Жк панель что это
Перейти к содержимому

Жк панель что это

  • автор:

ЖК панель

Жидкокристаллический монитор (также Жидкокристаллический дисплей, ЖКД, ЖК-монитор, англ. liquid crystal display , LCD, плоский индикатор) — плоский монитор на основе жидких кристаллов.

LCD TFT (англ. TFT — thin film transistor — тонкоплёночный транзистор) — одно из названий жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами. Усилитель TFT для каждого субпиксела применяется для повышения быстродействия, контрастности и чёткости изображения дисплея.

Содержание

Назначение ЖК-монитора

Жидкокристаллический монитор предназначен для отображения графической информации с компьютера, TV-приёмника, цифрового фотоаппарата, электронного переводчика, калькулятора и пр.

Изображение формируется с помощью отдельных элементов, как правило, через систему развёртки. Простые приборы (электронные часы, телефоны, плееры, термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей. Многоцветное изображение формируется с помощью 2008) в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом(6 бит на канал), 24-битность эмулируется мерцанием с дизерингом.

Устройство ЖК-монитора

Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света — ячейку можно считать прозрачной. Если же к электродам приложено напряжение — молекулы стремятся выстроиться в направлении поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение, можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени — жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток, или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным — отражённым от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют искусственный источник света, кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Технические характеристики ЖК-монитора

Важнейшие характеристики ЖК-мониторов:

    : Горизонтальный и вертикальный размеры, выраженные в пикселах. В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией.
  • Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
    (формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.
  • Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
    : отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
    : количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
    : минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
  • Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.
  • Тип матрицы: технология, по которой изготовлен ЖК-дисплей.
  • Входы: (напр, DVI, HDMI и пр.).

Технологии

Жидкокристаллические мониторы были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff) компании RCA, Принстон, штат Нью-Джерси.

Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода. Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках.

Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display — кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal — плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.

TN+film (Twisted Nematic + film)

Часть «film» в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно — от 90° до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности — нет.

TN + film — самая простая технология.

Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.

IPS (In-Plane Switching)

Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

На настоящий момент матрицы, изготовленные по технологии IPS единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB — 24 бита, по 8 бит на канал. TN-матрицы почти всегда имеют 6-бит, как и часть MVA.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а черным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi 1998 год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика. Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT, контрастность все равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20″, LG.Philips, NEC остаются единственными производителями панелей по данной технологии.

AS-IPS — технология Advanced Super IPS (Расширенная Супер-IPS), также была разработана корпорацией Hitachi в 2002 году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации LG.Philips.

A-TW-IPS — Advanced True White IPS (Расширенная IPS с настоящим белым), разработано LG.Philips для корпорации

AFFS — Advanced Fringe Field Switching (неофициальное название S-IPS Pro). Технология является дальнейшим улучшением IPS, разработана компанией BOE Hydis в 2003 году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК, на матрицах производства Hitachi Displays.

*VA (Vertical Alignment)

MVA — Multi-domain Vertical Alignment. Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов до 176—178 градусов), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Достоинствами технологии MVA являются глубокий черный цвет и отсутствие, как винтовой структуры кристаллов, так и двойного магнитного поля.

Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения, большее время отклика.

Аналогами MVA являются технологии:

  • PVA (Patterned Vertical Alignment) от Samsung.
  • Super PVA от Samsung.
  • Super MVA от CMO.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам.

Жидкокристаллические дисплеи. История, принципы работы, преимущества и недостатки

Все, что вы давно хотели узнать о ЖК-мониторах, но боялись спросить.

Сейчас технологии плоскопанельных и жидкокристаллических мониторов являются наиболее перспективными. Хотя в настоящее время на долю ЖК-мониторов приходится лишь около 10% продаж во всем мире, этот сектор рынка является наиболее быстрорастущим (65% в год).

Принцип работы

Экраны LCD (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества (цианофенил), которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности, оптических), связанных с упорядоченностью в ориентации молекул.

Как ни странно, но жидкие кристаллы старше ЭЛТ почти на десять лет, первое описание этих веществ было сделано еще в 1888 году. Однако долгое время никто не знал, как их применить на практике: есть такие вещества и все, и никому, кроме физиков и химиков, они не были интересны. Итак, жидкокристаллические материалы были открыты еще в 1888 году австрийским ученым Ф. Ренитцером, но только в 1930-м исследователи из британской корпорации Marconi получили патент на их промышленное применение. Впрочем, дальше этого дело не пошло, поскольку технологическая база в то время была еще слишком слаба. Первый настоящий прорыв совершили ученые Фергесон (Fergason) и Вильямс (Williams) из корпорации RCA (Radio Corporation of America). Один из них создал на базе жидких кристаллов термодатчик, используя их избирательный отражательный эффект, другой изучал воздействие электрического поля на нематические кристаллы. И вот, в конце 1966 года, корпорация RCA продемонстрировала прототип LCD — цифровые часы. Значительную роль в развитии LCD-технологии сыграла корпорация Sharp. Она и до сих пор находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975-го уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. Так, в 1976 году Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселов.

Работа ЖКД основана на явлении поляризации светового потока. Известно, что так называемые кристаллы-поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Таким образом поляроид как бы «просеивает» свет. Этот эффект называется поляризацией света. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами.

Рисунок 1. Конструкция ЖК-дисплея.

Основываясь на этом открытии и в результате дальнейших исследований стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в электронных часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD для настольных компьютеров.

Рисунок 2. Плоскость поляризации.

Экран LCD представляет собой массив маленьких сегментов, называемых пикселями, которыми можно манипулировать для отображения информации. LCD имеет несколько слоев, где ключевую роль играют две панели, сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка. Слои собственно и содержат тонкий слой жидких кристаллов между собой (см. рис. 1). На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках. Молекулы одной из разновидностей жидких кристаллов (нематиков) при отсутствии напряжения поворачивают вектор электрического (и магнитного) поля в световой волне на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Нанесение бороздок на поверхность стекла позволяет обеспечить одинаковый угол поворота плоскости поляризации для всех ячеек. Две панели расположены очень близко друг к другу.

Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света). Как видно на рисунке 2, плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели. При появлении электрического поля, молекулы жидких кристаллов частично выстраиваются вертикально вдоль поля, угол поворота плоскости поляризации света становится отличным от 90 градусов и свет беспрепятственно проходит через жидкие кристаллы (см. рис. 3).

Рисунок 3. Плоскость поляризации.

Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникла необходимость добавить к стеклянным панелям еще два других слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна, так как первый поляризатор пропускает только свет с соответствующим вектором поляризации. Благодаря жидким кристаллам вектор поляризации света поворачивается, и к моменту прохождения пучка ко второму поляризатору он уже повернут так, что проходит через второй поляризатор без проблем (см. рис. 4а).

Рисунок 4. Поляризация светового луча.

В присутствии электрического поля поворота вектора поляризации происходит на меньший угол, тем самым второй поляризатор становится только частично прозрачным для излучения. Если разность потенциалов будет такой, что поворота плоскости поляризации в жидких кристаллах не произойдет совсем, то световой луч будет полностью поглощен вторым поляризатором, и экран при освещении сзади будет спереди казаться черным (лучи подсветки поглощаются в экране полностью) (см. рис. 4б). Если расположить большое число электродов, которые создают разные электрические поля в отдельных местах экрана (ячейки), то появится возможность при правильном управлении потенциалами этих электродов отображать на экране буквы и другие элементы изображения. Электроды помещаются в прозрачный пластик и могут принимать любую форму. Технологические новшества позволили ограничить их размеры величиной маленькой точки, соответственно на одной и той же площади экрана можно расположить большее число электродов, что увеличивает разрешение LCD-монитора, и позволяет нам отображать даже сложные изображения в цвете. Для вывода цветного изображения необходима подсветка монитора сзади, таким образом, чтобы свет исходил из задней части LCD. Это необходимо для того, чтобы можно было наблюдать изображение с хорошим качеством, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинируя три основные цвета для каждой точки или пикселя экрана, появляется возможность воспроизвести любой цвет.
Вообще-то в случае с цветом несколько возможностей: можно сделать несколько фильтров друг за другом (приводит к малой доле проходящего излучения), можно воспользоваться свойством жидкокристаллической ячейки — при изменении напряженности электрического поля угол поворота плоскости поляризации излучения изменяется по-разному для компонент света с разной длиной волны. Эту особенность можно использовать для того, чтобы отражать (или поглощать) излучение заданной длины волны (проблема состоит в необходимости точно и быстро изменять напряжение). Какой именно механизм используется, зависит от конкретного производителя. Первый метод проще, второй эффективнее.

Первые LCD были очень маленькими, около 8 дюймов по диагонали, в то время как сегодня они достигли 15-дюймовых размеров для использования в ноутбуках, а для настольных компьютеров производятся LCD с диагональю 20-дюймов и более. Вслед за увеличением размеров следует увеличение разрешения, следствием чего является появление новых проблем, которые были решены с помощью появившихся специальных технологий, все это мы опишем далее. Одной из первых проблем была необходимость стандарта в определении качества отображения при высоких разрешениях. Первым шагом на пути к цели было увеличение угла поворота плоскости поляризации света в кристаллах с 90° до 270° с помощью STN технологии.

Технологии STN, DSTN, TFT, S-TFT

STN — сокращение от Super Twisted Nematic. Технология STN позволяет увеличить торсионный угол (угол кручения) ориентации кристаллов внутри LCD с 90° до 270°, что обеспечивает лучшую контрастность изображения при увеличении размеров монитора.

Часто STN ячейки используются в паре. Такая конструкция называется DSTN (Double Super Twisted Nematic), в которой одна двухслойная DSTN-ячейка состоит из 2 STN-ячеек, молекулы которых при работе поворачиваются в противоположные стороны. Свет, проходя через такую конструкцию в «запертом» состоянии, теряет большую часть своей энергии. Контрастность и разрешающая способность DSTN достаточно высокая, поэтому появилась возможность изготовить цветной дисплей, в котором на каждый пиксель приходится три ЖК-ячейки и три оптических фильтра основных цветов. Цветные дисплеи не способны работать от отраженного света, поэтому лампа задней подсветки — их обязательный атрибут. Для сокращения габаритов лампа находится с боку, а напротив нее зеркало (см. рис. 5), поэтому большинство LCD-матриц в центре имеют яркость выше, чем по краям (это не относится к настольным ЖК мониторам).

Рисунок 5. Конструкция ЖК-матрицы.

Также STN ячейки используются в режиме TSTN (Triple Super Twisted Nematic), когда два тонких слоя полимерной пленки добавляются для улучшения цветопередачи цветных дисплеев или для обеспечения хорошего качества монохромных мониторов.
Термин пассивная матрица (passive matrix) появился в результате разделения монитора на точки, каждая из которых, благодаря электродам, может задавать ориентацию плоскости поляризации луча, независимо от остальных, так что в результате каждый такой элемент может быть подсвечен индивидуально для создания изображения. Матрица называется пассивной, потому что технология создания LCD дисплеев, которая была описана выше, не может обеспечить быструю смену информации на экране. Изображение формируется строка за строкой путем последовательного подвода управляющего напряжения на отдельные ячейки, делающего их прозрачными. Из-за довольно большой электрической емкости ячеек напряжение на них не может изменяться достаточно быстро, поэтому обновление картинки происходит медленно. Такой дисплей имеет много недостатков с точки зрения качества, потому что изображение не отображается плавно и дрожит на экране. Маленькая скорость изменения прозрачности кристаллов не позволяет правильно отображать движущиеся изображения.
Для решения части вышеописанных проблем применяют специальные технологии, Для улучшения качества динамического изображения было предложено увеличить количество управляющих электродов. То есть вся матрица разбивается на несколько независимых подматриц (Dual Scan DSTN — два независимых поля развертки изображения), каждая из которых содержит меньшее количество пикселей, поэтому поочередное управление ими занимает меньше времени. В результате чего можно сократить время инерции ЖК.
Также лучших результатов с точки зрения стабильности, качества, разрешения, гладкости и яркости изображения можно добиться, используя экраны с активной матрицей, которые, впрочем, стоят дороже.
В активной матрице (active matrix) используются отдельные усилительные элементы для каждой ячейки экрана, компенсирующие влияние емкости ячеек и позволяющие значительно уменьшить время изменения их прозрачности. Активная матрица (active matrix) имеет массу преимуществ по сравнению с пассивной матрицей. Например, лучшая яркость и возможность смотреть на экран даже с отклонением до 45° и более (то есть при угле обзора 120–140°) без ущерба качеству изображения, что невозможно в случае с пассивной матрицей, которая позволяет видеть качественное изображение только с фронтальной позиции по отношению к экрану. Заметим, что дорогие модели LCD мониторов с активной матрицей обеспечивают угол обзора в 160° (см рис. 6), и есть все основания предполагать, что технология будет совершенствоваться и в дальнейшем. Активная матрица может отображать движущиеся изображения без видимого дрожания, так как время реакции дисплея с активной матрицей около 50 мс против 300 мс для пассивной матрицы, кроме того, контрастность мониторов с активной матрицей выше, чем у ЭЛТ-мониторов. Следует отметить, что яркость отдельного элемента экрана остается неизменной на всем интервале времени между обновлениями картинки, а не представляет собой короткий импульс света, излучаемый элементом люминофором ЭЛТ-монитора сразу после похождения по этому элементу электронного луча. Именно поэтому для LCD мониторов достаточной является частота вертикальной развертки, равная 60 Гц.

Чем отличается плазменный телевизор от жидкокристаллического и что выбрать?

Когда встает вопрос о выборе нового телевизора LG, многие покупатели не знают, какое устройство лучше подобрать: плазменную модель или жидкокристаллическую модель. Чтобы разобраться, какой из данных телевизоров лучше, следует знать о том, что из себя представляет каждая технология и сравнить их характеристики. Рассмотрим, чем отличается плазменный телевизор LG от жидкокристаллического, и какой лучше выбрать.

Плазменная матрица телевизора LG представляет собой совокупность миниатюрных флуоресцентных ламп, при прохождении тока через них происходит свечение. Каждый пиксель такой матрицы представляет собой конденсатор с электродами, состоящий из трех лампочек с ионизированным газом. При активизации ячейки электрическим зарядом светится одна из ламп, излучая свет одного из трех основных цветов матрицы: синего, зеленого или красного. Точки плазменного телевизора вырабатывают собственный свет, поэтому называются излучающими дисплеями. Скорость смены цветопередачи и порядка работы ламп составляет минимум 400 Гц, данная частота превосходит скорость работы ЖК матриц, где добавляют чёрные пиксели для улучшения данного параметра.

  • Глубокий чёрный цвет.
  • Естественная цветопередача.
  • Широкие углы обзора.
  • Небольшое время отклика.

Недостатки плазменной панели телевизора:

  • Из-за не слишком сильной яркости смотреть телевизор и фильм на нем лучше в притененном помещении.
  • После 20 тысяч часов использования устройства яркость может снизиться в 2 раза.
  • Большой вес панели.
  • Ограничение в габаритах. Плазменный телевизор не может быть диагональю меньше 32 дюймов и больше 65 дюймов.
  • Больше затрат электроэнергии.
  • Устройство греется.
  • Не работает на высоких частотах.
  • Экран иногда отзеркаливает, так как является более отражающим и восприимчивым к бликам окружающего освещения. Поэтому рекомендуем покупать модели с антибликовым покрытием, если остановили свой выбор на плазменной панели.

Что касается жидкокристаллических телевизоров, то их можно разделить на две основных группы по используемой технологии. Раньше под ЖК подразумевали только экраны, в которых для подсвечивания пикселей использовались флуоресцентные лампы. Сейчас все больше используются LED телевизоры. Они работают по такому же принципу, но вместо флуоресцентных ламп применяются светодиоды.

ЖК телевизор – это матрица из пикселей, содержащих жидкие кристаллы красного, синего и зеленого цвета. Под воздействием напряжения пиксели матрицы меняют расположение, пропускают или блокируют подсветку. ЖК кристаллы сами не производят свет, их называют пропускающими. Поэтому им нужен внешний источник, который может быть двух типов:

  • флуоресцентный;
  • светодиоды выступают внешним источником.

В зависимости от того, какой источник используется, получают разные типы ЖК экранов. Современный рынок предлагает три ведущих технологии ЖК телевизора, каждая из которых отличается принципом работы и стоимостью:

  • LCD – первый тип ЖК-панели. Его отличие заключается в низкой стоимости и простом наборе функций. В настоящее время такие модели телевизора считаются устаревшими. Подсветка в таких устройствах осуществляется с помощью флуоресцентных ламп.
  • LED панели – усовершенствованные ЖК модели, разработанные на базе LCD, но обладают более высокими параметрами четкости и разрешения. В LED моделях установлена светодиодная подсветка, при этом светодиоды могут быть расположены в торцевой части или равномерно распределены по всей матрице. По стоимости LED телевизор дороже, чем LCD, но качество изображения будет выше.
  • OLED – современная технология LG. Отличие OLED технологии от LED состоит в том, что OLED устройства не нуждаются в дополнительной подсветке дисплея, что выводит качество изображения на телевизоре на новый уровень. Цена OLED телевизоров будет выше предыдущих типов, но OLED отличается высоким качеством изображения и диагональ телевизора может быть более 55 дюймов.

Общие преимущества ЖК телевизора:

  • Высокая контрастность изображения у LED и OLED моделей.
  • Светодиодная подсветка делает изображение максимально близким к естественному, с природным множеством цветов.
  • Яркость экрана во время работы устройства не зависит от освещения в помещении.
  • Меньше затрать электроэнергии.
  • Телевизор жидкокристаллической модели не перегревается.
  • Более длительный срок службы дисплея, чем у плазмы.
  • Доступная цена.
  • ЖК телевизоры легче, поэтому на их транспортировку уходит меньше средств и сил. Малый вес позволяет беспрепятственно монтировать их на вертикальной поверхности.

Недостатки LCD экранов:

  • Недостаточно глубокий чёрный цвет.
  • Средний уровень цветопередачи и контрастности.
  • Снижение яркости со временем.

Недостатки LED дисплеев:

  • Высокая цена.
  • Неравномерная подсветка.

Конечно, ключевым критерием при выборе телевизора является качество изображения. Многие пользователи задаются вопросом: какое из устройств способно обеспечить наилучшее качество картинки, и в чем отличие между изображением у плазмы и ЖК панели?. Качество изображения во многом зависит от подсветки. Плазмы способны лучше справляться с динамичными сценами. Эффект расплывчатости отсутствует. Это особенно заметно при просмотре фильмов или во время игры на консоли. Плазмы обладают внушительным углом обзора. Это говорит о том, что если немного отодвинуться от края устройства, изображение все равно будет максимально четким. Картинка не изменяется в зависимости от места просмотра фильма на телевизоре.

Что же касается яркости и контрастности, то отличие плазменных панелей заключается в максимально глубоком чёрном цвете, а также в четких и ярких цветных изображениях, которые выглядят одинаково ярко при просмотре под любым углом. ЖК телевизоры имеют светодиодную подсветку дисплея, что делает цвета более бледными, а максимально темный тон темно-серым. Плазменные модели отличаются яркой и живой цветовой палитрой. Плазмы способны воспроизводить куда больше разных оттенков, что так важно для трансляции живого и насыщенного изображения. В качестве исключения могут быть рассмотрены последние модели ЖК телевизоров с технологией OLED, в которых отсутствует светодиодная подсветка дисплея. Если предпочитаете фильмы с множеством спецэффектов, стоит приобрести плазму. На плазменной панели можно наблюдать одинаково качественное изображение с любого ракурса просмотра.

Ответ на вопрос, какой телевизор лучше купить, плазменный или жидкокристаллический, во многом зависит от помещения, в котором его собираются устанавливать. Если это отдельная комната типа домашнего кинотеатра с приглушенным освещением, лучше купить плазму. Она позволит получить изображение высокого качества. Недостатком будет высокое потребление электроэнергии и цена, которая выше, чем на старые модели LCD. Для гостиных, где телевизор можно смотреть круглые сутки, в том числе днем, больше подойдут LCD телевизоры. К недостатку модели LCD можно отнести углы обзора, которые недостаточно большие.

Также важным моментом при выборе телевизора является разрешение экрана. Плазменных телевизоров с большим разрешением пока не существует. Отличие ЖК экрана заключается в том, что он обладает лучшим разрешением, так как уменьшить пиксель проще, чем ячейку с газом. ЖК телевизоры с разрешением 4К впервые стали появляться в 2013 году. Количество точек в таких моделях в 4 раза больше, чем у старого формата Full HD 1080p. Поэтому четкость изображения и детализация будут значительно выше. Возросла частота обновления с 50-60 до 100-120 Гц, в результате чего глаза зрителя устают меньше. Недостатком моделей 4К и 8К является их высокая цена. Но с развитием этих технологий количество OLED телевизоров будет увеличиваться, а их стоимость уменьшаться.

Функциональные возможности каждого из типов экрана во многом зависят от модели. Набор опций и возможностей практически один и тот же, но при этом жидкокристаллические модели все равно будут дешевле плазменных.

Рассмотрим отличие характеристик плазменной панели и жидкокристаллического телевизора:

  • Размер экрана. ЖК имеют больший ассортимент: от небольших кухонных моделей до рекламных табло. Максимальная диагональ достигает 100 дюймов и более.
  • Контраст. Плазменные панели лучше передают контраст, так как могут самостоятельно излучать свет. В жидкокристаллических моделях контрастность зависит от интенсивности свечения и кристаллов, а это не позволяет добиться такого же уровня контрастности, как у плазмы.
  • Яркость. Яркость в плазмах большая, но имеет ограничения. В обычных LCD дисплеях жидкокристаллического телевизора яркость меньше, чем в ЖК моделях с подсветкой типа LED.
  • Глубина чёрного цвета. Плазмы обладают лучшей глубиной чёрного цвета, так как каждый пиксель может светиться отдельно. В LCD телевизорах при довольно темном изображении некоторые его части будут исчезать.
  • Угол обзора. У плазменных экранов угол обзора составляет до 180 градусов по всем направлениям. У старых моделей ЖК телевизоров угол обзора составляет 45 градусов, но в современных моделях достигает почти таких же параметров, как и у плазмы. Однако все равно при определенном ракурсе контрастность в ЖК дисплеях уменьшается.
  • Разрешение экрана. ЖК экран обладает лучшим разрешением, так как уменьшить пиксель проще, чем ячейку с газом. Плазменных телевизоров с большим разрешением пока не существует.
  • Равномерность освещения. Каждая из ячеек плазмы является отдельным источником света, в связи с этим экран освещается равномерно. В LCD моделях равномерность освещения зависит от того, насколько качественна лампа подсветки.
  • Масса. Хоть оба вида экранов похожи внешне, LCD легче плазменных аналогов, в конструкции использован прозрачный пластик вместо стекла.
  • Функциональность. Обе модели имеют идентичные функции управления.
  • Энергоэффективность. Плазма потребляет намного больше электричества, так как нуждается в постоянной работе вентиляторов для охлаждения устройства. В этом случае преимущество будет на стороне жидкокристаллических панелей, так как они потребляют в разы меньше энергии, чем плазмы мощностью 350-450 Вт.
  • Скорость отклика. В плазмах через газ электричество проходит с максимальной скоростью, что позволяет увеличить скорость отклика. В ЖК моделях жидкие кристаллы передают электричество не так быстро, но благодаря использованию транзисторов, почти получилось достигнуть такой же быстроты отклика, как и у плазм.
  • Срок эксплуатации. Плазменные телевизоры работают не более 30 тысяч часов. Однако от перегрева устройство может прослужить и меньше. Срок службы ЖК телевизоров до 100 тысяч часов. Когда перегорит лампа подсветки, ее можно будет заменить, но есть вероятность появления «битых» пикселей.
  • Безопасность. Для окружающей среды и человека плазменный и жидкокристаллический телевизоры являются абсолютно безвредными.
  • Внешний вид. Обе модели тонкие и плоские, могут быть повешены на стену и подключаться к интернету и локальной сети. Но не стоит забывать, что ЖК модели легче.
  • Надежность. Плазмы менее подвержены механическим повреждениям.
  • Стоимость. Плазменные телевизоры с большой диагональю дисплея стоят не так дорого. Большой жидкокристаллический экран же довольно сложен в своем изготовлении, поэтому телевизор с такой же диагональю, как у плазмы, будет стоить заметно дороже.
  • Просмотр фильмов и передач. Обе модели позволяют смотреть телевизионные программы, фильмы и другой контент с различными размерами экрана и разрешениями.

Существует целый ряд особенностей, на которые нужно обратить внимание при выборе телевизора. Они не относятся к техническим характеристикам, но важны при выборе техники:

Жидкокристаллический дисплей: что такое LCD и как он работает?

Узнайте, что такое ЖК-дисплей (LCD), из чего он состоит, принцип работы, формирование изображения и цвета

Жидкокристаллический дисплей (англ. liquid crystal display, LCD) — это плоский экран, воспроизводящий изображение при помощи жидких кристаллов. Он может быть как монохромным, так и изображать несколько миллионов цветов. Цветное изображение формируется за счёт RGB-триад (RGB — модель образования цветов из красного, зелёного и синего, англ. red, green, blue соответственно).

Как же построены жидкокристаллические дисплеи?

Дисплей LCD состоит из вертикального и горизонтального взаимно перпендикулярных поляризационных фильтров, между которыми расположены жидкие кристаллы, которые, в свою очередь, управляются прозрачными электродами, соединёнными с процессором управления, и из цветного фильтра; сзади есть источник света (как правило, это две горизонтальные лампы с ярко белым «дневным» светом). Жидкие кристаллы расположены в определённом порядке, создавая мозаику для формирования изображения. Элементарная частица этой мозаики называется субпикселем. Каждый субпиксель состоит из слоя молекул жидких кристаллов.

Принцип работы жидкокристаллического дисплея

Поляризационные фильтры – это вещества, пропускающие через себя ту составляющую световой волны, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости фильтра. Другая часть потока света не пройдёт через фильтр. При отсутствии жидких кристаллов между взаимно перпендикулярными поляризационными фильтрами именно фильтры и блокировали бы прохождение света.
Поверхность прозрачных электродов, которая контактирует с жидкими кристаллами, обработана для начальной геометрической ориентации молекул в одном направлении. Когда на электроды подают ток, кристаллы пытаются ориентироваться в направлении электрического поля. А когда ток исчезает, силы упругости возвращают жидкие кристаллы в исходное положение. При отсутствии тока субпиксели прозрачные, так как первый поляризатор пропускает только свет с необходимым вектором поляризации. Благодаря жидким кристаллам вектор поляризации света вращается и при прохождении через второй поляризатор он повернут так, что вектор проходит через него без помех. Если разность потенциалов будет такой, что поворот плоскости поляризации в жидких кристаллах не произойдёт, то свет не пройдёт через второй поляризатор и такой субпиксель будет черным. Однако встречается и другой тип работы жидкокристаллических дисплеев. При этом жидкие кристаллы в начальном состоянии ориентированы так, что при отсутствии тока вектор поляризации света не изменяется и блокируется вторым поляризатором. Поэтому пиксель, на который не подаётся ток, будет в таком случае темным. А включение тока, наоборот, возвращает кристаллы в положение, изменяющий вектор поляризации, и свет будет проходить. Таким образом, изменяя электрическое поле, можно изменять геометрическое положение кристаллов, тем самым управляя количеством света, который проходит от источника к нам. Полученное изображение будет монохромным. Для того чтобы оно стало цветным, нужно после второго поляризационного фильтра поставить цветной.

Цветной фильтр – это сетка, которая состоит из мозаики красного, зелёного и синего цветов, расположенных каждый напротив своего субпикселя. В результате получаем матрицу из красных, зелёных и синих субпикселей, расположенных в строго определённом порядке. Три таких субпикселя образуют пиксель. Чем больше пикселей, тем чётче изображение. Как художник смешивает краски, так и процессор управляет субпикселями для получения нужного оттенка цвета. Соотношение яркости каждого из трёх субпикселей создаёт определённый оттенок пикселя, который они формируют. А соотношение яркости всех пикселей формирует цвет и яркость изображения в целом.

Итак, основой формирования изображения на жидкокристаллическом экране является принцип поляризации света. Сами же жидкие кристаллы исполняют роль регулятора, влияя на яркость и оттенок создаваемого изображения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *