Почему магнитопроводы высокочастотных трансформаторов прессуют из ферромагнитного порошка
Перейти к содержимому

Почему магнитопроводы высокочастотных трансформаторов прессуют из ферромагнитного порошка

  • автор:

 

Большая Энциклопедия Нефти и Газа

Подвижный ферромагнитный магнитопровод выполняется в виде вала 4 с диском 5 в средней части. Эти секции выполнены в виде упругой токопро-водящей, изолированной снаружи пружины с равномерным распределением витков в полости между внешним и внутренним цилиндрическими магнитопроводами. Секции обмотки возбуждения соединены последовательно и встречно, а измерительной — последовательно и согласно. При вращении подвижной части магнитопровода в ту или иную сторону происходит наматывание или разматывание секций этих обмоток вокруг ферромагнитного вала, что приводит к изменению числа витков обмоток, приходящихся на единицу длины магнитопровода в продольном направлении.  [2]

Применение ферромагнитных магнитопроводов позволяет резко снизить размеры реактора. Однако при больших токах происходит насыщение магнитопроводов и уменьшение индуктивности, что уменьшает токоограничивающии эффект реактора.  [3]

Представим себе замкнутый ферромагнитный магнитопровод , на котором расположена катушка, содержащая w витков. Если по виткам катушки течет ток i, то вокруг нее возникает магнитное поле, которое можно характеризовать магнитными силовыми линиями.  [4]

Периодическое перемагничивание ферромагнитного магнитопровода вызывает в нем потери из-за гистерезиса и вихревых токов. Для уменьшения последних магнитопроводы выполняются из изолированных между собой листов стали, а также из смеси ферромагнитного порошка с изолирующим материалом и из ферритов.  [5]

Можно придать вращающемуся ферромагнитному магнитопроводу 2 такую форму, чтобы зависимость магнитного потока от угла поворота имела синусоидальный, трапецеидальный или логарифмический закон изменения.  [7]

Когда обмотка имеет ферромагнитный магнитопровод , то, не учитывая потоков рассеяния, можно считать, что один и тот же магнитный поток Ф сцеплен со всеми витками w катушки.  [8]

Только катушки без ферромагнитного магнитопровода обладают неизменной индуктивностью, а остальные — переменной индуктивностью, зависящей от значения переменного тока в обмотке катушки, от изменяемой конфигурации магнитной цепи, а также от величины постоянного тока, подмагничивающего магнитопровод катушки.  [9]

В трансформаторах с ферромагнитным магнитопроводом потоки ФВ1 и Фв2 относительно малы.  [10]

В трансформаторах с ферромагнитным магнитопроводом потоки фя1 и Ф з относительно малы.  [11]

Если обмотку с ферромагнитным магнитопроводом включить в цепь какого-либо приемника, то, изменяя длину воздушного зазора, можно регулировать ток, напряжение и мощность приемника. Однако необходимость изменения длины воздушного зазора приводит к усложнению конструкции и затрудняет автоматизацию процесса регулирования.  [12]

Как изменится магнитный поток ферромагнитного магнитопровода , если, не изменяя намагничивающей силы, пропилить в нем воздушный зазор.  [13]

Реакторы могут выполняться с ферромагнитными магнитопроводами .  [15]

Трансформаторы

Трансформатор это статический электромагнитный аппарат, который преобразует параметры электрической энергии напряжения переменного тока и представляет собой магнитопровод с одной или несколькими обмотками.

Конструкция однофазного трансформатора изображена на рисунке 1.1, где W1, W2 – первичная и вторичная обмотки соответственно; Ф0 — основной магнитный поток ; ФS1, ФS2 — потоки рассеяния первичной и вторичной обмоток.

Рисунок 1.1 – Конструкция однофазного трансформатора

Принцип действия трансформатора основан на законе электромагнитной индукции. При протекании в первичной обмотке тока магнитный поток в основном замыкается по сердечнику, в первичной цепи возникает ЭДС самоиндукции, а во вторичной цепи ЭДС — взаимоиндукции: где Ψ – потокосцепление. Если напряжение, приложенное к первичной обмотке изменяется по гармоническому закону, то отсюда следует основная формула трансформаторной ЭДС:

(1.1)

В современной электротехнике источником переменного напряжения часто являются инверторы, при этом выражение для ЭДС ( любой обмотки) при прямоугольной форме напряжения (меандр) определяется выражением:

(1.2)

Приведем уравнение ЭДС к общему виду для любой формы напряжения (см. табл. 1.1). Для этого введем значение коэффициента формы kф, который определяет связь между действующим и средним значениями напряжения: kф=Е/Еср. Для учета конструктивных особенностей сердечника трансформатора вводится понятие коэффициента заполнения сечения сердечника ферромагнитным материалом Kмаг, который учитывает активную площадь магнитного материала в сечении сердечника Sмаг.ак = Sмаг. ×Kмаг . . Под активной площадью сердечника Sмаг.ак понимается не геометрическое, а чистое сечение магнитного материала.

Для борьбы с вихревыми токами сердечник изготавливается из пластин или лент с изоляционным покрытием, поэтому коэффициент заполнения находится в пределах Kмаг = 0,8…1. Тогда выражение для ЭДС трансформатора принимает вид:

(1.3)

Таблица 1.1 – Значение коэффициента формы

В зависимости от конфигурации сердечника, однофазные силовые трансформаторы делят на броневые, стержневые и тороидальные (рис. 1.2).

Рисунок 1.2. – Основные типы магнитопроводов

Броневые сердечники используются при мощности менее 150 В×А и частоте до 8 кГц, стрежневые – при мощности 150…800 В×А на таких же частотах, тороидальные – при мощности до 250 В×А и частоте свыше 8 кГц. В броневом сердечнике трансформатора основной магнитный поток раздваивается, что приводит к увеличению потока рассеяния. Расположение обмоток на одном (среднем) стержне трансформатора защищает обмотки от механических воздействий и электромагнитных помех. Такая конструкция обладает наибольшим рассеиванием основного потока (), поэтому используется при малых мощностях. В стержневом сердечнике трансформатора для улучшения сцепления обмоток первичную и вторичную обмотки располагают на двух стержнях. В такой конструкции поток рассеяния меньше, чем в броневом трансформаторе. Тороидальная конструкция сердечника обладает наименьшим потоком рассеяния, благодаря круговой траектории силовой линии основного магнитного потока Ф0 и хорошему сцеплению обмоток (из-за намотки по всему тороиду). Ограничение по мощности связано с плохим охлаждением сердечника и технологическими трудностями изготовления. Поперечное сечение тороида и стержней приближают к округлой форме, что позволяет экономить материал сердечника.

Сердечники трансформатора изготавливаются из ленточной стали, пластин или прессуют из ферромагнитного порошка. Низкочастотные трансформаторы выполняются из горячекатаной или холоднокатанной (анизотропной и изотропной) стали (рис. 1.3).

Рисунок 1.3 – Конструкции сердечников

Маркировка электротехни­ческой стали состоит из четырёх цифр, например такие марки: 1511, 1512, 3411, 3412, 3413 и др. Первая цифра показывает класс стали по структурному состоянию и виду проката: 1 — горячекатанная, изотропная, 2 — холоднокатанная изотропная, 3 — холоднокатанная анизотропная; вторая цифра – процентное содержание кремния, присадка которого делает сталь более хрупкой и увеличивает элек­трическое сопротивление; третья – удельные потери (Вт/кг); четвертая — порядковый номер разработки. Холоднокатанная сталь обладает высокой магнитной проницаемостью и малыми удельными потерями. В анизотропной холоднокатанной стали направление проката диктует направление силовой линии магнитного потока () потому, что в перпендикулярном направлении ухудшаются магнитные свойства стали. Горячекатанная сталь более экономична, но имеет более высокие удельные потери и низкую магнитную проницаемость (mд).

В высокочастотных трансформаторах в качестве материала сердечников используют: ферриты и магнитодиэлектрики.

Ферриты – это поликристаллические многокомпонентные соединения, общая химическая формула которых MeFe2О3 (где Me – какой-либо ферромагнетик, например, Мn, Zn, Ni). Их формируют в сердечники путём спекания при высокой температуре и давлении. Ферриты обладают высокими значениями собственного омического сопротивления, превышающего сопротивление сталей более чем в 50 раз. Наибольшее распространение в силовой технике получили низкочастотные марганец-цинковые ферриты (НМ) и никель-цинковые ферриты (НН). При выборе между ними предпочтение, конечно, следует отдать ферритам марки НМ, поскольку они имеют более высокую температуру Кюри. Потери на гистерезис у марганец — цинковых ферритов на порядок меньше, чем у никель-цинковых. Ферриты НМ обладают высокой стабильностью к воздействию механических нагрузок. Ферриты НМС предназначены для силовых цепей. Однако, омическое сопротивление ферритов НМ меньше, чем ферритов НН, поэтому последние могут применяться для работы на более высоких частотах.

Магнитодиэлектрики состоят из мелкозернистого ферромагнитного порошка и связующего диэлектрического материала на основе полистирола. Частицы ферромагнетика изолированы друг от друга диэлектрической средой, являющейся одновременно и механической связкой всей системы. Магнитная проницаемость магнитодиэлектриков невелика (от нескольких единиц до сотен) поэтому параметры магнитодиэлектриков мало зависят от внешних полей. Распространены три основные группы магнитодиэлектриков: альсиферы, карбонильное железо и прессованный пермаллой (прессперм). Основу магнитного наполнителя альсиферов составляет тройной сплав Al-Si-Fe. Выпускается несколько марок альсиферов с проницаемостью от 22 до 90, предназначенных для работы в интервале температур от -60 до +120 °С. Буквы в названии марок означают: ТЧ — тональная частота, ВЧ — высокая частота, К — с компенсированным температурным коэффициентом магнитной проницаемости. Параметры альсиферов приведены в табл. 1.2, где δп – коэффициент потерь на гистерезис.

Почему сердечники в трансформаторе делают из ферромагнитной стали

Почему сердечник трансформатора выполняют только из электротехнической стали ?

Электротехническими сталями зазывают металлы, используемые в производстве элементов электротехнического оборудования. Ответ на вопрос, почему сердечник трансформатора выполняют из электротехнической стали: она обладает характеристиками, которые дают возможность уменьшить сопротивление. Благодаря снижению сопротивления трансформатор тратит меньше энергии при передаче импульсов.

Состав и производство

Электротехническая сталь – это сплав железа и силицида железа (FeSi) в различных пропорциях:

  • горячекатаном сплаве до 3,3% FeSi (Э41, Э42, Э43);
  • в холоднокатаном сплаве до 4,5% FeSi (Э310, Э320, Э3ЗО).

Силицид выводит из железа кислород, снижающий магнитные свойства. Железо восстанавливается из окислов, образуется оксид кремния, который частично превращается в шлак. Одновременно цеменит (Fe3C) заменяется графитом. Иногда в процессе производства добавляется до 0,5% алюминия. Готовая продукция поставляется в виде тонких листов.

  • Э – электротехническая;
  • Первая цифра (содержание алюминия):
  • «1» – слаболегированная;
  • «2» – среднелегированная;
  • «3» – повышеннолегированная;
  • «4» – высоколегированная;
  • «А» – небольшие удельные потери;
  • 0 – холоднокатаная.

Горячекатаные сплавы в конце обработки подвергаются воздействию высокой температуры, позволяющей придать ей нужные параметры по толщине. Высокая температура способствует перестроению связей между молекулами, что влечет за собой снижение некоторых свойств.

У холоднокатаного сплава более высокая магнитная проницаемость, если она совпадает с направлением проката. Поперек показатель гораздо ниже, поэтому сердечник лучше производить так, чтобы линии смыкались, и использовать специальные методы сборки. Кроме того, холодная прокатка повышает механическую прочность и качество поверхности листов за счет образования кристаллографической текстуры. Ее качество зависят от степени обжатия, температуры обработки и толщины листа.

По этим причинам большинство производителей стараются выполняться сердечники из стали Э-3ЗОА, хотя ее себестоимость в 2 раза превышает себестоимость горячекатаного материала.

Эксплуатационные характеристики

При выборе сплава для изготовления сердечников учитывается:

  • показатель удельно сопротивления (способность удерживать и передавать напряжение);
  • коэрцитивная сила (напряжение магнитного поля, способность материала размагничиваться);
  • коэффициент магнитной проницаемости (соотношение между индукцией и напряжением магнитного поля);
  • толщина листа.

Коэрцитивная сила, удельное сопротивление, магнитная проницаемость должны быть максимальные.

Магнитопровод в трансформаторе концентрирует магнитные потоки, вызывающие вихревые электротоки. Сердечник трансформатора выполняется из электротехнической стали для того, чтобы их снизить. Достичь этой цели можно, если выполнять его из пластин толщиной 0,35-0,5 мм.

Технические характеристики холоднокатаной электротехнической стали:

  • высокая магнитная проницаемость;
  • высокое сопротивление, снижающее потери на нагрев;
  • низкие потери на гистерезис (размагничивание) и вихревые токи.

Листы хорошо штампуются, в магнитопроводе изолируются лаком или тонкой бумагой. Это полностью отвечает на вопрос, почему сталь холоднокатаная.

Магнитопроводы трансформаторов выполняются из электротехнической стали для улучшения их эксплуатационных характеристик. При добавлении в сплав кремния и холодной прокатке сталь становится практически идеальным материалом для производства элементов электрических приборов.

Источник статьи: http://otransformatore.ru/vopros-otvet/pochemu-serdechnik-transformatora-vypolnyayut-tolko-iz-elektrotehnicheskoj-stali/

Для чего нужен ферромагнитный сердечник

Ферромагнитный сердечник

Ферромагнитные сердечники 8 закреплены на чувствительном элементе и перемещаются вместе с ним. Датчик температуры 9 включен в схему термокомпенсации. Корпус вискозиметра устанавливают непосредственно в разрыв трубопровода, вследствие чего отпадает необходимость в дополнительном насосе, прокачивающем вискозу через прибор. [1]

Ферромагнитные сердечники , концентрируя магнитное поле в катушке и уменьшая сопротивление магнитному потоку, увеличивают этот поток, а соответственно и индуктивность катушки. Так как катушка работает в цепи переменного тока, массивный сердечник применять нельзя: в чем имеются пути для образования вихревых токов. Последние возникают как результат пересечения изменяющимся магнитным полем замкнутых участков поперечного сечения магнитопровода и резко увеличивают тепловые потери в сердечнике. Для устранения таких потерь сердечник делают из отдельных изолированных пластинок. [2]

Ферромагнитный сердечник в данном случае называют магнитопроводом. [4]

Ферромагнитный сердечник нужен для создания радиально-однород-ного магнитного поля в воздушном зазоре. [5]

Ферромагнитные сердечники часто подвергаются намагничиванию случайными магнитными полями и перемагничиваются в слабых переменных полях по смещенным циклам. [6]

Ферромагнитный сердечник меняет конфигурацию поля в зазоре. Поле перестает быть однородным, так что вычисление эдс несколько усложняется, но гармоническая зависимость от времени остается. [7]

Ферромагнитный сердечник может привести к нелинейной зависимости между величиной потока в сердечнике и полным намагничивающим током всех обмоток, надетых на сердечник. [8]

Ферромагнитные сердечники управляются магнитным полем. Внешнее поле, воздействующее на магнитное состояние сердечника, создается с помощью обмоток, по которым проходит ток. К основным статическим параметрам сердечника относятся коэрцитивная сила Яс, остаточная магнитная индукция Вг и коэффициент прямоугольности КП. Эти параметры можно определить по предельной статической петле гистерезиса ферромагнитного материала, которая является функцией В / () ( рис. 10.36), где В — магнитная индукция, а Н — напряженность равномерного постоянного или медленно изменяющегося внешнего магнитного поля. [9]

Ферромагнитный сердечник с нанесенными на него обмотками образует распространенный в импульсных устройствах элемент, называемый трансформатором. В зависимости от петли гистерезиса используемого сердечника и, что гораздо более важно, режима перемаг-ничивания этого сердечника, различают, в основном, два вида таких элементов: 1) запоминающий ( или накопительный) трансформатор; 2) импульсный трансформатор. [10]

Ферромагнитные сердечники с цсоои ус 0 простираются по направлению оси х в обе стороны до бесконечности. [11]

Ферромагнитный сердечник обычно выполняют из магнито-мягкого материала, магнитная характеристика которого — динамическая петля магнитного гистерезиса ( рис. 56, в, кривая 2) — отличается от статической ( кривая /) вследствие проявления инерционного действия вихревых токов. [12]

Ферромагнитные сердечники управляются магнитным полем. Внешнее поле, воздействующее на магнитное состояние сердечника, создается с помощью обмоток, по которым протекает ток. [13]

Ферромагнитный сердечник прибора ( лепесток) обладает нелинейной кривой намагничивания. Поэтому сила притяжения лепестка к катушке не прямо пропорциональна току, она нелинейно зависит от тока. [15]

О минерале, который притягивается к стальным изделиям, человечеству стало известно еще в 3 веке до нашей эры. Люди были поражены, но дальнейшего развития способов его применения не последовало. Второе рождение феррита произошло после открытия компаса. Кусок минерала, закрепленный на плавающей доске, всегда указывал в одну сторону, облегчая морякам поиск нужного направления.

Окончательное признание феррит получил после опубликования теории взаимодействия электрических и магнитных полей Фарадеем. Это позволило миру взглянуть по-новому на свойства и применение феррита. Так что же это за материал и почему он так интересен радиоэлектроникам.

Общая характеристика и химический состав

Ферриты представляют собой сплав оксида железа с оксидом другого ферромагнитного металла: медь, цинк, кобальт, никель и т. д. В промышленном применении наибольшее распространение получили следующие типы ферритов:

  • Никель-цинковый феррит. Имеют свойства высокого удельного электросопротивления, что делает их более выгодными в использовании на частоте от 500 КГц до 200 МГц.
  • Магний-марганцевый. Их применяют при работе со звуковыми частотами.
  • Марганцово — цинковый. Данный тип имеет наименьшие потери на вихревые токи.

Свойства и особенности

Это — полупроводники, свойства проводить ток которых повышается с увеличением температуры. Плотность ферритов зависит от марки, и колеблется в пределах от 4000 до 5000 кгм3. Ферриты обладают повышенными теплофизическими свойствами. Коэффициент тепловой проводимости равен 4,1 Вт/(м·К). Теплоемкость 600-900 Джкг*К.

Главным достоинством ферритовых сплавов является наличие повышенного удельного электросопротивления с сочетанием высоких магнитных свойств. Наиболее выгодным будет применение феррита при таких эксплуатационных характеристиках как малое значение индукции и высокие частоты.

При низких значениях частот повышается относительная диэлектрическая проницаемость феррита. При одновременном наличии высокой магнитной проницаемости это может привести к наложению волн друг на друга. Как результат возникает объемный резонанс, при котором вихревые токи увеличиваются в разы, а, следовательно, потери.

Ухудшение магнитных свойств в ферритах происходит по следующим причинам:

  • Механическое воздействие на ферритовый сплав. Образование трещин на поверхности магнитного сердечника может привести к смене знака магнитного поля. Особенно опасны силы, векторы которых направлены параллельно или перпендикулярно линиям магнитного поля.
  • Одновременное наложение постоянного и переменного полей. Происходит наложение частот друг на друга, что в результате увеличивает вероятность образования резонанса.
  • Выход за пределы рабочих температур согласно условиям эксплуатации приводит к возникновению остаточной магнитной проницаемости феррита. Также наблюдается нестабильность магнитных свойств в ферритах при долгом нахождении под воздействием плюсовой температуры.
  • Повышенная влажность может стать причиной изменения в феррите электропроводных свойств, которые, в свою очередь, способствуют увеличению потерь. Из-за этого ферриты, работающие при частоте выше 3 МГц и в условиях высокой влажности, требуют нанесения на их поверхность водоизолирующего материала.
  • Радиационное излучение сильно снижает магнитные характеристики и электрические свойства ферритов, особенно ферритных сплавов на основе марганца и цинка.

Феррит обладает незначительными механическими свойствами. Не отличаются ни прочностью, ни пластичностью.

Модуль упругости составляет в среднем 45 000 МПа. Модуль сдвига ферритовых сплавов 5500 МПа. Предел прочности на растяжение равен 120 МПа. На сжатие 900 МПа. Значение коэффициента Пуансона колеблется в пределах 0,25-0,45.

Виды применения

В силу вышеперечисленных свойств главным потребителем ферритов является радиоэлектроника. Применение определенного сплава феррита ограничивается значением критических частот, выход за пределы которых увеличивает потери и снижает эксплуатационные свойства, в частности магнитную проницаемость. Ферритовые сплавы по свойствам и применению делят на:

  • Общепромышленного применения (400НН,1000НМ, 1500 НМ). По своим магнитным свойствам относятся к ферритам высокой частоты. Магнитная проницаемость ферритовых сплавов колеблется в пределах от 100 до 4000. Такие ферритовые сердечники используются при частоте до 30 МГц. Также в их область применения входит изготовление сердечников магнитных антенн, трансформаторов и прочего оборудования, от которого не требуется повышенные свойства устойчивости к температурам.
  • Термически стабильные. Содержат в себе высокочастотные (20ВН,7ВН) и низкочастотные (1500НМ3, 1500НМ1) типы. Их главные свойства — высокая добротность и стабильная начальная магнитная проницаемость. Кроме того, указанные ферритные сплавы в эксплуатации отличаются такими свойствами как низкий относительный температурный коэффициент магнитной проницаемости. Низкочастотные ферриты нашли применение в работе со слабым полем и частоте до 2,9 МГц, а высокочастотные до 99 МГц. В основном они служат сырьем для броневых сердечников и сердечников для антенн.
  • Ферриты высокопроницаемые (6000НМ1, 6000НМ, 4000НМ). Отличительными свойствами являются повышенная начальная магнитная проницаемость при низкой частоте и высокая добротность. Вышеперечисленные ферритные сплавы применяют при изготовлении статических преобразователей и делителей напряжения. Магнитные свойства ферритов позволяют заменить в данных приборах дефицитные пермаллоевые сердечники.
  • Для телевизионной аппаратуры (4000НМС, 3500НМС1). Ферритовые сплавы этой категории имеют низкие потери при частоте, используемой в телевизионном оборудовании. Также среди их свойств выделяется повышенная магнитная индукция при высоком значении температур. Из данных ферритов изготавливают сердечники трансформаторов и сердечники спецузлов телевизора.
  • Ферриты импульсных трансформаторов (300ННИ, 300ННИ1). Особенность данных сплавов в их использовании — работа в режиме импульсного намагничивания. Главное применение ферритов – изготовление сердечников импульсных трансформаторов.
  • Для производства контуров радиотехнических приборов (10ВНП, 35ВНП). Своим применением в радиоэлектронике они обязаны таким свойствам как высокий показатель коэффициента перестройки по частоте и низким потерям при работе на частотах до 250 МГц. Основное их техническое применение – это сердечники контуров, настраиваемые подмагничиванием.
  • Для широкополосных трансформаторов. Объединяющие свойства – высокая добротность, низкое значение нелинейных искажений и более высокая точка Кюри. Самые популярные ферриты данной категории в использовании — 200ВНС, 90ВНС и 50ВНС. Их свойства позволили найти такое применение как изготовление сердечников широкополосных трансформаторов.
  • Для магнитных головок. Ферритовые сплавы данной категории производят на основе никель-цинковых ферритов: 500НТ и 1000НТ. Воздействие сердечников с носителем информации требует наличия в ферритах минимальной поверхности пористости.
  • Для магнитного экранирования. Сюда относятся 2 марки: 800ВНРП и 200ВНРП. Ферритные сердечники данных сплавов применяют в радиопоглощающих приборах для устранения радиопомех.
  • Для датчиков (1200НН, 1200НН1 и 1200НН2). Отличительные свойства приведенных ферритов – это повышенная термочувствительность и высокая магнитная проницаемость. Это позволило найти им применение при производстве термореле.

Ценообразование

Стоимость феррита определяется следующими свойствами:

  • Характеристики размера и формы. Сердечники 80х40х25 обойдутся примерно в 200 рублей.
  • Вид применения сердечника. Ферритные поглотители для камер стоят порядка 1000 – 4000 руб. Ферритовая игла для граммофона — около 400 руб.
  • Тип сплава, использующийся в ферритах. Содержание в феррите дорогостоящих металлов, таких как никель, повышает его стоимость.

Для увеличения индуктивности катушек их наматывают на замкнутые сердечники из ферромагнитного материала. В устройствах работающих на низких частотах для сердечников используют электротехническую сталь. При высоких частотах используются сердечники из спрессованного ферромагнитного порошка. Но независимо от конструкции и материала все катушки с ферромагнитным сердечником обладают рядом свойств и особенностей, которые мы рассмотрим. Для краткости в дальнейшем мы будем называть их просто катушками.

В основном катушки имеют конструкцию, показанную на рис. 1. На замкнутый сердечник из ферромагнитного материала различной формы и размеров наматываются проводники, по которым протекает переменный ток.

Протекающий ток создает вокруг катушки переменный магнитный поток, большая часть которого вследствие высокой магнитной проницаемости ферромагнетика замыкается по материалу Ф 0 . Существенно меньшая часть магнитного потока охватывает витки катушки, замыкаясь по воздуху, и образует т.н. поток рассеяния Ф s . Основной поток и поток рассеяния отличаются друг от друга не только количественно, но и принципиально. Поток рассеяния замыкается по среде, магнитная проницаемость которой не зависит от напряженности магнитного поля. Поэтому его величина линейно связана с величиной тока катушки. Основной поток замыкается по ферромагнетику, обладающему сильно выраженной нелинейной зависимостью магнитной проницаемости от напряженности поля и неоднозначной связью между ними. Все это делает невозможным общий точный анализ процессов в катушке и требует принятия допущений, позволяющих рассматривать катушку как объект с линейными характеристиками.

Переменный магнитный поток, пронизывающий материал сердечника, вызывает появление в массе материала ЭДС индукции. Так как все ферромагнетики относятся к проводникам, то под действием этой ЭДС в сердечнике возникают электрические токи ( i F рис. 2), протекающие по замкнутым контурам, расположенным в плоскостях перпендикулярных направлению магнитного потока, и называемые вихревыми токами или токами Фуко .

Вихревые токи создают свой магнитный поток, стремящийся, в соответствии с правилом Ленца, ослабить изменение основного потока. Поэтому они действуют размагничивающим образом , уменьшая основной поток.

Размагничивающее действие вихревых токов неодинаково в различных частях сердечника. Наиболее сильно оно выражено в центре сечения (рис. 2), т.к. центральные части охватываются максимальным числом контуров тока, МДС которых и создают размагничивающий поток. Поэтому в центре сечения плотность основного магнитного потока будет меньше, чем на краях, т.е. происходит вытеснение основного магнитного потока в наружные слои магнитопровода . Это явление выражено тем резче, чем выше частота магнитного потока и больше сечение, магнитная проницаемость и удельная проводимость материала сердечника.

Протекающий по материалу сердечника электрический ток вызывает его нагрев. Если это тепло не используется, то говорят о потерях на вихревые токи . В соответствии с законом Джоуля-Ленца, мощность расходуемая на нагрев равна I F 2 r , где I F — действующее значение вихревых токов, а r — сопротивление контура, по которому они замыкаются. Очевиднно, что эффективно снизить эти потери можно уменьшив ток. Это достигается увеличением удельного сопротивления материала и разделением его на отдельные изолированные друг от друга слои вдоль линий магнитного потока (рис. 2). Такое разделение на слои называется шихтованием магнитопровода.

Потери на вихревые токи можно определить, воспользовавшись понятием активной мощности переменного тока.

Пусть магнитопровод имеет форму параллелепипеда с длиной l , высотой h и толщиной d (рис. 3) и магнитный поток распространяется в направлении l . В плоскости перпендикулярной направлению вектора индукции B выделим элементарный замкнутый контур толщиной dx , стороны которого отстоят на расстоянии x от оси симметрии плоскости.

Если h >> d , то магнитный поток через поверхность, определяемую координатой x , будет Ф x = 2 xhB , а ЭДС, наводимая этим потоком в контуре dx — E x = 4 k f f Ф x max = 8 k f fhxB m 2 , где k f — коэффициент формы ЭДС. Сопротивление контура dx , при условии, что сопротивлением меньших сторон (вдоль d ) можно пренебречь, равно , где g — удельная проводимость материала магнитопровода. Тогда активная мощность, преобразуемая в тепло вихревыми токами P F , будет

Из выражения (1) следует, что потери на вихревые токи очень сильно (во второй степени) зависят от

  • толщины листа магнитопровода d ;
  • частоты переменного тока f ;
  • амплитуды индукции (плотности магнитного потока) B m .

Таким образом, уменьшение толщины листов пакета магнитопровода в два раза приведет к четырехкратному уменьшению потерь на вихревые токи.

Коэффициент x является константой для конкретного магнитопровода, пропорциональной удельной проводимости материала и зависящей также от геометрической формы и размеров поперечного сечения.

Кроме потерь на вихревые токи в сердечнике катушки существуют также потери, связанные с перемагничиванием материала в течение периода. В соответствии с формулой Штейнмеца, энергия теряемая на один полный цикл перемагничивания в единице объема вещества равна

где h — постоянный коэффициент, характеризующий данное вещество, B m — амплитуда индукции и n — показатель степени, зависящий от амплитуды индукции. Для значений индукции 0.1 B m n = 1.6, а для 0.1 > B m и 1.0 B m n = 2.

Отсюда мощность, расходуемая на перемагничивание или, иначе говоря, потери на гистерезис равны

Общие потери в магнитопроводе равны сумме потерь на вихревые токи и перемагничивание, т.е. P Fe = P F + P H . Если принять, что потери на гистерезис пропорциональны второй степени B m , то общие потери в магнитопроводе или, как говорят, «потери в железе» можно представить в виде

P Fe = ( h f + x f 2 ) B m 2 V

Зависимость потерь на вихревые токи P F и гистерезис P H от частоты переменного тока представлена на рис. 4. При низких частотах в магнитопроводе преобладают потери на гистерезис, а затем, по мере роста частоты, потери на вихревые токи резко возрастают и при высоких частотах становятся преобладающими. При работе сердечника на высокой частоте оказывается невозможным его шихтование, т.к. невозможно изготовить пластины или ленту такой толщины, чтобы потери были удовлетворительными. Поэтому для высокочастотных сердечников шихтование заменяют прессовкой мелкодисперсных гранул ферромагнетика, размер которых можно выбрать таким, чтобы вихревые токи не превышали требуемых значений.

Ферромагнитный материал сердечника катушки создает сильные искажения кривых тока и напряжения на ней. Гистерезисную петлю ферромагнетика B ( H ) можно преобразовать в подобную ей зависимость потокосцепления катушки от тока Y ( i ), пользуясь тем, что Y = BS и i = H / w .

Если катушка подключена к источнику синусоидальной ЭДС и напряжение на ней u = U m cos w t , то потокосцепление также синусоидальная функция времени. Построим кривую тока в катушке, пользуясь функцией Y ( i ) (рис. 5).

Для этого в каждый момент времени по значению Y определим с помощью петли Y ( i ) мгновенное значение тока в катушке i и отложим его на вертикальной линии ab , соответствующей рассматриваемому моменту времени.

Полученная кривая i ( t ) имеет сильные искажения. В ее спектре резко выражена третья гармоника. Если выделить первую гармонику i 1 (рис. 5) , то окажется, что синусоида потокосцепления отстает от нее на некоторый угол, называемый гистерезисным углом . Величина гистерезисного угла зависит от ширины петли гистерезиса, т.е. от потерь на перемагничивание. Если петлю гистерезиса заменить кривой намагничивания, то искажения кривой тока сохранятся, а гистерезисный угол будет равен нулю.

Если катушку подключить к источнику синусоидального тока i , то по петле i ( Y ) можно также по точкам для каждого момента времени построить кривую Y ( t ), а затем, продифференцировав ее, получить кривую u ( t ) (рис. 6).

Из рис. 6 следует, что при синусоидальном токе в катушке кривая падения напряжения на ней несинусоидальна и имеет ярко выраженную третью гармонику. Причем ее доля в спектре напряжения существенно больше, чем в спектре тока при синусоидальном напряжении.

При анализе электрических цепей с несинусоидальными токами и напряжениями их заменяют эквивалентными синусоидами, имеющими такое же действующее значение. Найдем связь между потокосцеплением катушки и протекающим в ней током при условии, что все функции синусоидальны, т.е.

u = U m cos w t ; Y = Y m sin w t ; i = I m cos( w t — φ ) .

Ток i отстает от падения напряжения на катушке u на некоторый угол φ , определяемый из равенства cos φ = P Fe /( UI ), а напряжение и потокосцепление находятся в квадратуре, т.к. u = d Y / dt .

i — I m sin w t sinφ = I m cos w t cosφ .

i 2 — 2 iI m sin w t sinφ + I m 2 sin 2 w t sin 2 φ = I m 2 cos 2 w t cos 2 φ

и, прибавляя к обеим частям I m 2 sin 2 w t cos 2 φ , с учетом того, что sin w t = Y / Y m , получим

Это выражение является уравнением эллипса с центром в начале координат. Таким образом, замена несинусоидальных кривых тока и напряжения означает замену истинной петли функции Y ( i ) эквивалентным эллипсом, площадь которого пропорциональна потерям энергии в магнитопроводе за один период .

Эллипсы функции Y ( i ) при замене несинусоидального тока и напряжения катушки приведены соответственно на рис. 7 а) и б).

Если сердечник катушки заменить проводящим неферромагнитным материалом, то в нем исчезнут потери на гистерезис, но останутся вихревые токи и связанные с ними потери. Кривые напряжения и тока в катушке при этом будут синусоидальными, а смещение их по фазе φ будет соответствовать величине потерь. Зависимость Y ( i ) в этом случае будет иметь форму эллипса. Следовательно, при наличии потерь на гистерезис графическая форма функции Y ( i ) представляет собой нечто среднее между эллипсом и гистерезисной петлей . При уменьшении частоты доля потерь на вихревые токи уменьшается и форма Y ( i ) приближается к гистерезисной петле. При увеличении частоты потери на вихревые токи быстро растут и форма петли Y ( i ) становится близкой к эллиптической.

После замены кривых напряжения и тока в катушке с ферромагнитным сердечником эквивалентными синусоидами можно построить для нее векторную диаграмму и соответствующую схему замещения.

Пусть магнитный поток в сердечнике катушки изменяется по закону Ф =Ф m sin w t , тогда наводимая этим потоком в катушке ЭДС e = — d Ф / dt будет отставать от него на 90 ° , а падение напряжения в катушке u 0 = — e — опережать поток Ф на такой же угол. При отсутствии потерь в магнитопроводе ток катушки имел бы только реактивную составляющую I р и совпадал бы по фазе с магнитным потоком. Катушка в этом случае обладала бы только реактивным сопротивлением x 0 = U 0 / I р или индуктивностью L 0 = x 0 / w (рис. 8 а)).

При наличии потерь на гистерезис и вихревые токи ток катушки будет иметь также активную составляющую I р , опережающую по фазе реактивную на 90 ° . Ее значение и соответствующее резистивное сопротивление можно определить из мощности потерь в магнитопроводе — I а = P Fe / U 0 ; r = U 0 / I а . При этом ток катушки будет отставать от напряжения на угол j , который можно определить из

cos j = sin a = P Fe /( U 0 I 0 ) ,

где a = p /2 — j , т.н. угол магнитного запаздывания. Так как угол магнитного запаздывания обычно мал, то в выражениях для x 0 и L 0 реактивную составляющую тока можно заменить на I 0 без существенной погрешности. Векторная диаграмма и схема замещения катушки с учетом потерь в сердечнике приведена на рис. 8 б).

Проводники катушки обладают конечным значением сопротивления r и протекающий по ним ток вызывает тепловые потери. Часть магнитного потока замыкается по воздуху, минуя сердечник, и создает т.н. поток рассеяния Ф s , который создает в катушке ЭДС самоиндукции. Учесть эти явления в векторной диаграмме и схеме замещения можно, дополнив их соответствующими элементами.

На резистивном сопротивлении катушки r возникает падение напряжения u r = ri 0 , совпадающее по фазе с током i 0 . Падение напряжения вызванное ЭДС самоиндукции u Ls = L s di / dt Û U Ls = jx s I 0 опережает ток i 0 на 90 ° , и может быть изображено на электрической схеме соответствующим индуктивным сопротивлением x s или индуктивностью L s . При этом напряжение на катушке кроме ЭДС, создаваемой основным магнитным потоком, должно уравновешивать также ЭДС самоиндукции, создаваемую потоком рассеяния, и падение напряжения на резистивном сопротивлении .

Векторная диаграмма для случая полного учета потерь в катушке с ферромагнитным сердечником и потока рассеяния и соответствующая ей схема замещения приведены на рис. 8 в). Резистивное сопротивление r учитывает тепловые потери в обмотке катушки, а r 0 — потери в магнитопроводе. Индуктивность L s соответствует потоку рассеяния катушки Ф s , а индуктивность L 0 — основному магнитному потоку Ф 0 .

Следует заметить, что на рис. 8 величина угла a и размеры векторов r I 0 и jx s I 0 для наглядности существенно увеличены, т.к. в действительности они составляют несколько процентов от напряжения U .

НОВОСТИ ФОРУМА
Рыцари теории эфира
01.10.2019 — 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
[center][Youtube]69vJGqDENq4[/Youtube][/center][center]14:36[/center]Osievskii Global News
29 сент. Отправлено 05:20, 01.10.2019 г.’ target=_top>Просвещение от Вячеслава Осиевского — Карим_Хайдаров.
30.09.2019 — 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
[center][Ok]376309070[/Ok][/center][center]11:03[/center] Отправлено 12:51, 30.09.2019 г.’ target=_top>Просвещение от Дэйвида Дюка — Карим_Хайдаров.
30.09.2019 — 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
[center][Youtube]VVQv1EzDTtY[/Youtube][/center][center]10:43[/center]

интервью Раввина Борода https://cursorinfo.co.il/all-news/rav.
мой телеграмм https://t.me/peshekhonovandrei
мой твиттер https://twitter.com/Andrey54708595
мой инстаграм https://www.instagram.com/andreipeshekhonow/

[b]Мой комментарий:
Андрей спрашивает: Краснодарская синагога — это что, военный объект?
— Да, военный, потому что имеет разрешение от Росатома на манипуляции с радиоактивными веществами, а также иными веществами, опасными в отношении массового поражения. Именно это было выявлено группой краснодарцев во главе с Мариной Мелиховой.

[center][Youtube]CLegyQkMkyw[/Youtube][/center]
[center]10:22 [/center]

Доминико Риккарди: Россию ждёт страшное будущее (хотелки ЦРУ):
https://tainy.net/22686-predskazaniya-dominika-rikardi-o-budushhem-rossii-sdelannye-v-2000-godu.html

Завещание Алена Даллеса / Разработка ЦРУ (запрещено к ознакомлению Роскомнадзором = Жид-над-рус-надзором)
http://av-inf.blogspot.com/2013/12/dalles.html

[center][b]Сон разума народа России [/center] [center][Youtube]CLegyQkMkyw[/Youtube][/center]
[center]10:22 [/center]

Открытый урок "трансформаторы"

Нажмите, чтобы узнать подробности

Основная цель урока: изучение типов трансформаторов, принципы действия, режимов работы, применение трансформаторов.

Цель методическая: показать методы активизации мыслительной деятельности студентов на основе использования информационных технологий.

Задачи урока:

— Знакомство студентов с классификацией трансформаторов.

-формирование знаний о конструкции и принципов действия однофазных и трехфазных трансформаторов

— познавательного интереса к процессу изучения трансформаторов

— воспитание сознательного применения полученных знаний в будущей профессиональной деятельность

— способность аналитического сравнения

Материально – технические обеспечения урока

— Презентация по вышеуказанной теме

— ПК, интерактивная доска, мультимедийный проектор

Межпредметные связи: математика, физика, детали машин, технологические оборудования.

Содержание урока

Ознакомление студентов с темой, целью и планом урока.

Повторение темы «Соединение обмоток, нагрузки звездой и треугольником», закона электромагнитной индукции, взаимоиндукции.

Объяснение новой темы

 

Просмотр презентации на интерактивной доске

Назначение и классификация трансформаторов

Принцип действия однофазного трансформатора. Коэффициент

Автотрансформаторы, измерительный трансформаторы

Режимы работы трансформаторов

Закрепление нового материала

— Назвать виды трансформаторов

— Назвать основные части трансформаторов

— Особенности применения трехфазных трансформаторов

— Выполнение итогового теста по теме «Трансформаторов»

— Фронтальная проверка теста

5. Задания на дом

6. Подведение итогов урока

Конспект урока

Электротехника – это область науки и техники, которая занимается изучением электрических и магнитный явлений и их использованием на практике.

Сегодня мы начинаем изучать новый раздел электротехники: «Трансформаторы».

Без трансформаторов представить сегодняшний день просто невозможно. Они практически применяются во всех отраслях промышленности.

Ваша работа на уроке будет оценена итоговым тестом.

Прежде чем приступить к изучению трансформаторов, вспомним следующие понятия:

Дать определение понятию взаимоиндукции

Что называется соединением звездой, треугольником?

Зависимость между линейным и фазными токами при соединении обмоток потребителей звездой и треугольником.

Одним из важнейших преимуществ переменного тока перед постоянным является легкость и простота, с которой можно преобразовать переменный ток одного напряжения в переменный ток другого напряжения. Достигается это посредством простого и остроумного устройства-трансформатора, созданного в 1876 г. Замечательным русским ученым Павлом Николаевичем Яблочковым.

П.Н. Яблочков предложил способ «дробления света» для своих свечей при помощи трансформатора. В дальнейшим конструкцию трансформаторов разрабатывал изобретатель И.Ф Усагин, который предложил применять трансформаторы для питания не только Свечей Яблочкова, но и других приемников.

В дальнейшем несколько конструкций однофазных трансформаторов с замкнутым магнитопроводом были созданы венгерскими электротехниками

О. Блати, М. Дери и К. Циперновским. Для развития трансформаторостроения и вообще электромашиностроения большое значение имели работы профессора А.г. Столетов по исследованию магнитных свойств стали и расчету магнитных цепей.

Важная роль в развитии электротехники принадлежит М.О. Доливо-Добровольскому. Он разработал основы теории многофазных и, в частности, трехфазных переменных токов и создал первые трехфазные электрические машины и трансформаторы. Трехфазный трансформатор современной формы с параллельными стержнями, расположенными в одной плоскости, был сконструирован им в 1891 г. С тех пор происходило дальнейшее конструктивное усовершенствования трансформаторов, уменьшалась их масса и габариты, повышалась экономичность. Основные положения теории трансформаторов были разработаны в трудах Е. Арнольда и М. Видмара.

В развитии теории трансформаторов и совершенствовании их конструкции большое значение имели работы советских ученых В.В. Корицкого, Л.М. Шотровского, Г.Н. Петрова, А.В. Сапожникова, А.В. Трамбицкого и др.

2. Основные понятия

Трансформатор представляет собой статический электромагнитный аппарат с двумя (или больше) обмотками, предназначенный чаще всего для преобразования переменного тока одного напряжения в переменный ток другого напряжения.

Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

При изготовлении трансформаторов бытового и промышленного назначения применяют стандартизованные термины и определения, обязательные для применения в документации всех видов, научно-технической и справочной литературе.

Ниже приведены несколько таких терминов и их определений

Трансформатор — статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.

Силовой трансформатор — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и установках, предназначенных для приема и использования электрической энергии. К силовым трансформаторам относятся трансформаторы трехфазные и многофазные мощностью кВ *А и более, однофазные мощностью 5 кВ *А и более.

Повышающий трансформатор — трансформатор, у которого первичной обмоткой является обмотка низшего напряжения.

Понижающий трансформатор- трансформатор, у которого первичной обмоткой является обмотка высшего напряжения.

Сигнальный трансформатор — трансформатор малой мощности, предназначенный для передачи, преобразования, запоминания электрических сигналов.

Автотрансформатор — трансформатор, две или более, обмотки которого гальванически связаны так, что имеют общую часть.

Импульсный сигнальный трансформатор – сигнальный трансформатор, предназначенный для передачи, формирования, преобразования и запоминания импульсных сигналов.

Коэффициент трансформации трансформатора малой мощности — отношение числа витков вторичной обмотки к числу витков первичной обмотки.

Магнитная индукция — векторная величина, характеризующая магнитное поле и определяющая силу, действующую на движущуюся заряженную частицу со стороны магнитного поля.

Магнитный поток — поток магнитной индукции.

Напряженность магнитного поля — векторная величина, равна геометрической разности магнитной индукции, деленной на магнитную постоянную, и намагниченности.

Индуктивная связь — связь электрических цепей посредством цепей магнитного поля.

Классификация трансформаторов

Трансформаторы можно классифицировать:

По признаку функционального назначения

Рассмотрим трансформаторы питания, их можно классифицировать

2. В зависимости от числа фаз преобразуемого напряжения

3. В зависимости от числа обмоток

4. В зависимости от конфигурации магнитопровода

5. В зависимости от мощности

6. В зависимости от способа изготовления магнитопровода

7. В зависимости от коэффициента трансформации

8. В зависимости от вида связи между обмотками

-с электромагнитной связью(с изолированными обмотками)

-с электромагнитной и электрической связью (со связанными обмотками)

9. В зависимости от конструкции всего трансформатора

10. В зависимости от назначения

-анодно-накальные и т.д.

11. В зависимости от рабочей частоты трансформаторы делят на трансформаторы:

-пониженной частоты (менее 50 Гц)

-промышленной частоты (50 Гц)

-повышенной промышленной частоты (400, 1000, 2000 Гц)

-повышенной частоты (до 10000 Гц)

Назначение трансформаторов и их применение

Трансформатор предназначен для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Увеличение напряжения осуществляется с помощью повышающих трансформаторов, уменьшение – понижающих.

Трансформаторы применяют в линиях электропередачи, в технике связи, в автоматике, в измерительной технике и других областях.

В соответствии с назначением различают: силовые трансформаторы для питания электрических двигателей и осветительных сетей; специальные трансформаторы для питания сварочных аппаратов, электропечей и других потребителей особого назначения; измерительные трансформаторы для подключения измерительных приборов.

По числу фаз трансформаторы делятся на одно- и трехфазные. Трансформаторы, используемые в технике связи, подразделяют на низко- и высокочастотные.

Расчетные мощности трансформаторов различны от долей вольт-ампер до десятков тысяч киловольт-ампер; рабочие частоты – от единиц герц до сотен килогерц.

Трансформатор – простой, надежный и экономичный электрический аппарат. Он не имеет движущихся частей и скользящих контактных соединений, его КПД достигает 99%. КПД трансформатора η, определяемый как отношение мощности на выходе P2 к мощности на входе P1 , зависит от нагрузки. Современные трансформаторы рассчитывают таким образом, что максимум КПД достигается при нагрузке, равной примерно половине номинального значения.

Устройства трансформатора

Трансформатор представляет собой замкнутый магнитопровод, на котором расположены две или несколько обмоток. В маломощных высокочастотных трансформаторах, используемых в радиотехнических схемах, магнитопроводом может являться воздушная среда.

Для уменьшения потерь на гистерезис магнитопровод изготовляют из магнитомягкого материала – трансформаторной стали, имеющей узкую петлю намагничивания. Для уменьшения потерь на вихревые токи в материал магнитопровода вводят примесь кремния, повышающую его электрическое сопротивление, а сам магнитопровод собирают из отдельных листов электротехнической стали толщиной 0,35-0,5 мм, изолированных друг от друга теплостойким лаком или специальной бумагой.

Различают трансформаторы стержневого и броневого типов.

Последний хорошо защищает обмотки катушек от механических повреждений. Верхнюю часть магнитопровода, называемую ярмом, крепят после насадки на стержень катушек (обмоток). Стержни и ярмо соединяют очень плотно, чтобы исключит воздушные зазоры на стыках. В маломощных трансформаторах находят широкое применение кольцевые магнитопроводы, которые собирают из штампованных колец или навивают из длинной ленты. В этих магнитопроводах отсутствует воздушный зазор, поэтому магнитный поток рассеяния мал. В трансформаторах, рассчитанных на повышенные частоты, кольцевые магнитопроводы часто прессуют из ферромагнитного порошка, смешанного с изоляционным лаком.

Обмотки трансформаторов изготовляют из медного провода и располагают на одном и том же или на разных стержнях, рядом или одну под другой. В последнем случае непосрелственно к стержню примыкает обмотка низшего напряжения, а поверх нее размещается обмотка высшего напряжения.

Обмотку трансформатора, к которой подводится напряжение питающей сети, называют первичной, а обмотку, к которой подсоединяется нагрузка,- вторичной. На сердечнике может быть размещено несколько вторичных обмоток с разным числом витков, что позволяет получить различные по значению вторичные напряжения.

При работе трансформатора за счет токов в обмотках, а также вследствие перемагничивания магнитопровода и вихревых токов выделяется теплота. Трансформаторы небольшой мощности (до 10до 10 кВ * ), для которых достаточно воздушного охлаждения, называют сухими.

В мощных трансформаторах применяют масленое охлаждение. Магнитопровод 1 с обмотками 2,3 размещается в баке 4, заполненном минеральным (трансформаторным) маслом. Масло не только отводит теплоту за счет конвекции или принудительной циркуляции, но и является хорошим диэлектриком (изолятором). Масляные трансформаторы надежны в работе и имеют меньшие размеры и массу по сравнению с сухими трансформаторами той же мощности. При изменении температуры объем масла меняется. При повышении температуры излишек масла поглощается расширителем 5, а при понижении температуры масло из расширителя возвращается в основной бак.

В тех случаях, когда требуется плавно изменять вторичное напряжение, применяют скользящий контакт для изменения числа витков обмотки (примерно так же, как это делается в ползунковых реостатах). Скользящий контакт широко используется в автотрансформаторах, рассчитанных на регулирование напряжения в небольших пределах (рис )

Принцип действия однофазного трансформатора.

Коэффициент трансформации.

Работа трансформатора основана на явлении взаимной индукции, которое является следствием закона электромагнитной индукции.

Рассмотрим более подробно сущность процесса трансформации тока и напряжения.

При подключении первичной обмотки трансформатора к сети переменного тока напряжением U1по обмотке начнет проходить ток I1, который создаст в магнитопроводе переменный магнитный поток Ф. Магнитный поток, пронизывая витки вторичной обмотки, индуцирует в ней ЭДС E2 которую можно использовать для питания нагрузки.

Поскольку первичная и вторичная обмотки трансформатора пронизываются одним и тем же магнитным потоком Ф, выражения индуцируемых в обмотке ЭДС можно записать в виде

Где f — частота переменного тока; w1 , w2— число витков обмоток.

Поделив одно равенство на другое, получим E2 /E1= w2 /w1= k

Отношение чисел витков обмоток трансформатора называют коэффициентом трансформации k

Таким образом, коэффициент трансформации показывает, как относятся действующее значение ЭДС вторичной и первичной обмоток.

На основание закона электромагнитной индукции можно написать

Поделив одно равенство на другое, получим e1/e2 = .

Следовательно, в любой момент времени отношение мгновенных значений ЭДС вторичной и первичной обмоток равно коэффициенту трансформации. Нетрудно понять, что это возможно только при полном совпадении по фазе ЭДС />и />.

Если цепь вторичной обмотки трансформатора разомкнута (режим холостого хода), то напряжение на зажимах обмотки равно ее ЭДС: U2 = E2, а напряжение источника питания почти полностью уравновешивается ЭДС первичной обмотки U E1. Следовательно, можно написать, что .

Таким образом, коэффициент трансформации может быть определен на основании измерений напряжения на входе и выходе ненагруженного трансформатора. Отношение напряжений на обмотках ненагруженного трансформатора указывается в его паспорте.

Учитывая высокий КПД трансформатора, можно полагать, что , где — мощность, потребляемая из сети; — мощность, отдаваемая в нагрузку.

Таким образом, , откуда = 1/k.

Отношение токов первичной и вторичной обмоток приближенно равно коэффициенту трансформации, поэтому ток I2 во сколько раз увеличивается (уменьшается), во сколько раз уменьшается (увеличивается)U2.

Трехфазные трансформаторы.

В линиях электропередачи используют в основном трехфазные силовые трансформаторы. Внешний вид, конструктивные особенности и компановка основных элементов этого трансформатора представлены на рис. Магнитопровод трехфазного трансформатора имеет три стержня, на каждом из которых размещаются две обмотки одной фазы.

Для подключения трансформатора к линиям электропередачи на крышке бака имеются вводы, представляющие собой фарфоровые изоляторы, внутри которых проходят медные стержни. Вводы высшего напряжения обозначают буквами A,B,C, вводы низшего напряжения a,b,c. Ввод нулевого провода располагают слева от ввода a и обозначают O.

Принцип работы и электромагнитные процессы в трехфазном трансформаторе аналогичны рассмотренным ранее. Особенностью трехфазного трансформатора является зависимость коэффициенту трансформации линейных напряжений от способа соединения обмоток.

Применяются главным образом три способа соединения обмоток трехфазного трансформатора: 1)соединение первичных и вторичных обмоток звездой; 2)соединение первичных обмоток звездой, вторичных — треугольником; 3)соединение первичных обмоток треугольником, вторичных – звездой.

Обозначим отношение чисел витков обмоток одной фазы буквой k, что соответствует коэффициенту трансформации однофазного трансформатора и может быть выражено через отношение фазных напряжений

Обозначим коэффициент трансформации линейных напряжений буквой с.

При соединении обмоток по схеме звезда — звезда

При соединении обмоток по схеме звезда – треугольник

При соединении обмоток по схеме треугольник – звезда

Таким образом, при одном и том же числе витков обмоток трансформатора можно в раза увеличить или уменьшить его коэффициент трансформации, выбирая соответствующую схему соединения обмоток.

Автотрансформаторы и измерительные трансформаторы.

Принципиальная схема автотрансформатора изображена на рис. У автотрансформатора часть витков первичной обмотки используется в качестве вторичной обмотки, поэтому помимо магнитной связи имеется электрическая связь между первичной и вторичной цепями. В соответствии с этим энергия из первичной цепи во вторичную передается как с помощью магнитного потока, замыкающегося по магнитопроводу, так и непосредственно по проводам.

Поскольку формула трансформаторной ЭДС применима к обмоткам автотрансформатора так же, как и к обмоткам трансформатора, коэффициент трансформации автотрансформатора выражается известными отношениями

Вследствие электрического соединения обмоток через часть витков, принадлежащую одновременно первичной и вторичной цепям, проходят токи и , которые направлены встречно и при небольшом коэффициенте трансформации мало отличаются друг от друга по значению. Поэтому их разность оказывается небольшой и обмотку можно выполнить из тонкого провода. Таким образом, при k = от 0,5 до 2 экономится значительное количество меди. При больших или меньших коэффициентах трансформации это преимущество автотрансформатора исчезает, так как та часть обмотки, по которой проходят встречные токи и уменьшается до нескольких витков, а сама разность токов увеличивается.

Электрическое соединение первичной и вторичной цепей повышает опасность при эксплуатации аппарата, так как при пробое изоляции в понижающем автотрансформаторе оператор может оказаться под высоким напряжением первичной цепи.

Автотрансформаторы применяют для пуска мощных двигателей переменного тока, регулирования напряжения в осветительных сетях, а также в других случаях, когда необходимо регулировать напряжение в небольших пределах.

Измерительные трансформаторы напряжения и тока используют для включения измерительных приборов, аппаратуры автоматического регулирования и защиты в высоковольтные цепи. Они позволяют уменьшить размеры и массу измерительных устройств, повысить безопасность обслуживающего персонала, расширить пределы измерения приборов переменного тока.

Измерительные трансформаторы напряжения служат для включения вольтметров и обмоток напряжения измерительных приборов. Поскольку эти обмотки имеют большое сопротивление и потребляют маленькую мощность, можно считать, что трансформаторы напряжения работают в режиме холостого тока.

Измерительные трансформаторы тока используют для включения амперметров и токовых катушек измерительных приборов. Эти катушки имеют очень маленькое сопротивление. Поэтому трансформаторы тока практически работают в режиме короткого замыкания.

Результирующий магнитный поток в магнитопроводе трансформатора равен разности магнитных потоков, создаваемых первичной и вторичной обмотками. В нормальных условиях работы трансформатора тока он невелик. Однако при размыкании цепи вторичной обмотки в сердечнике будет существовать только магнитный поток первичной обмотки, который значительно превышает разностный магнитный поток. Потери в сердечнике резко возрастут, трансформатор перегреется и выйдет из строя. Кроме того, на концах оборванной вторичной цепи появится большая ЭДС, опасная для работы оператора. Поэтому трансформатор тока нельзя включить в линию без подсоединенного к нему измерительного прибора. Для повышения безопасности обслуживающего персонала кожух измерительного трансформатора должен быть тщательно заземлен.

Области применения трансформаторов.

Трансформаторы широко применяются для следующих целей:

1.1 Для передачи и распределения электрической энергии.

В настоящее время для высоковольтных линий электропередач применяются силовые трансформаторы с масляным охлаждением напряжением 330, 500 и 750 кВ, мощностью до 1200-1600 МВ*А.

2.2 Для обеспечения нужной схемы включения вентилей в преобразовательных устройствах и согласования напряжения на входе и выходе преобразователя.

Трансформаторы, применяются для этой цели, называются преобразовательными. Их мощность достигает тысячи киловольт-ампер, напряжение 110 кВ; они работают при частоте 50 Гц и более.

Рассматриваемые трансформаторы выполняют одно-, трёх- и многофазными с регулированием выходного напряжения в широких пределах и без регулирования.

3.3 Для различных технологических целей: сварки (сварочные трансформаторы), питание электротермических установок (электропечные трансформаторы) и др. Мощность их достигает десятков тысяч киловольт-ампер при напряжение до 10 кВ; они работают обычно при частоте 50 Гц.

4.4 Для включения электроизмерительных приборов и некоторых аппаратов, например реле, в электрические цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопасности.

Трансформаторы, применяемые для этой цели, называются измерительными. Они имеют сравнительно большую мощность, определяемую мощность, потребляемой электроизмерительными приборами, реле и др.

5.5 Для питания различных цепей радио- и телевизионной аппаратуры; для разделения электрических цепей различных элементов этих устройств; для согласования напряжений и т.п.

Трансформаторы, используемые в этих устройствах, обычно имеют малую мощность (от нескольких вольт-ампер до нескольких киловольт-ампер), невысокое напряжение, работают при частоте 50 Гц и более. Их выполняют двух-, трех- и многообмоточными; условия работы, предъявляемые к ним требования и принципы проектирования весьма специфичны.

Как правило, трансформаторы питания изготавливаются комбинированными, т.е. позволяющими снимать несколько напряжений; при этом первичная обмотка (сетевая) может быть выполнена в виде одной обмотки с двумя отводами или двух одинаковых обмоток с одним отводом в каждом из них. Во втором варианте первичная обмотка на различные напряжения (110, 127 или 220 В) переключается специальным сетевым переключателем.

Повышающая обмотка трансформаторы питания выполняется со средним выводом при использовании двухполупериодного выпрямителя на двух диодах и без среднего вывода для мостовой схемы выпрямителя.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *