Как проверяется вибрация электрической машины
Перейти к содержимому

Как проверяется вибрация электрической машины

  • автор:

 

Причины и способы устранения вибрации электродвигателей

Вибрации электрических машин могут возникать на холостом ходу, тогда источник дефекта имеет магнитную природу (неправильный воздушный зазор между статором и ротором, отслоение лака обмоток и так далее) или в момент пуска и под нагрузкой, тогда источник проблемы механический.

К механическим источникам вибрации можно отнести изгиб вала (может быть как следствием, так и причиной), нарушение центровки ротора, перегрев подшипников (например, из-за отсутствия смазки), ослабление резьбовых соединений крепления элементов электродвигателя. Также режим использования электродвигателя (генератор или движитель) может объяснить причину возникновения неисправности, например, поломка лопастей электровентилятора или нарушение соосности муфты при вращении гидроагрегатов.

Измерение вибрации электродвигателей

Повышенные вибрации электродвигателя являются одной из главных причин его преждевременного выхода из строя, в первую очередь – подшипников. Помимо подшипников, повышенная вибрация быстро изнашивает изоляцию обмоток, может привести к излому/изгибу вала , появлению трещин и повреждений в корпусе, опорной раме или фундаменте и др.

Источники вибраций электродвигателя по происхождению классифицируют на:

  • Магнитные источники, обусловленные: наличием зубцов на статоре и роторе; неравномерностью питающего напряжения; эксцентриситетом воздушного зазора; несинусоидальностью МДС (магнитной движущей силой) обмотки.
  • Механические источники, обусловленные: погрешностями изготовления деталей и сборки (дефекты подшипников, дисбаланс ротора, перекос посадочных мест подшипника, прогиб вала, несоосность валов), а также тепловыми деформациями ротора;
  • Аэродинамические источники, обусловленные расположенными на роторе деталями (вентиляторами).

Измерение вибраций двигателя проводится с целью получения данных о параметрах вибрации и дальнейшего их сравнения с допустимыми значениями, регламентируемыми ГОСТ Р МЭК 60034-14-2008 (см. табл.1).

Таблица 1 — Максимально допустимые значения вибросмещения, виброскорости и виброускорения для электродвигателей мощностью до 50 МВт, вращающихся с частотой (120÷15000) об/мин.


Измерение вибрации подшипников электродвигателей проводится в контрольных точках, расположенных в трех взаимно перпендикулярных плоскостях, расположенных как можно ближе к оси вращения ротора (см.рис.2)


Рис. 2 Измерение составляющих вибрации.


Рис.3 Рекомендуемое расположение датчиков на одном или обоих краях электродвигателя


Рис.4 Рекомендуемое расположение датчиков, когда расположение датчиков по рис.3 невозможно без разборки электродвигателя.


Рис.5 Расположение датчиков для подшипников скольжения


Рис.6 Расположение датчиков для вертикальных электродвигателей

При возможности выбора способа установки вибропреобразователя к исследуемой поверхности (щуп, магнит, штифт), наиболее предпочтительным является резьбовое соединение, при котором штифт устанавливается в направлении измерения вибрации. Также следует помнить, что масса вибропреобразователя не должна превышать 5% от массы электродвигателя.

Измерение вибрации электродвигателей включает определение значений СКЗ вибросмещения (мкм), СКЗ виброскорости (мм/с) или СКЗ виброускорения (мм/с2) в диапазоне частот от 10 Гц до 1000 Гц. Для низко-оборотистых электродвигателей со скоростью вращения менее 600 об/мин, нижний порог частотного диапазона не должен превышать 2 Гц. В случае асинхронных двигателей, для которых характерно появление биений с двойной частотой скольжения, действительное значение измеряемого параметра вычисляется по формуле:


где Xmax и Xmin – соответственно максимальное и минимальное значение СКЗ измеряемого параметра

Измерение вибрации электродвигателей, как правило, проводится в режиме холостого хода (если дополнительно не оговорено в технических условиях электродвигателя) при частоте:

  • номинальной частоте вращения – для однорежимных электродвигателей;
  • частоте вращения с наибольшей вибрацией – для многоскоростных электродвигателей;
  • номинальной и максимальной частоте вращения – для электродвигателей с регулируемой частотой вращения.

Измерение вибрации электродвигателей быстро и легко проводится с помощью виброанализатора CSI 2140 и программного обеспечения MotorView Gold (Silver). Более бюджетным вариантом являются переносные виброметры «БАЛТЕХ» – виброручки BALTECH VP-3405-2 или вибротестер BALTECH VP-3410, а с помощью виброметра-балансировщика «ПРОТОН-Баланс-II» или взрывозащищенного BALTECH VP-3470-Ex можно еще провести и балансировку вала электродвигателя в собственных опорах. Все виброметры «БАЛТЕХ» соответствуют требованиям ГОСТ ISO 10816-1-97 и рекомендуются к использованию специалистам, прошедшим обучение на курсе повышения квалификации ТОР-103 «Основы вибродиагностики. Диагностика электродвигателей» в Учебном .

Вибрационные характеристики

При замере вибрации измеряют её вертикальную и горизонтальную составляющие (или как ещё называют осевая и поперечная). Существует несколько понятий вибрационных характеристик, давайте разберемся какими они бывают и в чем измеряются:

  • Виброскорость (измеряется в миллиметрах на секунду, мм/с) – величина, характеризующая перемещение точки измерения вдоль оси электродвигателя.
  • Виброускорение (измеряется в метрах на секунду в квадрате, м/с2) – прямая зависимость вибрации от силы её вызвавшей. Виброперемещение (измеряется в микрометрах, мкм) – величина амплитуды, показывающая расстояние между крайними точками при вибрации.

При замерах вибрационных характеристик, как правило, замеряют виброскорость, так как она наиболее точно описывает характер проблемы. При этом измеряют не наибольшее значение виброскорости, а её среднеквадратичное значение (СКЗ). По причине того, что все стрелочные приборы по принципу действия (которые использовались ранее) являются интегрирующими. Допустимые нормы вибрации электродвигателей приведены в Правилах эксплуатации электрических станций и сетей (ПТЭ) и в ГОСТ ИСО 10816.

Так как существует множество разнообразных электрических машин ГОСТ Р 56646-2015 поможет разобраться, какой именно стандарт из группы ГОСТ ИСО 10816 применим к конкретному электродвигателю. Например, для компрессоров, двигателей с насосом и других применений электропривода могут быть различные нормы и требования по проведению замеров.

В этих документах приведены основные требования, нормы, рекомендации, классы вибрационного состояния и прочее.

Как устранить вибрацию электродвигателя

  • Вибрация электромотора, превышающая нормативные показатели, должна быть устранена в минимальные сроки. Чтобы начать работы по устранению вибрации электродвигателя, необходимо точно знать причину.
  • Например, вибрация может появиться из-за неправильной центровки электродвигателя, а также из-за неудовлетворительного состояния муфты соединения, где может произойти износ сухариков, пальцев, отверстий под пальцы, дисбаланс муфты или отверстий. Вследствие износа лопаток появляется дисбаланс в роторе приводимого механизма, что также приводит к повышенной ненормативной вибрации.
  • Не менее серьезной причиной, которая приводит к вибрации электродвигателя, может служить дефект самих подшипников, недостаточно жесткое крепление, неправильная установка.
  • Ко второй группе основных причин вибрации электродвигателя приводит дисбаланс ротора, трещины и обрывы в обмотке ротора от кольца, обрыв бочонка ротора от вала, излом или изгиб непосредственно вала, плохое крепление торцевых крышек, подшипников, большой зазор в подшипниках скольжения или качения.
  • Силу вибрации замеряют вибрографом или виброметром. После чего приступают к непосредственному ее устранению. Опытный специалист быстро сможет найти причину вибрации и сделать все возможное для ее устранения.
  • В первую очередь проверяют, не является причиной вибрации электродвигателя слабое закрепление мотора. В последующую очередь проверяют фундаментную раму и целостность бетона фундамента.
  • При обнаружении дефектов их устраняют. Если причина вибрации заключается не в креплении и разрушении фундамента, рассоединяют муфту между механизмами и электродвигателем. Следующий этап – проверка силы вибрации на холостом ходу электродвигателя.
  • Если в момент работы на холостом ходу вибрация полностью отсутствует, ищут нарушения в центровке, износе полумуфт, пальцев или в приводимых механизмах.

Приборы для измерения вибрации

Приборы для измерения вибрации делятся на несколько типов: виброметр, виброграф и виброанализатор. Виброметр, простейший прибор, определяет только один параметр (СКЗ виброскорости). Виброграф, пишущий прибор, регистрирующий амплитуду колебаний. Эти два прибора помогут выявить только превышения норм.

Выявить причины (на основании замеряемых параметров) нарушений вибрационных характеристик сможет лишь виброанализатор. Существую одноканальные и многоканальные виброанализаторы, эти приборы позволяют загрузить в них программу измеряемых параметров с компьютера, что после замеров позволит произвести анализ, сделать расчёт и выявить источник вибраций. При использовании виброанализатора, на электродвигатель навешиваются датчики вибрации. Таким образом можно точно установить причину неисправности и меры её устранения.

Алгоритм выявления неисправности

Для определения и устранения причин вибрации электродвигателя существует несложный алгоритм. Осмотреть работающий электродвигатель на предмет отсутствия незакрученных болтов, крышек, надежность крепления двигателя к раме. Далее необходимо рассоединить двигатель и приводимый им в движение механизм. Если вибрация пропала, то причина в соединительной муфте (нарушение центровки полумуфт, разный вес пальцев и так далее).

Если после отсоединения приводного механизма вибрация на холостом ходу присутствует. Значит причина в самом электродвигателе, при отключении питания (когда двигатель на выбеге) должна прекратиться вибрация. Если при отключенном питании она прекратилась, то всему виной воздушный зазор между статором и ротором. При затухающей амплитуде вибраций при отключенном питании, причина в механическом дефекте ротора (изгиб, трещина, дефект роторной бочки) или дефекте полумуфты.

Если при снятой полумуфте вибрация отсутствует, значит – в полумуфте, в противном случае необходимо снимать ротор для динамической балансировки на станке или выявления повреждений обмоток. При диагностике электродвигателя на подшипниках качения их неисправность легко выявить – повышенный шум и сильный нагрев.

Дефект подшипников скольжения будет проявляться под нагрузкой, если выявить причины вибрации под нагрузкой не удаётся, то, скорее всего, виноваты подшипники, необходимо их заменить или отдельно продиагностировать (например, датчики вибрации подключить к месту установки подшипников).

При выявлении повышенного нагрева подшипников необходимо также замерять уровень вибрационных характеристик, потому как сам по себе подшипник редко является источником проблемы, скорее, как следствие.

Важно понимать, что на ответственных механизмах (турбоагрегаты ГЭС, электродвигатели в АЭУ, электроприводы гидростанций и так далее) замер уровня вибрации должен производиться регулярно, в соответствии с графиком технического обслуживания. Замеры должны проводить представители завода-изготовителя или специалисты организации, имеющей лицензию на проведение такого типа работ. Замеры вибрационных характеристик с замером температуры подшипников должны быть отражены в формуляре электрической машины.

Теперь вы знаете, почему возникает вибрация электродвигателя, а также как происходит определение и устранение причин. Надеемся, предоставленная инструкция помогла найти и решить проблему!

Вибрация электродвигателя и методы ее устранения


Вибрация электродвигателя во время эксплуатации довольно распространенная проблема, которая со временем может привести к разрушению подшипников, появлению трещин на станине и подшипниковых щитах, искривлению вала и отрыву бочки ротора что, в конечном итоге, станет причиной выхода самой электрической машины из строя. Чтобы не допустить этого на моделях, используемых для привода ответственных механизмов, устанавливают датчик вибрации электродвигателя.

Кроме того, необходимо периодически проводить измерение вибрации электродвигателя. Для этого используются специальный прибор – виброаналозатор, который в отличие от вибрографа и виброметра не только фиксирует величину и амплитуду колебаний, но и позволяет выявить их источник и причину возникновения. Замеры выполняются на холостом ходу и в режиме номинальной нагрузки.

Вибрация электродвигателя: причины

Возникновение нежелательных колебаний может быть обусловлено влиянием как электромагнитных, так и механических факторов.

Причины электромагнитного характера:
  • появление трещин в стержнях короткозамкнутого ротора или их полный обрыв;
  • деформация пластин ротора.

Обрыв или появление трещины хотя бы в одном стержне «беличьей клетки» является причиной появления асимметрии в магнитных моментах, действующих на ротор

Из-за деформации пластин в активной стали воздушный зазор между статором и ротором будет неравномерным, что приведет к несимметричности магнитных потоков.

Причины механического характера:
  • неправильная центровка двигателя и приводимого механизма;
  • дефекты в соединительных муфтах;
  • износ подшипников в двигателе или приводимом механизме;
  • деформация вала электродвигателя;
  • дисбаланс ротора;
  • ослабление крепления на месте установки;
  • обрыв сварочных швов в консоли или раме.

Алгоритм выявления вибрации и методы ее устранения

Допустимая вибрация электродвигателя определяется требованиями ГОСТ 16921-71 и ГОСТ 20815-75. Если нет возможности определить ее величину и причины возникновения с помощью специальной аппаратуры, используется такая простая методика.

В режиме штатной нагрузки необходимо осмотреть двигатель, и проверить надежность его крепления к сварной конструкции или анкерам фундамента и затянуть ослабленные резьбовые соединения. После этого двигатель отсоединяют от приводимого механизма и запускают в режиме холостого хода. Если вибрация электродвигателя отсутствует, то причиной ее возникновения является соединительная муфта со стороны приводимого механизма. В этом случае проверяют центровку полумуфт, состояние резиновых шайб и лепестков, а также вес пальцев одной пары (при выявлении расхождения подбираются пальцы с одинаковой массой).

Когда вибрация сохраняется и на холостом ходу, то причина ее возникновения кроется в самом двигателе. Выявить источник можно в режиме выбега электрической машины (естественной остановки после прекращения подачи питания). Если останов электродвигателя происходит без биения вала, необходимо проверить равномерность зазора между ротором и статором. Затухающая амплитуда при снятом напряжении свидетельствует о деформации вала ротора, обрыва стержней короткозамкнутого или замыкания обмоток фазного ротора.

Дисбаланс ротора устраняется на специальных станках высверливанием лишнего металла из торца вала. В случае повреждения обмоток фазных роторов их необходимо перемотать. Треснувшие и оборванные стержни «беличьей клетки « удаляются и заменяются новыми.

Причиной вибрации могут быть изношенные подшипники, сигнализирующие о наличии дефекта повышенной температурой и сильным шумом. Такой вид биения устраняется простой заменой отработавших подшипников. Измерение вибрации подшипников электродвигателя при помощи установленных датчиков позволяет выявить появление проблемы на ранней стадии.

Для ответственных механизмов на оборонных предприятиях, гидроэлектростанциях и прочее установлен график измерения вибрации электродвигателей.

Измерение и анализ вибрации двигателя электроприводов с помощью системы Keysight

Расположение контрольных точек для измерения параметров вибрации

Точки измерения вибрации для оценки состояния машин и механизмов выбираются на корпусах подшипников или других элементов конструкции, которые в максимальной степени реагируют на динамические силы и характеризуют общее вибрационное состояние машин.

ГОСТ Р ИСО 10816-1-97 регламентируется проведение измерений вибрации корпусов подшипников в трех взаимно перпендикулярных направлениях, проходящих через ось вращения: вертикальном, горизонтальном и осевом (рисунок 94а). Измерение общего уровня вибрации в вертикальном направлении проводится в наивысшей точке корпуса (рисунок 94б). Горизонтальная и осевая составляющие измеряются на уровне разъёма крышки подшипника или горизонтальной плоскости оси вращения (рисунок 94в, г). Измерения, проведенные на защитных кожухах, металлоконструкциях не позволяют определить техническое состояние механизма из-за нелинейности свойств данных элементов.

(г)

Рисунок 94 – Расположение точек контроля вибрации: а) на электрических машинах; б) в вертикальном направлении; в, г) на корпусе подшипника

Расстояние от места установки датчика до подшипника должно быть кратчайшим, без контактных поверхностей различных деталей на пути распространения колебаний. Место установки датчиков должно быть достаточно жёстким (нельзя устанавливать датчики на тонкостенном корпусе или кожухе). Необходимо использовать одни и те же точки и направления измерения при проведении мониторинга состояния. Повышению достоверности результатов измерений способствует использование в характерных точках приспособлений для быстрой фиксации датчиков в определенных направлениях.

Крепление вибрационных датчиков регламентируется ГОСТ Р ИСО 5348-99 и рекомендациями изготовителей датчиков. Для крепления преобразователей поверхность, на которую он крепится, должна быть очищена от краски и грязи, а при измерении вибрации в высокочастотном диапазоне – от лакокрасочных покрытий. Контрольные точки, в которых проводится измерение вибрации, оформляются так, чтобы обеспечить повторяемость при установке датчика. Место измерения отмечают краской, кернением, установкой промежуточных элементов.

Масса преобразователя должна быть меньше массы объекта более чем в 10 раз. В магнитной державке, для крепления датчика используют магниты с силой удержания на отрыв 50…70 Н; на сдвиг 15…20 Н. Не закрепленный преобразователь отрывается от поверхности при ускорении более 1g.

Измерения ударных импульсов проводятся непосредственно на корпусе подшипника. При свободном доступе к корпусу подшипника измерения выполняются с помощью датчика (индикаторного щупа) в контрольных точках, указанных на рисунке 95. Стрелками указано направление расположения датчика при измерении ударных импульсов.

Рисунок 95 – Распространение ударных импульсов в корпусных деталях механизма и расположение датчика при измерении: 1 – индикаторный щуп прибора; 2 – корпус подшипника; 3 – распространение волн напряжения; 4 – подшипник качения; 5 – зона измерения ударных импульсов

Перед измерением ударных импульсов необходимо изучить чертёж конструкции механизма и убедиться в правильности выбора мест измерения, исходя из условий распространения ударных импульсов. Поверхность в месте измерений должна быть ровной. Толстый слой краски, грязи, окалины следует удалить. Датчик устанавливается в районе эмиссионного окна под углом 900 к корпусу подшипника, допускаемый угол отклонения не более 50. Усилие прижатия щупа к поверхности контрольной точки должно быть постоянным.

Какой датчик выбрать

Прежде чем приступить к изучению параметров, необходимо учитывать:

  • Какой принцип будет использоваться. Кинематический — измерения осуществляются в тот момент времени, когда исследуемый объект находится в состоянии покоя. Динамический — объект должен находиться в состоянии искусственного движения. Обеспечивают абсолютные показатели.
  • Способ измерения. Контактный или бесконтактный. Контактные датчики имеют достаточно простую конструкцию, просты в использовании, имеют точное положение на исследуемом объекте. Но их можно устанавливать не на все приборы, поэтому сфера применения достаточно узкая. Они подвержены различного рода механическим повреждениям, перепадам температур, другим атмосферным явлениям, которые сказываются на работе, приводят к сбоям и отказам работы. Кабель может мешать вращающимся элементам объекта. При выборе необходимо учитывать массу, для того чтобы сведения были достоверными. На достоверность также негативно может повлиять слабый уровень импульсов, собственный шум и звуковые помехи, необходимость периодической калибровки. Бесконтактные устройства особенно удобны в случае использования на объектах, где прямой физический контакт неудобен или недопустим. Они менее подвержены механическим воздействиям, инерционным процессам, что влияет на качество показателей. Позволяют получить информацию на разных расстояниях, при любых атмосферных и температурных условиях, в состоянии движения или покоя, от химически агрессивных и взрывоопасных объектов, а также находящихся в труднодоступных местах. С их помощью предоставляется возможность исследования объектов любой массы, форм и размера.

Выбор частотного диапазона и параметров измерения вибрации

В механических системах, частота возмущающей силы совпадает с частотой реакции системы на эту силу. Это позволяет идентифицировать источник вибрации. Поиск возможных повреждений проводится на заранее определенных частотах механических колебаний. Большинство повреждений имеют жёсткую связь с частотой вращения ротора механизма. Кроме того, информативные частоты могут быть связаны с частотами рабочего процесса, частотами элементов механизма и резонансными частотами деталей.

В общем случае рекомендации по выбору частотного диапазона сводятся к следующим правилам:

  • нижний частотный диапазон должен включать 1/3…1/4 оборотной частоты;
  • верхний частотный диапазон должен включать 3-ю гармонику информативной частоты контролируемого элемента, например, зубчатого зацепления;
  • резонансные частоты деталей должны находиться внутри выбранного частотного диапазона.

Анализ общего уровня вибрации

Первый этап диагностирования механического оборудования обычно связан с измерением общего уровня вибрационных параметров. Для оценки технического состояния проводится измерение среднеквадратичного значения (СКЗ) виброскорости в частотном диапазоне 10…1000 Гц (для частоты вращения меньше 600 об/мин используется диапазон 2…400 Гц). Для оценки состояния подшипников качения проводится измерение параметров виброускорения (пикового и СКЗ) в частотном диапазоне 10…5000 Гц. Низкочастотные колебания свободно распространяются по металлоконструкциям механизма. Высокочастотные колебания быстро затухают по мере удаления от источника колебаний, что позволяет локализовать место повреждения. Измерение в бесконечном количестве точек механизма ограничиваются измерениями в контрольных точках (подшипниковых узлах) в трех взаимноперпендикулярных направлениях: вертикальном, горизонтальном и осевом (рисунок 96).

Рисунок 96 – Пример расположения контрольных точек измерения общего уровня вибрации турбокомпрессора

Результаты измерения представляются в табличном виде (таблица 7) для последующего анализа, включающего несколько уровней.

Таблица 7 – Значения параметров вибрации для контрольных точек турбокомпрессора
Точка измерения Среднеквадратичное значение виброскорости (мм/с), для направлений измерения, частотный диапазон 10…1000 Гц Виброускорение аскз/апик, м/с2, частотный диапазон 10…5000 Гц
вертикальное горизонтальное осевое
1 1,8 1,7 0,4 4,9/18,9
2 2,5 2,5 0,5 5,0/19,2
3 3,3 4,0 1,8 39,9/190,2
4 2,4 3,4 1,5 62,8/238,5

Первый уровень анализа – оценка технического состояния выполняется по максимальному значению виброскорости зафиксированному в контрольных точках. Допустимый уровень определяется из стандартного ряда значений по ГОСТ ИСО 10816-1-97 (0,28; 0,45; 0,71; 1,12; 1,8; 2,8; 4,5; 7,1; 11,2; 18,0; 28,0; 45,0). Увеличение значений в данной последовательности в среднем составляет 1,6. В основе данного ряда положено утверждение – увеличение вибрации в 2 раза не приводит к изменению технического состояния. В стандарте предполагается, что увеличение значений на два уровня приводит к изменению технического состояния (1,62 = 2,56). Следующее утверждение – увеличение вибрации в 10 раз приводит к изменению технического состояния от хорошего до аварийного. Отношение вибрации на холостом ходу и под нагрузкой не должно превышать 10-ти кратного увеличения.

Для определения допустимого значения используется минимальное значение виброскорости зафиксированное в режиме холостого хода. Предположим, что во время предварительного обследования на холостом ходу получено минимальное значение виброскорости 0,8 мм/с. Безусловно, в данном случае, должны соблюдаться аксиомы работоспособного состояния. Желательно, границы состояний определять для оборудования, вводимого в эксплуатацию. Принимая ближайшее большее значение, из стандартного ряда 1,12 мм/с как границу хорошего состояния, имеем следующие оценочные значения при работе под нагрузкой:1,12…2,8 мм/с – функционирование без ограничения сроков; 2,8…7,1 мм/с – функционирование в ограниченном периоде времени; свыше 7,1 мм/с – возможны повреждения механизма при работе под нагрузкой.

Длительная эксплуатация механизма возможна при значении виброскорости менее 4,5 мм/с, зафиксированной во время работы механизма под нагрузкой при номинальной частоте вращения приводного двигателя.

Для оценки состояния подшипников качения при частоте вращения до 3000 об/мин рекомендуется использовать следующие соотношения пикового и среднеквадратичного (СКЗ) значений виброускорения в частотном диапазоне 10…5000 Гц: 1) хорошее состояние – пиковое значение не превышает 10,0 м/с2; 2) удовлетворительное состояние – СКЗ не превышает 10,0 м/с2; 3) плохое состояние наступает при превышении 10,0 м/с2 СКЗ; 4) если пиковое значение превышает 100,0 м/с2 – состояние становится аварийным.

 

Второй уровень анализа – локализация точек имеющих максимальную вибрацию. В виброметрии принят тезис о том, что, чем меньше значения параметров вибрации, тем техническое состояние механизма лучше. Не более 5% возможных повреждений связано с повреждениями при низком уровне вибрации. В целом большие значения параметров указывают на большее воздействие разрушительных сил и позволяют локализовать место повреждения. Различают следующие варианты увеличения (более 20%) вибрации:

1) увеличение вибрации по всему механизму наиболее часто связано с повреждениями основания – рамы или фундамента; 2) одновременное увеличение вибрации в точках 1 и 2 или 3 и 4 (рисунок 96) свидетельствует о повреждениях, связанных с ротором данного механизма – дисбалансом, изгибом; 3) увеличение вибрации в точках 2 и 3 (рисунок 96) является признаком повреждений, потери компенсирующих возможностей соединительного элемента – муфты; 4) увеличение вибрации в локальных точках указывает на повреждения подшипникового узла.

Третий уровень анализа – предварительный диагноз возможных повреждений. Направление большего значения вибрации в контрольной точке с большими значениями наиболее точно определяет характер повреждения. При этом используются следующие правила и аксиомы:

1) значения виброскорости в осевом направлении должны быть минимальны для роторных механизмов, возможная причина увеличения виброскорости в осевом направлении – изгиб ротора, несоосность валов; 2) значения виброскорости в горизонтальном направлении должны быть максимальны и обычно превышают на 20% значения в вертикальном направлении; 3) увеличение виброскорости в вертикальном направлении – признак повышенной податливости основания механизма, ослабление резьбовых соединений; 4) одновременное увеличение виброскорости в вертикальном и горизонтальном направлении указывает на дисбаланс ротора; 5) увеличение виброскорости в одном из направлений – ослабление резьбовых соединений, трещины в элементах корпуса или фундаменте механизма.

При измерении виброускорения достаточны измерения в радиальном направлении – вертикальном и горизонтальном. Желательно, проводить измерения в районе эмиссионного окна – зоны распространения механических колебаний от источника повреждения. Эмиссионное окно неподвижно при местной нагрузке и вращается, если нагрузка имеет циркуляционный характер. Увеличенное значение виброускорения наиболее часто возникает при повреждениях подшипников качения.

Измерения вибрации проводятся для каждого подшипникового узла, поэтому граф причинно-следственных связей (рисунок 97) показывает зависимость между увеличением вибрации в определенном направлении и возможными повреждениями подшипников.

Рисунок 97 – Граф причинно-следственных связей вибрации и повреждений подшипниковых узлов

При измерении общего уровня вибрации рекомендуется проведений измерений виброскорости по контуру рамы, подшипниковой опоры в продольном или поперечном сечении (рисунок 98). Значения отношения вибрации опоры и фундамента определяющие состояние резьбовых соединений и фундамента:

  • около 2,0 – хорошо;
  • 1,4…1,7 – неустойчивый фундамент;
  • 2,5…3,0 – ослабление резьбовых креплений.

Виброскорость в вертикальном направлении на фундаменте не должна превышать 1,0 мм/с.

Точки измерения вибрации для оценки крепления опоры к фундаменту Значения виброскорости в вертикальном направлении по болтам подшипниковых опор для оценки степени затяжки
Рисунок 98 – Контурные диаграммы вибрации

Анализ ударных импульсов

Назначение метода ударных импульсов – определение состояния подшипников качения и качества смазки. Приборы для измерения ударных импульсов в некоторых случаях можно использовать для определения мест утечек воздуха или газа в арматуре трубопроводов.

Метод ударных импульсов впервые разработан и основан на измерении и регистрации механических ударных волн, вызванных столкновением двух тел. Ускорение частиц материала в точке удара, вызывает волну сжатия, в виде ультразвуковых колебаний распространяющуюся во всех направлениях. Ускорение частиц материала в начальной фазе удара зависит только от скорости столкновения и не зависит от соотношения размеров тел.

Для измерения ударных импульсов используется пьезоэлектрический датчик, на который не оказывает влияние вибрации в низко- и среднечастотном диапазоне. Датчик механически и электрически настроен на частоту в 28…32 кГц. Вызванная механическим ударом фронтальная волна возбуждает затухающие колебания в пьезоэлектрическом датчике.

Пиковое значение амплитуды этого затухающего колебания прямо пропорционально скорости удара. Затухающий переходный процесс имеет постоянную величину затухания для данного состояния. Изменение и анализ затухающего переходного процесса позволяют оценить степень повреждения и состояние подшипника качения (рисунок 99).

Рисунок 99 – Измерение ударных импульсов по методу SPM

Причины повышения ударных импульсов

  1. Загрязнение смазки подшипника во время монтажа, во время хранения, в процессе эксплуатации.
  2. Ухудшение эксплуатационных свойств смазочного материала в процессе эксплуатации приводящее к несоответствию применяемой смазки условиям работы подшипника.
  3. Вибрация механизма, создающая повышенную нагрузку на подшипник. Ударные импульсы не реагируют на вибрацию, отражают ухудшение условий работы подшипника.
  4. Отклонение геометрии деталей подшипника от заданной, в результате неудовлетворительного монтажа подшипника.
  5. Неудовлетворительная центровка валов.
  6. Повышенный зазор в подшипнике.
  7. Ослабление посадки подшипника.
  8. Ударные воздействия на подшипник, возникающие в результате работы зубчатого зацепления, соударений деталей.
  9. Неисправности электромагнитной природы электрических машин.
  10. Кавитация перекачиваемой среды в насосе, при которой в результате захлопывания газовых каверн в перекачиваемой среде непосредственно создаются ударные волны.
  11. Вибрацией подсоединенных трубопроводов или арматуры, связанной с нестабильностью потока перекачиваемой среды.
  12. Повреждение подшипника.

Особенности использования

К отличительным особенностям можно отнести:

  • Принцип установки. Датчики вибрации могут быть установлены стационарно или временно.
  • Сфера использования. Высокие показатели надежности и прочности позволяют применять данные прибор в различных сферах, в том числе в условиях пожаро- и взрывоопасности.
  • Технические характеристики. Простая конструкция, понятный принцип работы, чувствительность, точность характеристик, возможность представления информации в цифровой форме.

Контроль состояния подшипников качения методом ударных импульсов

На поверхности беговых дорожек подшипников всегда имеются неровности. При работе подшипника происходят механические удары и возникают ударные импульсы. Значение ударных импульсов зависит от состояния, поверхностей качения и окружной скорости. Ударные импульсы, генерируемые подшипником качения, увеличивается в 1000 раз, начиная от начала эксплуатации и заканчивая моментом, предшествующим замене. Испытания показали, что даже новый и смазанный подшипник генерирует ударные импульсы.

Для измерения таких больших величин применяется логарифмическая шкала. Увеличение уровня колебаний на 6 дБ соответствует увеличению в 2,0 раза; на 8,7 дБ – увеличению в 2,72 раза; на 10 дБ – увеличению в 3,16 раза; на 20 дБ – увеличению в 10 раз; на 40 дБ – увеличению в 100 раз; на 60 дБ – увеличению в 1000 раз.

Испытания показали, что даже новый и смазанный подшипник генерирует ударные импульсы. Значение этого начального удара выражается как dBi (dBi‑ исходный уровень). По мере износа подшипника увеличивается значение dBa (величина общего ударного импульса).

Нормированное значение dBn для подшипника можно выразить как

На рисунке 100 приведена зависимость между dBn и ресурсом работы подшипника.

Рисунок 100 – Зависимость между dBn и ресурсом работы подшипника

Шкала dBn разделена на три зоны (категории состояния подшипника): dBn< 20 дБ ‑ хорошее состояние; dBn = 20…40 дБ ‑ удовлетворительное состояние; dBn> 40 дБ ‑ неудовлетворительное состояние.

Определение состояния подшипника

Техническое состояние подшипника определяется по уровню и соотношению измеренных величин dBn и dBi. dBn – максимальное значение нормированного сигнала. dBi – пороговое значение нормированного сигнала – фон подшипника. Значение нормируемого сигнала определяется диаметром и частотой вращения контролируемого подшипника. Эти данные вносятся в прибор перед проведением измерений.

Во время работы подшипника пиковые удары различаются не только по амплитуде, но и по частоте. На рисунке 101 приведены примеры оценки состояния подшипника и условий эксплуатации (монтаж, посадка, центровка, смазка) на основе соотношения амплитуды удара и частоты (количество ударов в минуту).

Рисунок 101 – Примеры оценки состояния подшипника

  1. В хорошем подшипнике удары возникают в основном от качения шариков по неровностям беговой дорожки подшипника и создают нормальный уровень фона с низким значением амплитуды ударов (dBi < 10), на котором имеются случайные удары с амплитудой dBn < 20 дБ.
  2. При появлении повреждений на беговой дорожке или телах качения на общем фоне возникают пиковые значения ударов с большой амплитудой dBn > 40 дБ. Удары возникают беспорядочно. Значения фона лежат в пределах dBi < 20 дБ. При сильном повреждении подшипника возможно увеличение фона. Как правило, наблюдается большая разница dBn и dBi.
  3. При отсутствии смазки, слишком плотной или слабой посадке подшипника увеличивается фон подшипника (dBi > 10), даже если подшипник не имеет повреждений на беговых дорожках. Амплитуда пиковых ударов и фона относительно близки (dВn = 30 дБ, dBi = 20 дБ).
  4. При кавитации насосов уровни фона характеризуются высоким значением амплитуды. Измерение проводится на корпусе насоса. При этом следует иметь в виду, что криволинейные поверхности демпфируют ударные импульсы от кавитации. Разница пиковых значений и фона весьма мала (например, dBn = 38дБ, dBi = 30 дБ).
  5. Механическое касание вблизи подшипника между вращающейся и неподвижной частями механизма вызывает ритмичные (повторяющиеся) ударные всплески пиковых значений.
  6. Если подшипник подвергается ударной нагрузке, например, от хода поршня в компрессоре, ударные импульсы будут повторяющимися по отношению к рабочему циклу машины, поэтому общий фон (dBi) и пиковые амплитуды (dBn) самого подшипника легко определяются.

Классификация

Выделяют несколько классификаций в зависимости от параметра, положенного в основу:

  • По принципу работы. Генераторные — осуществляют прямое преобразование механической энергии в электрическую. Параметрические — имеют внешние источники питания, позволяют изменять сопротивление, частоту и другие электрические параметры за счет механического воздействия.
  • По способу получения информации. Контактные — непосредственно крепятся к объекту исследования. Бесконтактные — измерения проводятся параметрбез предварительного крепежа, на определенном расстоянии.
  • По механизму преобразователя сигнала выделяют три типа: оптические, пьезоэлектрические, трибоэлектрические, вихретоковые, радиоволновые.

Оптический датчик вибрации работает на основе эффекта Доплера. Он состоит из нескольких элементов:

  • Источник излучения, чаще всего лазерного
  • Приемник (оптическая схема)
  • Электронная схема, предназначена для обработки информации.

В состоянии покоя длина волны луча лазера при отражении соответствует истинной длине луча. При возникновении вибрационных процессов происходит сдвиг длины волны. Определение значения и направления величин, на которую меняется длина волн лазерного луча, позволяет определить скорость и направление движения. С помощью интерферометрической схемы, которая располагается в приемнике, определяется данная величина. Таким образом, определяются тип вибрационных колебаний. Оптические ДВ делятся на 2 типа:

  • Гомодинный метод. Предоставляет возможность изучения амплитуды и фаз вибрационных колебаний, но для получения достоверных результатов значения амплитуд не должны быть большими.
  • Гетеродинный метод. Применяются при любых значениях амплитуд, но предполагают наличие достаточно сложной аппаратуры и периодической калибровки.

Применяются чаще всего в исследовательских лабораториях, в строительстве. К основным преимуществам можно отнести высокую чувствительность, быстродействие, компактность и пожаробезопасность. Кроме того, диагностика может осуществляться бесконтактным способом. В качестве недостатков можно выделить высокую стоимость, необходимость подключения сложного оборудования. Такие приборы потребляют большое количество энергии, чувствительны к качеству и чистоте поверхности, окружающей среде, атмосферным явлениям. При работе необходимо обязательное соблюдение мер предосторожности и использование дополнительных средств защиты.

Трибоэлектрическое устройство

Принцип работы трибоэлектрического устройства заключается в обнаружении каких-либо процессов деформации конструкции. Для этого предусмотрен специальный чувствительный элемент, особенностью которого является эффект трибэлектричества. Применяется чаще всего в оборудовании охранных систем, ограждении территорий.

Вихретоковые датчики вибрации предполагают бесконтактный способ работы. С их помощью можно провести замеры перемещения, а также частоты вращения. Состоят из трех основных элементов:

Вихретоковый датчик

  • Бесконтактный вихревой пробник — металлический зонд, с одной стороны которого располагается диэлектрический наконечник, с другой коаксиальный кабель. Конструкция зонда зависит от места монтажа.
  • Драйвер — специальный электронный блок, который получает сигнал от пробника и определяет параметры полученной информации. На выходе получается электрический сигнал. Чаще всего представлен в виде герметичной металлической коробки, имеющей соединитель для коаксиального кабеля, клемы питания, заземления, проводов, выходных сигналов.
  • Кабель, предназначен для подключения бесконтактного вихревого пробника к драйверу. Конструкция может предполагать использование кабеля разной длины. Для обеспечения надежности и прочности все составные части кабеля армируются.

На диэлектрическом наконечнике расположена катушка индуктивности, в которой возникают высокочастотные колебания с помощью драйвера. В результате этого образуется электромагнитное поле, которое необходимо для обеспечения взаимодействия с исследуемым объектом. На поверхности под действием электромагнитного поля возникают вихревые токи, способные изменить параметры самой катушки, ее активное и индуктивное сопротивление. Все изменения преобразуются драйвером в электрические сигналы.

Конструкция может отличаться в зависимости от того в каком варианте выполнен пробник и длины удлинительного кабеля (их может быть несколько). Они высокочувствительны, не имеют нижних пределов по частоте, позволяют получить достаточно точные результаты, которые не требует математической обработки. Предназначен, в основном, для проверки в сфере тяжелой промышленности, диагностики турбинных установок, электромоторов.

Пьезоэлектрические устройства

В основу работы пьезоэлектрических устройств положен пьезоэффект. Пьезоэффект — это явление при котором возникает разность потенциалов на пьезокристалле при условии его механической деформации. Располагается пьезокристалл внутри чувствительного элемента.

Работает по следующему принципу:

  • При возникновении вибрационных процессов возникают колебания, которые позволяют выработать электрический сигнал
  • Полученный сигнал с пьезокристалла направляется в преобразователь
  • Преобразователь обрабатывает полученную информацию и представляет ее в удобном для анализа виде.

Таким образом, чувствительный элемент предназначен для преобразования обнаруженных механических волн в электрический сигнал. Раньше их использовали только для определения ускорений, в настоящее время они позволяют измерить весь диапазон вибрационных характеристик с высоким уровнем точности.

Такие датчики вибрации, как пьезоэлектрические, достаточно распространены и доступны за счет относительного простого устройства, надежности, устойчивости к механическим воздействиям. К основным недостаткам можно отнести невозможность определения вибрационных колебаний без непосредственного контакта с предметом исследования. Кроме того, механические способ передачи не позволяет уловить весь спектр воспринимаемых частот.

Радиоволновые приборы относятся к типу бесконтактных, предоставляют возможность измерения различных параметров. Используются в любых условиях, на различных расстояниях, не чувствительны к загрязнениям, повреждениям поверхности. В основе работы используется принцип зависимости исследуемых параметров от величины параметров электромагнитных систем, которые можно контролировать, например, амплитуда сигнала, число колебаний, их частота, время прохождения волны от предмета исследования до источника. Выделяют 2 группы:

  • Резонаторные. При работе данных приборов устройство, уровень вибрации которого необходимо измерить, помещается в поле СВЧ резонатора. Такой способ обеспечивает их высокую точность. Но достаточно сложная конструкция, невозможность измерений на больших расстояниях, необходимость создания колебаний, достаточно сложный механизм анализа полученных результатов не позволяют использовать их во всех сферах промышленности.
  • Интерференционные — предполагают зондирование волнами СВЧ и их анализ в результате отражения от объекта. В результате электромагнитного воздействия и интерференции возникает стоячая волна, которая меняет свою амплитуду под воздействием вибраций. Провести такие измерения напрямую довольно сложно, необходимы определенные навыки и калибровка при изменении любого параметра.

Интерференционный датчик

Вопросы для самостоятельного контроля

  1. Где необходимо расположить контрольный точки для измерения параметов вибрации?
  2. Какой стандарт регламентирует проведение измерений вибрации?
  3. Где нельзя располагать контрольные точки для измерения вибрации?
  4. Для проведения измерений ударных импульсов какие должны быть соблюдены требования?
  5. Какие существуют требования при выборе частотного диапазона и параметров измерения вибрации?
  6. Какие задачи достигаются при анализе общего уровня вибрации?
  7. Как выполняется оценка технического состояния?
  8. Зачем проводится локализация точек имеющих максимальную вибрацию?
  9. Что необходимо для предварительного диагноза возможных повреждений?
  10. Физическая сущность и область применения метода ударных импульсов.

Стационарные системы мониторинга

В таких системах датчики установлены прямо на агрегате и наблюдение за агрегатом идёт постоянно. Можно следить за состоянием агрегата в текущий момент времени и оперативно вмешиваться в его работу.

Стационарные системы устанавливаются на критичном и дорогом оборудовании. Они привязаны к агрегату и не могут быть использованы для измерения вибрации другого агрегата. Поэтому установить такие системы – это дорого.

Кроме вибрации, системы мониторинга измеряют и другие параметры – температуру, обороты, ток, напряжение, расход и т.п.

Испытание электрических машин — Измерение вибрации электрических машин

Измерение вибрации электрических машин позволяет контролировать качество и надежность ЭМ, решать вопросы диагностики, амортизации и виброизоляции. Методы оценки вибрационных характеристик ЭМ (собственной вибрации) при периодических, типовых и приемо-сдаточных испытаниях устанавливаются ГОСТ 12379-75 (СТ СЭВ 2412-80).

7.3.2. Методы измерения вибрации.

Как указывалось выше, измерения вибрации электрических машин проводятся в соответствии с ГОСТ 12379-75 (СТ СЭВ 2412-80) для электрических машин массой 0,5—2000 кг и частотой вращения от 600— 30000 об/мин, а для машин, имеющих массу свыше 2000 кг, по ГОСТ 20815-75 (СТ СЭВ 1097-78).
Измерения вибрации проводятся в диапазоне от рабочей частоты вращения до 2000 Гц при определении общего уровня виброскорости vCK3. Для тех ЭМ, у которых рабочая частота вращения до 3000 об/мин, можно измерять vCK3 до 1000 Гц. Необходимость проведения измерений вибрационной скорости в диапазоне частот до 2000 Гц или вибрационного ускорения в диапазоне частот до 10000 Гц, если в диапазон измерений входят частоты свыше 2000 Гц, а также необходимость спектрального анализа обычно устанавливается заказчиком в стандартах или технических условиях на конкретные типы электрических машин.
В качестве измерительной аппаратуры используются виброизмерительные приборы, выполненные в соответствии с требованиями ГОСТ 25275-82 (СТ СЭВ 3173-81) и ГОСТ 25865-83, а также октавные и третьоктавные фильтры — по ГОСТ 17168-82 (СТ СЭВ 1807-79), которые обеспечивают измерения необходимых параметров вибрации. Класс точности виброизмерительных приборов, отградуированных в абсолютных единицах должен быть не более 15, а градуированных в децибелах — не более 1,5.
При контроле вибрации электрических машин следует применять упругую установку. При этом должна обеспечиваться свобода вибрационных перемещений испытуемой машины путем введения упругих элементов, которые могут быть расположены ниже или выше опорных точек крепления электрических машин. В тех случаях, когда упругая установка ЭМ технически невозможна и имеется соответствующее указание в стандарте или ТУ на конкретный тип ЭМ, допускается жесткая установка. Требования к фундаментам, собственным частотам упругоустановленной машины и правила выбора амортизаторов приведены в п. 7.2.2.
Точки измерения и условия работы ЭМ во время испытаний выбираются в соответствии с ГОСТ 12379-75 (СТ СЭВ 2412-80). Число и расположение точек измерения может быть изменено при наличии специальных указаний в стандартах или ТУ на конкретные типы ЭМ.
В качестве преобразователей механических колебаний в электрические в ЭМ преимущественно применяются виброизмерительные пьезоэлектрические преобразователи (ВИП), устанавливаемые в точках измерения на ЭМ. Способ закрепления преобразователя влияет на частотные характеристики всего измерительного тракта и, следовательно, на точность измерений.

Способы установки виброизмерительных преобразователей

Рис. 7.9. Способы установки виброизмерительных преобразователей:
а — крепление металлической шпилькой; б — крепление на мастике; в — крепление постоянным магнитом

Рекомендуются следующие основные способы установки ВИП (рис. 7.9):

  1. Способ установки преобразователей с помощью металлической шпильки показан на рис. 7.9, а (для максимальной температуры 1000 °С). При таком креплении получаются наиболее надежные результаты измерения, так как обеспечивается полное совпадение частотной характеристики с калибровочной кривой. Такой же результат дает ввертывание преобразователя в резьбовое отверстие на вибрирующей поверхности (в том случае, если на наружной поверхности датчика имеется резьба). Для получения хорошего механического контакта с вибрирующей поверхностью применяются силиконовые смазки ПМС-400, ПМС-600 или масло К-17, позволяющие устранить резонансы резьбы.
  2. Способ установки ВИП с помощью специальной мастики показан на рис. 7.9, б (для максимальной температуры 40 °С). При этом способе крепления между преобразователем и опорной вибрирующей поверхностью наносится тонкий слой мастики. Если мастика достаточно твердая, то частотная характеристика также совпадает с калибровочной кривой. Применение мягких мастик снижает коэффициент преобразования ВИП на частотах выше 3000 Гц. К такому же результату приводит повышение температуры опорной поверхности. Этот метод крепления очень широко распространен.
  3. Способ крепления с помощью постоянного магнита показан на рис. 7.9, в (для максимальной температуры 150 °С). Этот способ удобен тем, что позволяет быстро устанавливать ВИП в точке измерения, однако он имеет ряд недостатков. Одним из существенных недостатков является снижение собственной резонансной частоты крепления ВИП примерно до значения 3000 Гц, что ограничивает верхнюю границу частотного диапазона измерений до 1000 Гц. Кроме того, повышение температуры поверхности снижает силу притяжения магнитного прихвата, что изменяет частотную характеристику ВИП и увеличивает погрешность измерения.

Для установки ВИП на ЭМ необходимо подготовить опорную площадку, которая должна иметь поверхность, обеспечивающую плотное прилегание к ней опорной поверхности ВИП. По размерам площадка должна быть больше, чем поверхность фланца или основания ВИП, и иметь шероховатость не выше R = 1,25 мкм с отклонением от плоскостности не более 0,01 мм. Резьбовое отверстие для крепления ВИП должно быть выполнено под углом 90 ± 0,5° к опорной поверхности. Резьбовое гнездо должно также иметь фаску, равную 1,2—1,4 высоты профиля резьбы.
При выборе крепления ВИП отдается предпочтение способам, рекомендуемым предприятием-изготовителем ВИП. При всех способах крепления желательно убедиться в отсутствии резонансов крепления в контролируемом диапазоне частот, что проверяется калибровкой преобразователей на образцовом вибростенде с выбранным способом крепления.
При контроле вибрации электрических машин помехи от внешней вибрации в принятых точках измерения не должны превышать 25% нормируемой величины, а при измерении ускорений в децибелах необходимо, чтобы уровень полезного сигнала превышал уровень помех на 8—10 дБ. Помехи от внешней вибрации следует определять при неработающей ЭМ, но при включении всех вспомогательных стендовых механизмов, обеспечивающих работу ЭМ.
Измерения вибрации при периодических, типовых и приемо-сдаточных испытаниях проводятся в порядке, предусмотренном стандартами или ТУ на конкретные типы ЭМ после испытания по программе приемосдаточных испытаний, но до испытаний на внешние механические воздействия и испытания на ресурс. Условия работы машины во время испытаний, при которых контролируется вибрация, приведены в ГОСТ 12379-75 (СТСЭВ 2412-80).

7.3.3. Оформление результатов испытаний.

Упрощенная схема виброметра

Протокол испытаний по определению вибрации электрических машин должен содержать следующие данные:
тип и заводской номер, наименование предприятия-изготовителя, номер стандарта или ТУ на ЭМ;
основные номинальные данные ЭМ;
способ установки машины с указанием собственных частот и наличие упругой установки;
режим работы при испытаниях;
измеряемую величину;

Рис. 7.10. Упрощенная схема виброметра

тип и номер вибропреобразователей и измерительных приборов; результаты измерения вибрации в отдельных точках, в том числе данные спектрального анализа;
класс вибрации для машины в соответствии с ГОСТ 16921-83; место, дату испытания, фамилию испытателя.
Содержание протокола измерения вибрации при необходимости может быть расширено или изменено.

Измерение вибрации

Требования, предъявляемые к электрическим машинам с точки зрения виброакустических характеристик, предусматривают обязательный контроль вибрации и шума на стадии производства и в процессе эксплуатации. Измерения производятся для исследования причин, вызывающих вибрации и шум, и для контроля качества продукции. Измерение виброакустических характеристик при обеспечении требуемого качества электрических машин проводится в соответствии с инструкциями и стандартами, в которых указывается методика измерений, измерительная аппаратура, условия монтажа и режим работы машины. Результаты измерений сопоставляются с эталоном или контрольными данными для выявления соответствия полученных результатов допустимому уровню вибрации и шума.

Различные методики позволяют контролировать определенные акустические параметры электрической машины: общий уровень звукового давления, звуковую мощность, характеристику направленности излучения и т.д.

Режимы работы машины должны соответствовать типовым установившимся режимам: при номинальной нагрузке и номинальной частоте вращения, при полной нагрузке, при холостом ходе, при различных операциях технологического процесса.

При исследовании виброакустических характеристик синхронных машиннагрузку имитируют в режиме компенсатора. При типовых испытанияхасинхронных машин и двигателей постоянного токанагрузочное устройство размещают за пределами испытательного помещения (камеры) и соединяют его с испытуемой машиной.

Согласно ГОСТ 16921-83 при оценке вибрации электрических машин основной измеряемой величиной должно являться эффективное значение вибрационной скорости vэф измеренное в диапазоне рабочей частоты до 2000 Гц. Необходимость проведения спектрального анализа по вибрационному ускорению в диапазоне частот свыше 2000 Гц согласуется дополнительно.

Для оценки вибрации установлено восемь классов, индексы которых по ГОСТ 16921-83 соответствуют максимально допустимой для данного класса вибрационной скорости.

Основные требования к измерительной аппаратуре изложены в ГОСТ 16876-71 и ГОСТ17168-82.

В соответствии с ГОСТ 12379-75 виброизмерительные преобразователи должны жестко крепиться к испытуемой электрической машине или дополнительной массе, причем масса вибропреобразователя не должна превышать 5% массы электрической машины.

Режим работы машины при оценке вибрации оговаривается техническими условиями или стандартами на определенный тип машины. Например, для электромашинных преобразователей и электрических машин, нагрузка которых осуществляется без дополнительных приводных устройств или механизмов, контроль вибрации проводится в режиме номинальной нагрузки. Контроль вибрациии синхронных машинпроводится при номинальном напряжении и токе статора в режиме перевозбуждения двигателя. Для большинства электрических машин контроль вибрации следует проводить в режиме холостого хода.

Согласно ГОСТ 12379-75 виброиспытания электрических машин с одной рабочей частотой вращениянеобходимо проводить при номинальной частоте вращения. Испытаниямногоскоростныхмашин проводят при частоте вращения с наибольшей вибрацией.

Виброиспытания машин, имеющих регулируемую частоту вращения, выполняют при номинальной и максимальной рабочих частотах вращения.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *