Что такое mosfet транзистор
MOSFET-транзистор, определение и типы
MOSFET-транзисторы – полевые транзисторы с изолированным затвором. Расшифровка аббревиатуры — Metal-Oxide-Semiconductor (металл – окисел – полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем) Вообще класс полевых транзисторов включает полупроводниковые приборы, управляемые внутренним полем. Внутреннее поле создается напряжением, поэтому полевые транзисторы, в отличие от биполярных транзисторов управляются напряжением! Именно это свойство обеспечивает широкое применение полевых транзисторов.
Ключевыми преимуществами MOSFET-транзисторов являются:
— малая энергия на переключение транзисторы (фактически нужно только перезарядить емкость затвора);
— высокая скорость переключения;
— во включённом состоянии представляет собой омическое сопротивление.
MOSFET-транзисторы как и биполярные транзисторы имеют две основных типа структуры: n-канальные и p-канальные.
Не вдаваясь во внутренние подробности строения MOSFET транзисторов укажем основные отличия в принципе управления:
— n-канальный MOSFET-транзистор открывается положительной полярностью напряжения затвор-исток, и в открытом состоянии пропускает ток от стока к истоку;
— p-канальный MOSFET-транзистор открывается отрицательной полярностью напряжения затвор-исток, и в открытом состоянии пропускает ток от истока к стоку.
По той же причине, что и в биполярных транзисторах, n-канальные MOSFET-транзисторы шустрее p-канальных MOSFET-транзисторов.
Условные обозначения транзисторов n-канального и p-канального MOSFET-транзисторов представлены на рисунке MOSFET.1.
Рисунок MOSFET.1 — Условные обозначения MOSFET транзисторов
Особенности MOSFET-транзисторов. Реверсный диод в составе MOSFET-транзистора
MOSFET-транзистор в открытом состоянии фактически представляет собой сопротивление. То есть падение напряжения на транзисторе зависит только от его тока. Это очень важное отличие от биполярного транзистора и IGBT-транзистора, всегда имеющих некоторое падение напряжение в открытом состоянии.
В закрытом состоянии сопротивление MOSFET-транзистора составляет десятки-сотни МОм. В открытом – от единиц Ом до единиц миллиОм. Впрочем, сопротивление MOSFET-транзистора в открытом состоянии непостоянно – оно несколько увеличивается с ростом тока. Как правило, не более чем 20-25% при изменении тока от минимального значения до максимального.
Необходимо отметить, что из-за особенностей внутренней структуры MOSFET-транзистор имеет в своем составе паразитный обратный диод, включенный параллельно стоку-истоку, который иногда приводят в условном обозначении транзистора (рисунок MOSFET.2). Если быть до конца точным, то паразитный диод является следствием паразитного транзистора присутствующего в конструкции MOSFET-транзистора. При изготовлении база транзистора электрически соединяется с истоком и коллекторный переход выполняет роль обратного диода.
Рисунок MOSFET.2 — Эквивалентные схемы внутренней структуры MOSFET-транзистора
Падение напряжения на обратном диоде составляет 0,6-0,8 В, что меньше падения напряжения на обычном кремниевом p-n диоде (рисунок MOSFET.3). Именно по этой причине параллельное включение внешних обратных диодов бессмысленно. Ложку дегтя еще добавляет и то, что этот диод достаточно медленный, то есть достаточно долго (порядка 0,3-1 мкс) переходит в непроводящее состояние при смене полярности тока. Существуют схемотехнические способы обойти этот диод например путем последовательного включения в цепь стока диода Шоттки и «обходного» быстродействующего диода включаемого параллельно цепи транзистора и диода.
Рисунок MOSFET.3 — Реверсный диод в составе MOSFET-транзистора
Достаточно подробно про внутреннюю структуру MOSFET-транзисторов изложено в [Энциклопедия устройств на полевых транзисторах. Дьяконов В.П.,Максимчк А.А.,Ремиев А.М.,Смердов В.Ю. СОЛОН-Р. 2002. 512 с.].
Применение MOSFET-транзисторов
Области использования MOSFET-транзисторов:
— в импульсных преобразователях и стабилизаторах;
— в генераторных устройствах;
— в усилительных каскадах (особенно в звуковых Hi-Fi усилителях);
— в твердотельных реле;
— в качестве элемента логических схем.
Основные преимущества MOSFET-транзисторов проявляются при их использовании в качестве ключевых элементов.
При всех преимуществах MOSFET-транзисторы достаточно «нежные» существа: боятся статического электричества, разрушаются при перегреве свыше 150 °С. Из этого следует то, что полевые транзисторы более критичны к перегреву при пайке по сравнению с биполярными, а также то, что с ними целесообразно работать при условии защиты от статического электричества.
Основные параметры MOSFET-транзистора
Ниже перечислены основные параметры MOSFET-транзистора данные на которые приводятся в справочных листках — datasheet-ах:
1. Максимальное напряжение сток-исток (Drain-Source Voltage) VDS – максимально допустимое напряжение между стоком и истоком транзистора.
2. Сопротивление сток-исток RDS – сопротивление между стоком и истоком в открытом состоянии. При заданном напряжении затвор-исток. И токе стока.
3. Максимальное напряжение затвор-исток (Gate-Source Voltage) VGS – максимальное управляющее напряжение затвор-исток. При превышении этого напряжения возможен пробой затворного диэлектрика и выход транзистора из строя.
4. Максимальный ток стока в непрерывном режиме (Continuous Drain Current) ID – максимальная величина постоянно протекающего тока стока в непрерывном режиме. Зависит от температуры корпуса транзистора и условий теплоотвода.
5. Максимальный импульсный ток стока (Pulsed Drain Current) IDM — максимальная величина импульсного тока стока. Зависит от коэффициента заполнения, условий теплоотвода. Принципиально ограничивается энергией рассеивания кристалла.
6. Энергия рассеивания кристалла (Single Pulse Avalanche Energy) EAS – максимальная энергия, которая может быть рассеяна на кристалле транзистора без его разрушения.
7. Максимальная рассеиваемая мощность (Maximum Power Dissipation) PD – максимальная тепловая мощность, которая может быть отведена от корпуса транзистора (при заданной температуре корпуса транзистора).
8. Диапазон рабочих температур — диапазон температур, в пределах которого допускается эксплуатация транзистора.
8. Тепловое сопротивление транзистор-воздух RthJA (Maximum Junction-to-Ambient) — максимальное тепловое сопротивление транзистор-воздух (при условии свободного конвективного теплообмена).
9. Тепловое сопротивление корпус транзистора – теплоотвод (Case-to-Sink, Flat, Greased Surface) RthCS — максимальное тепловое сопротивление перехода корпус транзистора – теплоотвод. При условии плоской блестящей поверхности теплоотвода.
10. Тепловое сопротивление корпус транзистора (Maximum Junction-to-Case (Drain) RthJC — максимальное тепловое сопротивление кристалл — корпус транзистора.
11. Пороговое напряжение затвор-исток (Gate-Source Threshold Voltage) VGS(th) — пороговое напряжение затвор-исток, при котором начинается переход транзистора в проводящее состояние.
12. Ток утечки стока (Zero Gate Voltage Drain Current) IDSS – ток стока выключенного транзистора (при нулевом напряжении затвор-исток). Значительно зависит от температуры.
13. Ток утечки затвора (Gate-Source Leakage) IGSS – ток через затвор при некотором (как правило максимальном) напряжении затвор-исток.
14. Входная емкость (Input Capacitance) Ciss – суммарная емкость затвор-исток и емкость затвор-сток (при некотором напряжении сток-исток).
15. Выходная емкость (Output Capacitance) Coss – суммарная емкость затвор-сток и емкость сток-исток.
16. Проходная емкость (Reverse Transfer Capacitance) Crss – емкость затвор-сток.
17. Общий заряд затвора (Total Gate Charge) Qg – суммарный заряд затвора, необходимый для перевода транзистора в проводящее состояние.
18. Заряд затвор-исток (Gate-Source Charge) Qgs – заряд емкости затвор-исток.
20. Заряд затвор-сток (Gate-Drain Charge) Qgd — заряд емкости затвор-сток.
21. Время задержки включения (Turn-On Delay Time) td(on) – время за которое транзистор накапливает заряд до напряжения на затворе, при котором транзистор начинает открываться.
22. Время роста тока через транзистор (Rise Time) – время, за которое происходит нарастание тока стока транзистора от 10% до 90%.
23. Время задержки выключения (Turn-Off Delay Time) td(off) – время за которое заряд затвора становится меньшим заряда включения, и транзистор начинает закрываться.
24. Время спада тока через транзистор (Fall Time) — время, за которое происходит спад тока стока транзистора от 10% до 90%.
25. Индуктивность вывода стока (Internal Drain Inductance) LD – паразитная индуктивность вывода стока транзистора.
26. Индуктивность вывода истока (Internal Source Inductance) LS – паразитная индуктивность вывода истока транзистора.
27. Постоянный прямой ток через обратный диод (Continuous Source-Drain Diode Current) IS – максимальное значение постоянно протекающего прямого тока через паразитный p-n диод.
28. Импульсный ток через обратный диод (Pulsed Diode Forward Current) ISM – максимальное значение постоянно протекающего прямого тока через паразитный p-n диод.
29. Падение напряжения на диоде (Body Diode Voltage) VSD – прямое падение напряжения на диоде. При заданных температуре и токе истока.
30. Время восстановления паразитного диода (Body Diode Reverse Recovery Time) trr — время восстановления обратной проводимости паразитного диода.
31. Заряд восстановления паразитного диода (Body Diode Reverse Recovery Charge) Qrr – заряд необходимый для восстановления обратной проводимости паразитного диода.
32. Время включения паразитного диода (Forward Turn-On Time) ton — время перехода диода в проводящее состояние. Обычно составляет пренебрежимо малую величину.
33. Паразитное сопротивление затвора (Gate resistance) RG – паразитное последовательное сопротивление затвора. Именно оно ограничивает скорость переключения при управляющем драйвере с большим выходным током.
Паразитные емкости MOSFET-транзистора
На рисунке MOSFET.4 представлены паразитные емкости MOSFET-транзистора. Их всего три – емкость «затвор-исток», «затвор–сток», «сток-исток». И три их производные – входная емкость (Input Capacitance), проходная емкость (Reverse Transfer Capacitance), выходная емкость (Output Capacitance).
Рисунок MOSFET.4- Паразитные емкости MOSFET-транзистора
Инерционность MOSFET-транзистора, определяющая времена включения и выключения лимитируется, прежде всего, паразитными емкостями транзистора.
Рисунок MOSFET.5 – Зависимости паразитных емкостей MOSFET-транзистора от напряжения сток-исток (drain-source). На примере транзистора IRF740 по данным datasheet № 91054 VishaySiliconix
В реальности паразитные емкости не являются постоянными величинами: их величина сильно зависит от напряжения между их «обкладками»: при малых значениях напряжения сток-исток ёмкости имеют значительную величину (например, на порядок превышающие численные значения, указанные в справочных листках) которые быстро уменьшается с ростом напряжения сток-исток (рисунок MOSFET.5). Поэтому все справочные значения емкости справедливы при определенном значении напряжения сток-исток.
Для мощных MOSFET-транзисторов на динамику включения-выключения влияет и паразитное сопротивление затвора.
Детально влияние емкостей на процесс коммутации MOSFET транзистора и проявление так называемого эффекта Миллера представлено в разделе «Управление MOSFET и IGBT транзисторами. Схемотехнические решения. Расчет».
Параллельное включение MOSFET-транзисторов
По причине того, что во включенном состоянии MOSFET-транзистор фактически представляет собой сопротивление, MOSFET-транзисторы легко объединяются параллельно. При этом пропорционально увеличиваются токовые и мощностные характеристики.
Для подавления возможных паразитных осцилляций целесообразно развязывать управляющие затворы через затворные резисторы (рисунок MOSFET.6).
MOSFET ТРАНЗИСТОРЫ ПРОТИВ IGBT
Когда дело доходит до импульсных преобразователей, оба типа транзисторов имеют свои преимущества и недостатки. Но какой из них лучше для данного устройства? В этой статье сравним MOSFET с модулями IGBT чтобы понять, что и где лучше ставить.
Предполагается что в схемах с низким напряжением, низким током, но высокой частотой переключения, предпочтительно использовать полевые транзисторы (MOSFET), а в схемах с высоким напряжением, высоким током, но с низкой частотой – лучше IGBT. Но достаточно ли такой общей классификации? У каждого есть свои дополнительные предпочтения в этом отношении и правда в том, что не существует общего, жесткого стандарта, который позволял бы оценивать параметры данного элемента с точки зрения его использования в импульсных преобразователях. Все зависит от конкретного применения и широкого спектра факторов, таких как частота переключения, размер, стоимость и т. д. Поэтому, вместо того чтобы пытаться решить какой элемент лучше, нужно внимательно изучить различия между этими деталями.
Кратко о MOSFET
MOSFET – это управляемый переключатель с тремя контактами (затвор, сток и исток). Сигнал затвора (управления) подается между затвором и истоком, а контактами переключения являются сток и исток. Сам затвор выполнен из металла и отделен от истока оксидом металла в качестве диэлектрика. Это позволяет снизить энергопотребление и делает этот транзистор отличным выбором для использования в качестве электронного переключателя или усилителя в схеме с общим истоком.
Для правильной работы МОП-транзисторы должны поддерживать положительный температурный коэффициент. Потери во включенном состоянии малы и теоретически сопротивление транзистора в этом состоянии не ограничено – может быть близко к нулю. Кроме того, поскольку МОП-транзисторы могут работать на высоких частотах, они могут работать в устройствах с быстрым переключением и с низкими потерями на переключение.
Существует много различных типов МОП-транзисторов, но наиболее сопоставимыми с IGBT являются мощные MOSFET. Они специально разработаны для работы со значительными уровнями мощности и используются чаще всего только во включенном или выключенном состояниях, что делает их наиболее используемым ключом для низковольтных схем. По сравнению с IGBT, мощные полевые МОП-транзисторы имеют преимущества – более высокую скорость коммутации и более высокую эффективность при работе при низких напряжениях. Более того, такая схема может выдерживать высокое напряжение блокировки и поддерживать высокий ток. Это связано с тем что большинство мощных МОП-структур являются вертикальными (а не плоскими). Номинальное напряжение является прямой функцией легирования и толщины эпитаксиального слоя с примесью N-типа, а ток зависит от ширины канала (чем шире канал, тем выше ток).
Кратко о IGBT
Модуль IGBT также является полностью управляемым коммутатором с тремя контактами (затвор, коллектор и эмиттер). Его управляющий сигнал подается между затвором и эмиттером и нагрузкой между коллектором и эмиттером.
IGBT сочетает в себе простые характеристики управления затвором, как в транзисторе MOSFET, с сильноточным характером биполярного транзистора с низким напряжением насыщения. Это достигается с помощью изолированного полевого транзистора для управляющего входа и биполярного силового транзистора в качестве сильноточного ключа.
Модуль IGBT специально разработан для быстрого включения и выключения. Фактически частота повторения импульсов достигает УЗ диапазона. Эта уникальная способность делает IGBT часто используемыми в усилителях класса D для синтеза сложных сигналов с широтно-импульсной модуляцией и фильтрами нижних частот. Они также используются для генерации импульсов большой мощности в таких областях, как физика элементарных частиц и плазма, а также играют важную роль в современных устройствах – электромобили, электровелосипеды, поезда, холодильники с регулируемой скоростью вращения компрессора, кондиционеры и многое другое.
Сравнение IGBT с MOSFET
Структуры обоих транзисторов очень похожи друг на друга. Что касается протекания тока, важным отличием является добавление слоя подложки P-типа под слой подложки N-типа в структуре модуля IGBT. В этом дополнительном слое дырки вводятся в слой с высоким сопротивлением N-типа, создавая избыток носителей. Это увеличение проводимости в N-слое помогает уменьшить общее напряжение во включенном состоянии в IGBT-модуле. К сожалению, это также блокирует поток электроэнергии в обратном направлении. Поэтому в схему добавлен специальный диод, который расположен параллельно с IGBT чтобы проводить ток в противоположном направлении.
MOSFET может переключаться на более высоких частотах, однако есть два ограничения: время переноса электронов в области дрейфа и время, необходимое для зарядки / разрядки входного затвора и его емкости. Тем не менее эти транзисторы, как правило, достигают более высокой частоты переключения, чем модули IGBT.
Подведем итог
Многие из вышеупомянутых фактов касаются исторической основы обоих устройств. Достижения и технологические прорывы в разработке нового оборудования, а также использование новых материалов, таких как карбид кремния (SiC), привели к значительному улучшению производительности этих радиодеталей за последние годы.
МОП-транзистор:
- Высокая частота переключения.
- Лучшие динамические параметры и более низкое энергопотребление драйвера.
- Более низкая емкость затвора.
- Более низкое термосопротивление, которое приводит к лучшему рассеиванию мощности.
- Более короткое время нарастания и спада, что означает способность работать на более высоких частотах.
IGBT модуль:
- Улучшенная технология производства, которая приводит к снижению затрат.
- Лучшая устойчивость к перегрузкам.
- Улучшенная способность распараллеливания схемы.
- Более быстрое и плавное включение и выключение.
- Снижение потерь при включении и при переключении.
- Снижение входной мощности.
В любом случае модули MOSFET и IGBT быстро заменяют большинство старых полупроводниковых и механических устройств, используемых для управления током. Силовые устройства на основе SiC демонстрируют такие преимущества как меньшие потери, меньшие размеры и более высокая эффективность. Подобные инновации будут продолжать расширять пределы использования MOSFET и IGBT транзисторов для схем с более высоким напряжением и большей мощностью.
Принцип работы полевого МОП-транзистора
Устройство и основные характеристики МОП-транзисторов
МОП-транзистор (MOSFET, «металл-оксид-полупроводник») – полевой транзистор с изолированным затвором (канал разделен с затвором тонким диэлектрическим слоем). Другое название МОП-транзистора – униполярный. Основные области применения таких приборов – выполнение функций электронного переключателя и усилителя электронных сигналов в старой и современной системотехнике.
Практически все типы MOSFET имеют три вывода:
Исток – источник носителей зарядов. Является аналогом эмиттера в биполярном приборе.
Сток. Служит для приема носителей заряда от истока. Аналог коллектора биполярного транзистора.
Затвор. Выполняет функции управляющего электрода. Аналог в биполярном устройстве – база.
Особая категория – транзисторы с несколькими затворами. Они применяются в цифровой технике для организации логических элементов или в качестве ячеек памяти EEPROM.
Основные характеристики униполярных транзисторов, учитываемые при выборе нужного прибора:
в открытом состоянии – внутреннее сопротивление и наибольшее значение допустимого постоянного тока;
в закрытом состоянии – максимально допустимое напряжение прямого типа.
Отличие униполярных транзисторов от биполярных
МОП-транзистор управляется электрополем, которое создается напряжением, приложенным к затвору относительно истока. Полярность прилагаемого напряжения определяется видом канала транзистора (p или n). В отличие униполярных биполярные транзисторы управляются электрическим током. Ток во всех типах этих полупроводников формируется двумя типами зарядов – электронами и дырками.
Полевые (униполярные) транзисторы в отличие от биполярных обладают меньшими собственными шумами в низкочастотном диапазоне. Это свойство обеспечивает их эффективную работу в звукоусилительных устройствах. MOSFET применяют в микросхемах низкочастотных усилителей в автомобильных проигрывателях.
Типы МОП-транзисторов
Униполярные транзисторы делятся на p-канальные или n-канальные. Они могут иметь:
Собственный (встроенный) канал. Без напряжения канал открыт. Для закрытия канала необходимо подать ток определенной полярности.
Индуцированный (инверсный) канал. При отсутствии приложенного электротока он закрыт. Для его открытия прикладывают напряжение нужной полярности. Для n-канальных транзисторов отпирающим является напряжение, положительное относительно истока. Его величина должна быть больше порогового значения, установленного для данного транзистора. Для p-канальных моделей отпирающим будет отрицательное относительно истока напряжение, приложенное к затвору.
Принцип работы МОП-транзисторов на примере прибора с n-проводимостью
В схему униполярного транзистора с изолированным затвором и n-проводимостью входят:
Кремниевая подложка. В подложке n-типа в узлах кристаллической решетки кремния присутствуют отрицательно заряженные атомы и свободные электроны, что достигается введением специальных примесей.
Диэлектрик. Служит для изоляции кремниевой подложки от электрода затвора. В качестве диэлектрика используется оксид кремния.
В большинстве MOSFET исток транзистора подключается к полупроводниковой подложке. Между стоком и истоком формируется «паразитный» диод. Ликвидировать отрицательные последствия появления такого диода и даже использовать в положительных целях позволяет его подключение анодом к истоку в n-канальных полевых транзисторах, анодом к стоку – в p-канальных приборах.
- Между затвором и истоком прикладывается плюсовое напряжение к затвору.
- Между металлическим выводом затвора и подложкой появляется электрическое поле.
- Электрическое поле притягивает к приповерхностному слою диэлектрика свободные электроны, ранее распределенные в кремниевой подложке.
- В приповерхностном слое появляется область проводимости (канал) n-типа, состоящая из свободных электронов.
- Между выводами стока и истока появляется «мост», проводящий электрический ток.
- Проводимость полевого транзистора регулируется величиной внешнего управляющего напряжения. При его снятии проводящий «мостик» исчезнет и прибор закроется.
Аналогично работает МОП-транзистор p-типа. Показанный выше принцип работы является упрощенным. Приборы, используемые на практике в схемотехнике, имеют более сложное устройство и, следовательно, более сложный принцип работы.
Преимущества и недостатки МОП-транзисторов
Униполярные транзисторы имеют довольно широкое распространение в современной системотехнике благодаря ряду преимуществ, среди которых:
- возможность мгновенного переключения;
- отсутствие вторичного пробоя;
- хорошая эффективность работы при низких напряжениях;
- стабильность при температурных колебаниях;
- низкий уровень шума при работе;
- большой коэффициент усиления сигнала;
- экономичность в плане энергопотребления;
- меньшее количество технологических операций при построении схем с использованием МОП-транзисторов по сравнению с применением биполярных приборов.
Применение этих приборов ограничивают следующие недостатки:
Важнейший минус – повышенная чувствительность к статическому электричеству. Тонкий слой оксида кремния легко повреждается электростатическими зарядами, поэтому МОП-приборы могут выйти из строя даже при прикосновении к прибору наэлектризованными руками. Современные устройства практически лишены этого недостатка благодаря корпусам, способным минимизировать воздействие статики. Также в них могут интегрироваться защитные устройства по типу стабилитронов.
Появление нестабильности работы при напряжении перегрузки.
Разрушение структуры, начиная от температуры +150 °C. У биполярных приборов критической является температура +200 °C.
Постоянный поиск по получению хороших эксплуатационных свойств высокомощных униполярных транзисторов привел к изобретению гибридного IGBT-транзистора. Эти устройства объединили лучшие качества биполярного и полевых транзисторов.
MOSFET — полевые транзисторы с логическим управлением
Основной особенностью этих транзисторов является то, что напряжение затвора (напряжение включения) имеет гораздо меньшую величину (5 В против 10 В у обычных Mosfet), что делает возможным подключение к ним ,напрямую, выходных элементов цифровой логики ТТЛ/КМОП
Основные параметры MOSFET-транзисторов:
-
Ucи. макс. — максимальное напряжение сток-исток
-
Ic.макс.- максимальный продолжительный ток стока при температуре кристалла 25 °С, при повышении температуры до 100 °С этот ток падает на