление должен показать мультиметр при подключении его к выводам ТЭНа. Если же спираль оборвана, то, естественно, мультиметр покажет обрыв. Если взять ТЭН иной мощности, то сопротивление, естественно, будет другим.

Электрические нагревательные элементы

Проверка целостности изоляции

Для проверки целостности изоляции следует измерить сопротивление между любым из выводов и металлическим корпусом ТЭНа. Сопротивление наполнителя-изолятора таково, что на любом пределе измерений мультиметр должен показать обрыв. Если окажется, что сопротивление равно нулю, то спираль имеет контакт с металлическим корпусом нагревателя. Такое может случиться даже с новым, только купленным ТЭНом.

Вообще для проверки изоляции применяется специальный прибор мегаомметр, но не всегда и не у всех он есть под рукой. Так что вполне подойдет и проверка обычным мультиметром. Хотя бы такую проверку надо сделать обязательно.

Как уже было сказано, трубчатые электрические нагревательные элементы можно изгибать даже после наполнения изолятором. Существуют нагреватели самой разнообразной формы: в виде прямой трубки, U-образные, свернутые в кольцо, змейку или спираль. Все зависит от устройства нагревательного прибора, в который предполагается установить ТЭН. Например, в проточном водонагревателе стиральной машины применяются ТЭНы свитые в спираль.

Некоторые трубчатые электрические нагревательные элементы имеют элементы защиты. Самая простая защита это термопредохранитель. Уж если он сгорел, то приходится менять весь ТЭН, но до пожара дело не дойдет. Есть и более сложная система защиты, позволяющая использовать ТЭН после ее срабатывания.

Одной из таких защит является защита на основе биметаллической пластины: тепло от перегретого ТЭНа изгибает биметаллическую пластину, которая размыкает контакт и обесточивает нагревательный элемент. После того, как температура снизится до допустимого значения, биметаллическая пластина разгибается, контакт замыкается и ТЭН снова готов к работе.

Трубчатые электрические нагревательные элементы с терморегулятором

При отсутствии горячего водоснабжения приходится пользоваться бойлерами. Конструкция бойлеров достаточно проста. Это металлическая емкость, спрятанная в «шубу» из теплоизолятора, поверх которого находится декоративный металлический корпус. В корпус же врезан термометр, показывающий температуру воды. Конструкция бойлера показана на рисунке.

Электрические нагревательные элементы

Бойлер накопительного типа

Некоторые бойлеры содержат магниевый анод. Его назначение защита от коррозии нагревателя и внутреннего бака бойлера. Магниевый анод является расходным материалом, его приходится периодически менять при обслуживании бойлера. Но в некоторых бойлерах, видимо, дешевой ценовой категории, такая защита не предусмотрена.

В качестве нагревательного элемента в бойлерах применяется ТЭН с терморегулятором, конструкция одного из них показана ниже.

Электрические нагревательные элементы

ТЭН с терморегулятором

В пластмассовой коробке расположен микровыключатель, который срабатывает от жидкостного термодатчика (прямая трубка рядом с ТЭНом). Форма собственно ТЭНа может быть самой разнообразной, на рисунке показана самая простая. Все зависит от мощности и конструкции бойлера. Степень нагрева регулируется за счет положения механического контакта, управляемого белой круглой рукояткой, расположенной внизу коробки. Здесь же находятся клеммы для подвода электрического тока. Крепление нагревателя производится при помощи резьбы.

Мокрые и сухие ТЭНы

Подобный нагреватель находится в непосредственном контакте с водой, поэтому такой ТЭН называют «мокрым». Срок службы «мокрого» ТЭНа находится в пределах 2…5 лет, после чего его приходится менять. В общем-то, срок службы невелик.

Для увеличения срока службы нагревательного элемента и всего бойлера в целом французской компанией Atlantic в 90-х годах прошлого века была разработана конструкция «сухого» ТЭНа. Если сказать проще, то нагреватель был спрятан в металлическую защитную колбу, исключающую прямой контакт с водой: нагревательный элемент греется внутри колбы, которая передает тепло воде.

Естественно, что температура колбы намного ниже, чем собственно ТЭНа, поэтому образование накипи при той же жесткости воды происходит не столь интенсивно, в воду передается большее количество тепла. Срок службы таких нагревателей достигает 10…15 лет. Сказанное справедливо для хороших условий эксплуатации, прежде всего стабильности напряжения питания. Но даже и в хороших условиях «сухие» ТЭНы тоже вырабатывают свой ресурс, и их приходится менять.

Вот здесь обнаруживается еще одно достоинство технологии «сухого» ТЭНа: при замене нагревателя нет никакой необходимости сливать воду из бойлера, для чего следует отключать его от трубопровода. Достаточно просто вывернуть нагреватель и заменить его на новый.

Компания Atlantic, конечно же, запатентовала свое изобретение, после чего стала продавать лицензию другим фирмам. В настоящее время бойлеры с «сухим» нагревательным элементом выпускают и другие фирмы, например, Electrolux и Gorenje. Конструкция бойлера с «сухим» ТЭНом показана на рисунке.

Электрические нагревательные элементы

Бойлер с «сухим» нагревателем

Кстати, на рисунке показан бойлер с керамическим стеатитовым нагревателем. Устройство такого нагревателя смотрите ниже.

Электрические нагревательные элементы

Керамический нагреватель

На керамическом основании закреплена обычная открытая спираль из проволоки с высоким сопротивлением. Температура нагрева спирали достигает 800 градусов и передается в окружающую среду (воздух под защитной оболочкой) конвекцией и теплоизлучением. Естественно, что такой нагреватель применительно к бойлерам может работать только в защитной оболочке, в воздушной среде, прямой контакт с водой попросту исключен.

Спираль может быть намотана в несколько секций, о чем говорит наличие нескольких клемм для подключения. Это позволяет менять мощность нагревателя. Максимальная удельная мощность подобных нагревателей не превышает 9 Вт/см 2 .

Условием нормальной работы такого нагревателя является отсутствие механических нагрузок, изгибов и вибраций. На поверхности не должно быть загрязнений в виде ржавчины и масляных пятен. И, конечно же, чем более стабильным будет напряжение питания, без выбросов и скачков, тем более долговечна работа нагревателя.

Но электротехника не стоит на месте. Технологии развиваются, усовершенствуются, поэтому кроме ТЭНов в настоящее время разработаны и успешно применяются самые разнообразные электрические нагревательные элементы. Это керамические нагревательные элементы, карбоновые нагревательные элементы, инфракрасные нагревательные элементы, но это будет темой для другой статьи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *