В чем преимущество использования разреженных газов для измерения температуры
Перейти к содержимому

В чем преимущество использования разреженных газов для измерения температуры

  • автор:

История термометра

Идея создания прибора для измерения температуры впервые возникла у голландского естествоиспытателя Ван-Гельмонта (1577—1644), а первый «термометр» был сконструирован итальянским физиком Галилеем в 1597 г. Он состоял из стеклянной трубочки с шаровидным расширением на одном конце. В открытое горлышко трубки была введена капелька ртути. При изменении температуры воздуха внутри шарика ртутная «пробка» соответственно то поднималась, то опускалась.

В дальнейшем Ван-Дреббель упростил свой термометр, причем введение воды в коленчатую трубку производилось путем сильного нагревания шара и последующего его охлаждения.

Вскоре ввиду относительно высокой температуры замерзания вода была заменена смесью из трех частей воды и одной части азотной кислоты. Для окрашивания сюда добавляли немного медного купороса. Хотя такие термометры были весьма чувствительны, однако они, в сущности, являлись «баротермоскопами», т. с. приборами, показания которых зависели от изменений атмосферного давления.

Первый термометр в современном смысле слова был сконструирован во Флорентийской академии (Италия). Он состоял из стеклянной трубочки, закрытой наверху и соединенной нижним концом со стеклянным полым шариком. Термометрической жидкостью служил подкрашенный винный спирт. Для наполнения резервуара шарик термометра сильно нагревали, в результате чего воздух разрежался настолько, что большая его часть выходила наружу. Затем открытый конец трубки погружали в окрашенный спирт, который поднимался в ней и заполнял не только ее, но и шарик. После этого термометр охлаждали так, чтобы осталась пустой приблизительно половина трубки, и запаивали открытый ее конец.

Это было слишком сложно.

В дальнейшем прибор наполняли окрашенным спиртом настолько, чтобы спирт заполнил приблизительно четверть длины трубки, и нагревали до тех пор, пока жидкость не поднималась почти до верхушки трубки (при предельно выкачанном воздухе), и тотчас же трубку запаивали. Изготовленные таким путем термометры были почти так же чувствительны, как и современные.

Значительно позже обнаружили, что размеры шарика резервуара не должны быть слишком большими, а кроме того, — что теплота должна передаваться, по мере возможности, его центральной частью. В результате появились термометры, сплющенные настолько причудливо, что они напоминали, по выражению современника, «даму, играющую в трик-трак». Для компактности вместо прямолинейных трубок применяли изогнутые несколько раз причем каждый физик делал их по-своему: флорентийские академики помещали ноль своей шкалы против того места, где устанавливался столбик жидкости термометра, поставленного в подвале их обсерватории. Другие принимали за ноль температуру максимальных зимних морозов. В термометрах того времени отмечали также деление «жарко», определяя его прикладыванием к руке лихорадочного больного в моменты пароксизмов или подвергая действию прямых лучей солнца в один из наиболее знойных летних дней.

В середине XVII в. известный физик Роберт Бойль (1627—1691) предложил принять за исходную точку температуру замерзания воды. Однако вскоре обнаружили, что для построения шкалы одной исходной точки недостаточно. Делансэ в своем труде о теплоте писал:

«Надо зимой проследить процесс замерзания воды и сделать на шкале термометра соответствующую пометку. Положите немного сливочного масла на шарик того же термометра и сделайте на его шкале вторую пометку против верхушки столбика в момент плавления масла. Расстояние на шкале между полученными двумя пометками разделите пополам и получите место третьей пометки — средней температуры между холодом и жаром. Каждый из полученных двух интервалов а свою очередь разделите на десять равных частей, кроме того, нанесите по четыре таких же деления ниже точки замерзания воды и выше точки плавления масла. В результате получите пятнадцать делений для холода и столько же для тепла».

Для повышения чувствительности термометров старались максимально увеличить длину трубок, которая доходила до 1 м! Однако такие термометры были слишком громоздки, и их перевозка была затруднительна. Поэтому пытались уменьшить, габарит термометров, делая ряд изгибов трубки.

В 1694 г. Шарль Ренальдини в Павии (Италия) изготовил термометр, нулевое деление которого было установлено после помещения шарика в смесь воды со льдом; вторая пометка соответствовала температуре кипящей воды. Ньютон (1643—1727) для установления верхней точки брал не спирт, а льняное масло, имеющее более высокую точку кипения. Его шкала состояла из шести делений, соответствовавших следующим температурам: 1° — тающего льда, 2° — человеческой крови, 3° — плавления воска, 4° — кипения воды, 6° — плавления сплава свинца, висмута и олова и 6° — плавления чисто свинца.

В середине XVII в. появилось несколько весьма интересных термометров. Один из них назывался «Картезианским водолазом» и состоял из продолговатого хрустального сосуда длиной 10—12 см и диаметром около 5 см. Этот сосуд герметически закрыт, и только в верхней его части имеется небольшое количество воздуха. Остальное пространство заполнено разбавленным спиртом, в котором плавают 10—12 маленьких шариков разного веса, имеющих форму слезы и изготовленных из тонкого дутого стекла и наполненных воздухом. При достаточном понижении температуры эти шарики всплывают на поверхность жидкости, а при повышении температуры окружающего пространства снова погружаются в жидкость на разную глубину. При очень высокой температуре все шарики опускаются на дно хрустального сосуда.

Делансэ по поводу такого термометра отметил: «Благодаря ему стало возможным обнаруживать усиление и ослабление лихорадки». Для этой цели были изготовлены специальные термометры аналогичного типа, имевшие форму маленькой черепахи, чтобы их было удобно вкладывать подмышку.

В процессе дальнейшего усовершенствования термометров особенно важным моментом была замена спирта ртутью, обладающей следующим основными преимуществами: она — хороший проводник тепла и быстро реагирует на перемены температуры окружающего пространства, не замерзает при обычных низких температурах и не кипит при сравнительно высоких, не смачивает стекла.

Голландский физик Даниэль Фаренгейт (1686—1736) впервые сконструировал (1714 г.) сравнимые термометры, использовав для них в качестве термометрической жидкости винный спирт. Ноль был поставлен против верхушки столба спирта при погружении резервуара в замораживающую смесь определенных количеств льда, воды и морской соли. Температура тающего льда по шкале Фаренгейта 32°. Кроме того, имеется еще третья постоянная точка, соответствующая нормальной температуре здорового человека, измеряемой во рту или подмышкой. В дальнейшем Фаренгейт внес в свой термометр два существенных улучшения: третьей точкой он установил температуру кипящей воды (212°) и заменил спирт ртутью. Шкала Фаренгейта и теперь применяется в Англии и США. Чтобы перевести градусы Фаренгейта в современные градусы Цельсия, надо из данного числа вычесть 32 и полученный остаток помножить на 5/9. И, наоборот, для перевода градусов Цельсия в градусы Фаренгейта число их следует помножить на 9/5 и к произведению прибавить 32. Французский физик Рене Антуан Реомюр изготовил в 1730 г. термометры с жидкостью, состоявшей из такой смеси воды со спиртом, что объем ее увеличивался в отношении 80/1000 при изменении температуры от ноля (тающий лед) до 80° (кипящая вода). Промежуток между этими отметками был разделен на 80 равных частей. Термометры Реомюра быстро распространились во Франции и Италии, однако качество их было хуже, чем ртутных.

Для этого периода характерно многообразие типов термометров и шкал: почти в каждой стране имелись свои,. Так например, Королевское физическое о-во в Лондоне применяло термометры со шкалой Реомюра, причем наряду с цифрами градусов была проставлены словесные обозначения, а именно: против 0 стояло «Очень жарко», 25° — «Жарко», 45° — «Умеренно» и 65° — «Мороз». Порядок обозначений был обратный— чем больше число градусов, тем ниже температура.

Последнее усовершенствование обозначений шкалы свел шведский ученый Андерс Цельсий (1701— 1744), предложивший деление всей шкалы на 100 градусов и указавший «а необходимость только двух постоянных точек — таяния льда и кипения воды. Эта конструкция термометров принята повсеместно и до сих пор применяется в науке и технике, а также и в повседневной жизни.

Измерение более высоких температур, неосуществимое ртутными термометрами (свыше 300°), производят специальными приборами — «пирометрами», основанными на измерении оптических или электрических свойств некоторых тел. Электрические пирометры бывают двух видов: одни основаны на изменении сопротивления проводников пропорционально повышению или понижению температуры, а другие — на изменении напряжения термоэлектрических токов.

Измерение еще больших температур, недоступное этим двум типам пирометров, производят приборами, основанными на измерении излучения накаленного тела. Различают два типа таких пирометров: оптический, при котором сравнивают интенсивность излучения данного тела с интенсивностью нормального излучателя, и радиационный, измеряющий общее количество энергии, излученное накаленным телом. Пользуясь такими пирометрами, можно измерять температуры до 2000°.

Для особо точных измерений температур служат так называемые «болометры» — чрезвычайно чувствительные приборы, основанные на измерении сопротивления тонкой платиновой проволоки при изменениях температуры. С помощью болометра удается измерять температуры менее одной миллионной доли градуса. В этом приборе изменения сопротивления металлической нити измеряют при помощи мостика Унтстона. Пределы применения болометра: абсолютный нуль — 273° и температура плавления платины — около 3000°.

Разреженные газы

Полезные свойства газов, с успехом используемые в технике, в некоторых случаях играют отрицательную роль. От газа трудно избавиться, т. е. получить газ в сосуде при очень низ-\ком давлении — в состоянии вакуума, когда молекулы газа сталкиваются не друг с другом, а только со стенками сосуда.

Высокий вакуум нужен во многих случаях и главным образом в электронно-лучевых трубках и других вакуумных приборах. Иногда приходится создавать вакуум в очень больших объемах, например в огромных ускорителях элементарных частиц или для имитации космического пространства. Один из самых больших имитаторов в Хьюстоне (США) имеет диаметр 22 м и высоту 15-этажного дома (40 м). Когда астронавты высаживались на Луне, дублирующий экипаж проделывал те же операции в имитаторе. Это позволяло направлять действия астронавтов в случае непредвиденных аварий.

Высокий вакуум нужен и для многих других целей, в частности для выплавки свободных от оксидов металлов, создания термоизоляции, например в термосах.

Обычные поршневые насосы из-за просачивания газов между поршнем и стенками цилиндра становятся неэффективными. Получить с их помощью давление ниже десятых долей миллиметра ртутного столба не удается. Приходится для откачки газов применять различные сложные устройства.

В настоящее время при температуре 30 К достигнуты давления до 10 -12 Па. При охлаждении до температуры жидкого гелия (≈ 5 К) давление должно было бы составлять 10 -31 Па. Такое давление уже невозможно измерить. Концентрация газа при таком давлении п3·10 -11 м -3 . Это означает, что, например, через куб со стороной 1 м пролетит молекула 1 раз в 3 года. Даже давление в межгалактическом космическом пространстве намного больше: 10 -27 Па. А внутри нашей галактики давление составляет 10 -15 Па.

§ 3.12. Примеры решения задач

Задачи на применение газовых законов очень разнообразны. Для их решения нельзя указать какой-либо один определенный прием. Полезными могут оказаться следующие советы.

1. Если согласно условию задачи один из трех параметров (р, V или Т) постоянный, то при Т = const надо применять закон Бойля—Мариотта (3.5.2), при p = const — закон Гей-Люссака (3.7.7), а при V = const — закон Шарля (3.10.2) или (3.10.3).

2. Если изменяются все три параметра, то следует воспользоваться уравнением состояния в форме (3.9.9) или (3.9.5).

Уравнение состояния (3.9.9) применяется в тех случаях, когда известна масса газа и часть макроскопических параметров в определенном состоянии газа и надо найти неизвестные величины.

3. Для определения давления смеси газов, не вступающих в химические реакции, используют закон Дальтона (3.8.2).

4. Во многих задачах требуется построение графиков, изображающих разного рода процессы. Для этого нужно знать зависимость параметров друг от друга, которая в общем случае дается уравнением состояния, а в частных — газовыми законами.

5. При решении большинства задач надо четко представлять себе, каково начальное состояние системы и какой процесс переводит его в конечное состояние.

Задача 1

Как измерить медицинским термометром температуру тела человека, если температура окружающего воздуха +42 °С?

Решение. Можно предварительно охладить термометр в холодильнике. Если холодильника нет, то нужно подержать термометр 5—8 мин под мышкой, извлечь его и сразу же стряхнуть. Термометр покажет температуру тела, так как ртуть в термометре сожмется при контакте с телом до объема, соответствующего температуре тела.

Задача 2

Газ в цилиндрическом сосуде разделен на две равные части подвижным поршнем, имеющим массу тп и площадь сечения S. При горизонтальном положении цилиндра давление газа в каждой половине сосуда равно р. Определите давление р1 газа над поршнем при вертикальном положении цилиндра. Температуру газа считать постоянной.

Решение. При горизонтальном положении цилиндра объем каждой его части обозначим через V (эти объемы равны). При вертикальном положении цилиндра объем верхней части станет равным V + ∆V, а нижней V— ∆V. Давление в нижней части цилиндра станет равным р1 +.Согласно закону Бойля— Мариотта

Исключив из этих равенств , получим квадратное уравнение дляp1:

Отсюда

Второй корень квадратного уравнения отрицателен и потому лишен физического смысла.

Задача 3

Поршневой насос при каждом качании захватывает воздух объемом V0. При откачке этим насосом воздуха из сосуда объемом V насос совершил п качаний. Затем другой насос с тем же рабочим объемом V0 начал нагнетать воздух из атмосферы в тот же сосуд, совершив также п качаний. Какое давление установится в сосуде? Температуру воздуха во время работы насоса считать постоянной.

Решение. Согласно закону Бойля—Мариотта при откачке воздуха из сосуда после первого качания давление в сосуде станет равным: р1 = , где р0— атмосферное давление. После второго качания будет выполняться равенство: p1V = p2(V + V0) и, следовательно, р2 = р0 , и т. д. После п качаний в сосуде установится давление .

При нагнетании воздуха в сосуд после п качаний давление станет равным:

При любом п р > р0, так как во время нагнетания воздуха при каждом качании насос захватывает воздух, имеющий атмосферное давление р0, а при откачке при каждом качании удаляется воздух при давлении, меньшем р0.

Задача 4

В запаянной с обоих концов цилиндрической трубке находится воздух при нормальных условиях. Трубка разделена подвижным поршнем на две части, объемы которых V1 и V2 относятся как 1:2. До какой температуры t1 следует нагреть воздух в меньшей части трубки и до какой t2 охладить в большей, чтобы поршень делил трубку на две равные части, если нагревание и охлаждение в обеих частях трубки производятся при условии =const?

Решение. Условие =const означает, что процессы нагревания и охлаждения происходят изобарно. При отношении начальных объемов эти объемы составляютV1 = V0 и V2= где V0 — объем всей трубки. Конечные объемы обеих частей одинаковы и равны V3 = .

Согласно закону Гей-Люссака для воздуха в меньшей части трубки выполняется соотношение

а для воздуха в большей части

где Т0 = 273 К — температура, соответствующая начальным условиям. Отсюда

Задача 5

В цилиндре под поршнем находится воздух при давлении р1 = 2 • 10 5 Па и температуре t1 = 27 °С. Определите массу т груза, который нужно положить на поршень после нагревания воздуха до температуры t2 = 50 °С, чтобы объем воздуха в цилиндре стал равен первоначальному. Площадь поршня S = 30 см 2 .

Решение. Так как в процессе нагревания объем воздуха в цилиндре не изменяется, то согласно закону Шарля имеем

(3.12.1)

Подставляя в (3.12.1) выражение для р2, получим:

Задача 6

Найдите среднюю (эффективную) молярную массу сухого атмосферного воздуха, предполагая известный процентный состав воздуха по массе: азот — п1 = 75,52%, кислород — п2 = 23,15%, аргон — п3 = 1,28% и углекислый газ — п4 = = 0,05%.

Решение. Для каждого газа можно записать уравнение состояния:

Здесь М1, М2, М3 и М4 — молярные массы соответственно азота, кислорода, аргона и углекислого газа.

Складывая правые и левые части этих уравнений, получим:

(3.12.2)

Для смеси газов выполняется соотношение

(3.12.3)

где т = т1 + т2 + т3 + т4 — масса воздуха с объемом V, а М — искомая эффективная молярная масса. Согласно закону Дальтона

Сравнивая уравнения состояния (3.12.2) и (3.12.3), получим:

Разделив числитель и знаменатель на т и умножив на 100%, получим выражение для М через процентный состав воздуха по массе:

Задача 7

Закрытый с обоих концов цилиндр наполнен газом при давлении р — 100 кПа и температуре t = 30 °С и разделен подвижным теплонепроницаемым поршнем на две равные части длиной L по 50 см. На какую величину ΔT нужно повысить температуру газа в одной половине цилиндра, чтобы поршень сместился на расстояние t = 20 см, если во второй половине цилиндра температура не изменяется? Определите давление газа после смещения поршня.

Решение. Для газа в части цилиндра с постоянной температурой применим закон Бойля—Мариотта:

(3.12.4)

где S — площадь основания цилиндра. Для нагреваемой части цилиндра запишем уравнение Клапейрона:

(3.12.5)

В уравнениях (3.12.4) и (3.12.5) р1 — давление газа после смещения поршня, одинаковое в обеих частях цилиндра вследствие равновесия поршня, а Т+ ΔT в уравнении (3.12.5) — температура газа в нагретой части цилиндра.

Ртуть точнее электроники. Мифы и реальность

Действительно ли электронные градусники показывают температуру меньше ртутных, как правильно ими пользоваться и почему дома следует иметь несколько видов медицинских градусников и есть ли среди нас люди с «эталонной» температурой. В этих и других вопросах разбирался отдел науки.

Правда ли, что градусники на батарейках уменьшают температуру тела, какие секреты эксплуатации хранит в себе такой простой и понятный прибор, и для чего в доме сразу несколько измерительных приспособлений.

Любой современный человек сталкивался с непонятной ситуацией, когда приборы для измерения температуры тела во время недомогания дают разные показатели при одинаковых условиях применения. Иногда, общее состояние довольно неплохое, а градусник выдает повышенные показатели, и наоборот, самочувствие отвратительное, а прибор демонстрирует допустимые цифры для здорового человека. А если к процессу подключить разнообразные термометры: электронные, ртутные, инфракрасные (второе название – бесконтактные), можно вообще потеряться в ситуации.

Ртуть точнее электроники. Мифы и реальность

В комплекте к приборам прилагается подробная инструкция, согласно которой, погрешность ртутного и электронных градусников колеблется на уровне 0,1°C, а в бесконтактных приборах – 0,2-0,3 °C. Некоторые активные пользователи отмечают, что в электронных измерителях разбег достигает 0,5 °C. Научный отдел решил подтвердить или опровергнуть существующее мнение о точности ртутного термометра, принцип действия которого основывается на расширении содержимого в ртутном резервуаре (тонкий кончик градусника) от соприкосновения с теплым телом. А также понять правила применения электронных приборов для измерения температуры тела. Необходимо услышать мнение авторитетного эксперта и провести собственный эксперимент.

Специалист

Для разъяснения всех возникших вопросов пригласили человека, который непосредственно связан с продукцией – коммерческий директор одной из фирм-производителей термометров, Владимир Седых.

Правильно ли будет говорить о том, что ртутьсодержащие приборы точнее тех, которые работают от батареек?

Нет. Это миф. Измерительные электронные приборы не отличаются от стандартных. Погрешности в одном и втором на уровне 0,1°C. В градусниках на батарейках есть проблема – для точного измерения его необходимо очень плотно прижимать к телу. При наружном применении сложно контролировать прилегание, поэтому такие термометры используют для орального и ректального способа измерения температуры. Кроме достаточно плотного соприкосновения датчика с телом, температура внутренняя от внешней как раз и отличается на среднюю погрешность.

Практически все производители указывают, что термометры на батарейках предназначены именно для анальных отверстий, но в нашей стране такие методы не нашли отклика у населения. Кроме этого, для чистоты измерения, необходимо точно соблюдать время соприкосновения с телом. В приложении написано – 10 секунд. Но как показывает опыт – не меньше 5 минут. После того, как время измерения подошло к концу, Вы услышите звуковое оповещение – характерный писк. Не спешите доставать прибор. Сидите еще 2 минуты.

Ртуть точнее электроники. Мифы и реальность

Если заявлено, что прибор моментально способен определить градусы, зачем зря тратить дополнительное время?

Это происходит из-за замеров разных температур: ртутный градусник отображает максимальные градусы за конкретный промежуток времени. Например, Вы его держите 5 минут, то высветится максимальный показатель этого времени. Электронный термометр за секунды фиксирует градусы, а ожидание отобразит средний показатель, поскольку температура тела человека не идеальная прямая, а подвержена ежеминутным колебаниям на 1°C. Это достаточно большой разбег.

Что еще влияет на точность конечных данных с применением электроники?

Важный фактор, влияющий на качественную работу – перепады напряжения в элементах питания. Другими словами, когда батарейки теряют свой заряд – “садятся”. Средний срок службы сменных аккумуляторных батарей – два года. Когда он подходит к концу, термометр начинает отображать неправдивую информацию. Как и все измерительные приборы, градусники нуждаются в систематической поверке, примерно один раз в год-два. Однако градусники из стекла не попадают под это правило. Такие нюансы указаны в техпаспорте изделия. На термометры распространяется гарантия производителя, в том случае, если осуществляется регулярная проверка в сервисном центре или государственной метрологической службе. Стоимость поверки не превышает 1000 руб. на один прибор.

Какие неоспоримые преимущества стеклянного градусника перед пластиковым электронным?

Главное достоинство, конечно же, в сроке эксплуатации. В стеклянном варианте он не ограничен. Естественно, механические повреждения человеческого фактора способны вывести из строя приспособления очень быстро. Бережливые граждане до сих пор не обходятся во время болезни без советского ртутного градусника в картонном чехле. Он герметичен, не пропускает воду и ртуть, легко дезинфицируется, не требует дополнительных затрат и внимания к сменным зарядам питания. Один весомый минус – активное вещество. Пары ртути смертельны для человека. В Европе термометры со ртутью запрещены. Им на смену стеклянные с новым безопасным и экологически чистым составом – сплав металлов из галлия, индия и олова. В России только набирает подобное приспособление.

Что Вы думаете о новомодных бесконтактных термометрах?

В основе инфракрасных термометров лежат лучи, которые сквозь окружающую среду направлены на тело человека. Ориентируясь на кожу, они проходят через воздушные потоки бытовых предметов: кондиционеры, радиаторы, обогреватели. Влажная кожа тоже влияет на конечный результат, поэтому с бесконтактными приборами невозможно достичь точности ± 0,1 °C. За свою долгую практику, я встречал огромное количество таких термометров, и не видел ни одного прибора с такой погрешностью. Самый лучший показатель соответствовал ± 0,2 °C. Инфракрасные термометры идеально подходят в тех случаях, когда необходима массовое измерение температуры, например, в санитарной зоне аэропорта.

Какой прибор Вы посоветуете для домашнего применения?

Вообще, лучше иметь сразу несколько разнообразных градусников для каждого периода болезни: инфракрасный – удобный, электронный-быстрый, а стеклянный ртутный подойдет для измерения динамики. А лучше, не болеть и всегда быть здоровым!

Эксперимент

В эксперименте были задействованы корреспонденты отдела науки и сотрудники отдела технологий. Для изучения использовались 3 подопытных прибора: электронный, стеклянный ртутный и инфракрасный. Всего пять человек, каждый из которых попеременно измерял температуру пять раз по такой схеме: первый раз – ртутным градусником, второй – электронным устройством, но не стандартным методом подмышкой (производитель в инструкции не имеет возражений), третий – электронным, но четко по инструкции под языком, четвертый – инфракрасным градусником. На заключительном этапе использовался бесконтактное устройство, но датчик излучения хорошо протерли. Полученные результаты систематизированы в таблицу:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *