Бытовая электроника
Электрический прибор или электроприбор — это техническое устройство, приводимое в действие с помощью электричества и выполняющее некоторую полезную работу, которая может выражаться в виде механической работы, выделения теплоты и др. или предназначенное для обеспечения работы других электроприборов.
Содержание
Бытовые электроприборы
Бытовой электроприбор — это электрическое или электромеханическое устройство, выполняющее некоторую работу в домашнем хозяйстве, например, приготовление пищи, уборка и т. д. Бытовые электроприборы являются разновидностью бытовой техники.
Бытовые электроприборы по традиции разделяют на крупные и мелкие.
Крупные бытовые электроприборы отличаются достаточно большими размерами и массой, чтобы их переноска была затруднена. Они устанавливаются в определённом месте и подключаются к сети электроснабжения.
Примеры крупных бытовых электроприборов:
Мелкие бытовые электроприборы портативны. При использовании их устанавливают на столах и других поверхностях или держат в руках. Часто они оснащены ручками для удобства переноски. Мелкие бытовые электроприборы могут работать как от сети, так и от батареек.
Примеры мелких бытовых электроприборов:
Промышленные электроприборы
Электроприборы в электроэнергетике
В электроэнергетике электроприбор рассматривается как «потребитель», «нагрузка» или «активное сопротивление».
Любой электроприбор должен иметь освидетельствование отдела технического надзора (ОТК, TKK, CE, KEMA-KEUR и т. д.), а также инструкцию по его эксплуатации.
История
Wikimedia Foundation . 2010 .
Полезное
Смотреть что такое «Бытовая электроника» в других словарях:
Радиола (бытовая электроника) — У этого термина существуют и другие значения, см. Радиола. Стереофоническая полупроводниковая радиола «Вега 312». 1974 г., СССР. Радиола бытовое радиоэлектронное устройство, конструктивно объединяющее в одном корпусе … Википедия
Электроника — У этого термина существуют и другие значения, см. Электроника (значения). Различные электронные компоненты Электроника (от греч … Википедия
Бытовая техника — Бытовая техника техника, используемая в быту. Предназначается для облегчения домашних работ, для создания комфорта в повседневной жизни человека.[1] Классифицируется по значимости (необходима, желательна, можно обойтись), по размеру (малая… … Википедия
Электроника Б3-26 — Электроника Б3 26 восьмиразрядный микрокалькулятор с естественной формой представления запятой. Выпускался с 1977 года. В 1980 году продавался по цене 45 рублей. Калькулятор выполняет четыре арифметические операции, извлечение квадратного… … Википедия
Электроника Б3-24 — Электроника Б3 24 восьмиразрядный микрокалькулятор с естественной формой представления запятой. Выпускался с 1976 года. Калькулятор выполняет четыре арифметические операции, операции с памятью, изменение знака числа, полуавтоматическое… … Википедия
Электроника Б3-18 — Тип Карманный инженерный калькулятор Производитель Ангстрем (Москва), Биллур (Гянджа) Выпуск начат 1976 Характеристики Процессор К145ИП7П Дисплей Вакуумный люминесцентный, 8 разрядов Питание Четыре аккумулятора Д 0,55С Электроника Б3 18 … … Википедия
Электроника Б3-30 — второй советский карманный калькулятор на жидких кристаллах после «Электроника Б3 04». Выпускался с 1978 года, продавался по цене 58 рублей, в 1982 году продавался по цене 40 рублей. В 1980 году выпускался с олимпийской символикой. Калькулятор… … Википедия
Электроника Б3-23 — Электроника Б3 23 восьмиразрядный микрокалькулятор с естественной формой представления запятой. Калькулятор выполняет четыре арифметические операции и процентные вычисления. Буква «Б» в названии означает «бытовая техника», 3 (именно тройка … Википедия
Электроника БК — БК Тип Бытовой компьютер Выпущен 1985 г. Выпускался по Размер байта 8 бит Размер слова 16 бит … Википедия
Электроника БК-001 — БК Тип Бытовой компьютер Выпущен 1985 г. Выпускался по Размер байта 8 бит Размер слова 16 бит … Википедия
ЭЛЕКТРОННАЯ БЫТОВАЯ ТЕХНИКА
Что такое б ытовая техника, это вся электронная и механическая техника, используемая людьми в быту. Она представляет собой оборудование и устройства, облегчающие ведение домашнего хозяйства. Если раньше без бытовой техники можно было обойтись, то со временем она стала в быту желательна, а в последние годы необходима. С каждым годом появляются всё новые усовершенствования, которые повышают их надежность, функциональность и эффективность.
В настоящее время всю бытовую технику можно условно разделить на:
-Измерительную и вычислительную – весы, таймеры, будильники, калькуляторы, компьютеры, ноутбуки, термометры, барометры ;
-для приготовление пищи – холодильник, миксер, мясорубка , кухонный комбайн, газовая плита , электроплита , микроволновая печь , хлебопечка , гриль , пароварка , Тостер , кипятильник , кофемолка , кофеварка , электрочайник, соковыжималка ;
-для связи и вещания – телевизоры, радиоприёмники, телефон стационарный и мобильный, пейджер;
-для ухода за одеждой и обувью; техника для у борки в доме и на улице – стиральная машина, сушильная машина , утюг, швейная машинка , пылесос ;
-техника для развлечения – аудио и видео проигрыватели, магнитофон ы, домашние кинотеатры, музыкальные центр ы , плееры, игровые приставки ;
-бытовая техника д ля косметики, ухода за внешностью и здоровьем – фен ы, щипцы, массажёры, ингалятор ы, электробритвы, эпиляторы .
В последние годы, всё шире внедряются и используются бытовые приборы с микропроцессорным управлением. Основой этих устройств является микропроцессор, представляющий собой микросхему. Микропроцессорные схемы позволяют создавать миниатюрные и многофункциональные образцы бытовой техники, при существенном снижении её себестоимости.
Сейчас к технике с микрокомпьютерным управлением относятся кухонные плиты, микроволновые печи, холодильники, посудомоечные машины, стиральные машины, кондиционеры, кофеварки кухонные комбайны и вся аудио – видео техника. Микропроцессорные средства управления помогают диагностировать неисправности в устройстве, позволяя уменьшить потери времени и средств на ремонт оборудования.
При эксплуатации любой бытовой техники соблюдайте основные правила: отключайте устройства из сети, если их эксплуатация не планируется в ближайшее время, избегайте попадания жидкости и мусора внутрь устройства, используйте только предусмотренное производителем питание, не позволяйте неподготовленным людям пользоваться этой бытовой техникой.
Все выпускаемые виды бытовой техники снабжены паспортами и инструкциями по эксплуатации и ответственность за обращение с ними возлагается на потребителя.
Электронно-вычислительная техника: с чего все началось
Персональный компьютер – то, без чего невозможно представить жизнь современного человека. Но не всегда подобные устройства присутствовали в реальности. Развитие таких устройств началось задолго до появления электричества.
В данной статье будет рассказано о том, каким образом компьютеры и другие «виртуальные машины» пришли в современность. Информация будет одинаково полезна и взрослым, и школьникам.
Вычислительная техника – определение
Сначала требуется понять, что собой представляет ЭВМ. Лишь в этом случае получится выбрать правильное направление в изучении истории.
Трактуется соответствующий термин совершенно по-разному. В широком смысле это – техустройства, включающие в свой состав:
- математические средства;
- приемы механизации;
- методы автоматизации.
Данные «компоненты» используются для обработки информации и различных процессов. Помогают описывать всевозможные явления. Проводят вычисления, включая математические.
В качестве вычислительной машины сегодня подразумевают компьютеры – персональные, ноутбуки или суперкомпьютеры. Современные технологии позволяют классифицировать все ЭВМ на разные категории.
Классификация электронно-вычислительных устройств
Каждый вычислительный прибор предлагает человеку те или иные возможности. Нынешнее развитие технологий и прогресса предусматривает разделение рассматриваемых машин на следующие области:
- средства управления сетями;
- компьютерные системы;
- машины для автоматизации систем управления и обработки электронных сведений;
- автоматизированные средства проектирования, прогнозирования и моделирования;
- машины, используемые для разработки ПО.
Это не самая полная классификация. Из года в год она расширяется. Но перечисленные «блоки» являются наиболее распространенными. Их считают основными.
Этапы развития
В истории развития ЭВМ принято выделять несколько ключевых этапов. К ним относят:
- ручной (до 17 столетия);
- механический (до конца 19 века);
- электромеханический (до 1946 года);
- электронный (по сей день).
Это условное разделение по хронологическим принципам. Пока использовалась одна вычислительная машина, люди активно развивали другие подобные устройства.
С чего все началось
Вычислительная техника появилась задолго до современности. Все действия человека требовали проведения подсчетов. Пример – обмен, разделение добычи, формирование запасов для дальнейшей жизни.
Раньше наиболее распространенным способом подсчета случило использование собственных пальцев. Позже человек стал задействовать палки, узлы и камни. Но с развитием прогресса требовалось выполнение более сложных задач. Так людям приходилось придумывать различные приспособления, которые смогли бы посодействовать в реализации поставленных целей.
История сложилась так, что в странах были разные меры:
- денег;
- объема;
- длины;
- расстояния.
Конвертация из одной системы в другую требовали наличия определенных знаний и навыков. Этим занимались специально обученные лица. Их нередко вызывали из других стран. Так система вычисления потребовала изобретения первых машин вычислительного характера.
Ручной этап
Как только человечество стало нуждаться в вычислениях, оно начало активно использовать различные предметы для этого. И с течением времени изобретать спецустройства для подсчетов.
Изначально применялись палочки, пальцы, узелки и им подобные мелкие предметы. Первая «машина», которая облегчила вычисления – это специальная доска. Называется «абак». Появилась в 5-6 веках до нашей эры.
Здесь процесс вычисления осуществлялся за счет перемещения камешков и костей в углубления бронзовых досок. Они также могли изготавливаться из камня или слоновой кости. С течением времени «абак» получил несколько полосок и колонок. В Греции такое устройство появилось в 5 веке до Н. Э.. Японцы называли такую машину «серобян», а китайцы – «суанпан».
На Руси примерно в 15 веке появился «дощатый счет», который внешне напоминал нынешние счеты. А в 9 веке в Индии изобрели позиционную систему вычисления.
В начале 17 века Леонардо да Винчи смог создать 13-разрядное устройство для подсчетов сумм. Оно включало в себя десятизубные кольца. В основе были стержни, на которых крепились 2 зубчатых колесика. Они отличались по размеру друг от друга.
Механический этап
Эволюция ЭВМ напрямую зависела от развития человечества. В 17 веке математические подсчеты стали ключевыми в развитии истории. Это привело к изобретению новых устройств для расчетов. Но до компьютеров было еще далеко.
В 17 веке Паскаль смог сделать «суммирующую» машинку, которую назвали Паскалиной. Она умела:
- складывать;
- вычитать.
А в 1670-80-х годах Лейбниц сконструировал счетную машину, которая умела выполнять все арифметические действия. За последующие 200 лет ученые изобрели несколько аналогичных «девайсов». Но все они не получили широкого распространения. Связано это с тем, что машины работали долго.
В СССР в 1879 году Чебышев изобрел счетную машину. Она справлялась с вычитанием и сложением многозначных чисел. Огромную популярность приобрел некий арифмометр. Его изобрел инженер из Питера Однер в 1874. Работала конструкция достаточно быстро.
Электромеханический этап
Активное развитие вычислительной техники началось именно в 19 веке. В 30-х годах 20-го столетия в свет в СССР вышел арифмометр, который приняли за совершенный. Назывался «Феликс». Использовались такие устройства до 1978 года.
Электромеханический этап в истории является не самым долгим. Он длился порядка 60 лет. Начинается с созданием первого в мире табулятора. Это устройство появилось, благодаря инженеру Гурману Холлериту. Произошло это в 1887 году. Машина включала в себя:
- реле;
- сложные механизмы;
- счетчики;
- сортировочный ящик.
Девайс считывал и занимался сортировкой статистических записей, которые делались на перфокартах. Позже фирма Голлерита (Холлерита) стала основой IBM.
Ванновар Буш в 1930 году смог представить миру дифференциальный анализатор. Для его работы требовалось электричество, а для хранения информации не удавалось обходить без электронных ламп. Задействовалась машинка для проведения сложных математических подсчетов.
В 1936 году Алан Тьюринг разработал устройство, которое стало основой современных компьютеров. «Девайс» умел пошагово выполнять операции, запрограммированные во внутренней памяти.
Через год Джордж Стибиц (Америка) изобрел электромеханическое средство для выполнения двоичных сложений. В основе лежала булевая алгебра. Она стала неотъемлемой частью современных ЭВМ.
Начало компьютерной эры
Развитие электрических устройств и человечества требовало от населения создания разнообразных технологий, облегчающих жизнь. Вторая Мировая Война стала крайне важным моментом в рассматриваемом вопросе.
Конрад Цузе (Германия) в 1941 году создал первую вычислительную машину, которая управлялась программами. Она называется Z3. Основана на:
- телефонных реле;
- программного обеспечения;
- перфорированных карточек.
Машина работала в двоичной системе, а также оперировала числами с плавающей запятой. Но первое поколение компьютеров начинается с усовершенствованного устройства Цузе – Z4.
В 1942 году американцы создали ЭВМ на вакуумных трубках, а через год в Англии построили первую секретную и реально признанную электронно-вычислительную машину под названием «Колосс». Там было 2 000 электронных ламп для хранения и обработки данных.
Изначально «девайс» предназначался для взлома и расшифровки кодов секретных сообщений, которые передавались по немецким шифровальным машинам «Энигма». Уинстон Черчилль после войны подписал указ об уничтожении соответствующего устройства.
Появление архитектуры
В 1945 году Джон фон Нейман смог сделать прообраз архитектуры общего назначения, которая используется в основе современных компьютеров. Математик предложил записывать программы в виде кодов непосредственно в память машин. Предусматривалось совместное хранение утилит и данных на «девайсе».
Эта теория стала основой ENIAC. Так назывался первый компьютер, созданный в США. Имел он весьма внушительные параметры:
- вес – 30 тонн;
- размер – 170 квадратных метров;
- лампы – 18 000.
За секунду такой компьютер производил до 300 операций умножения или 5 000 сложения.
Универсальная программируемая европейская ЭВМ появилась в 1950 году в СССР. Малая электронная счета машина изобретена Сергеем Лебедевым. Быстродействие ограничивалось 50 операциями в секунду. Использовал «девайс» около 6 000 электровакуумных ламп.
В 1952 возникла электронная счетная машина БЭСМ. Тоже разработана под предводительством Лебедева. Выполняло устройство до 10 000 операций. Ввод данных производился через перфоленты и фотопечати.
Чуть позже началось создание больших ЭВМ «Стрела» и «Урал». Последние разработки устройств аппаратно и программно совместимы друг с другом. Для них имелся широкий спектр периферических устройств, благодаря чему удавалось менять комплектацию «девайса».
Лампы, которые использовали первые компьютеры, быстро выходили из строя. Транзисторы, изобретенные в 1947, решили соответствующую проблему. Через электрические свойства проводников удавалось выполнять математические вычисления, но быстрее и с меньшим потреблением энергии.
Транзисторы массово производятся американской компанией «Техас Инструментс». В 1946 в Массачусетсе возник первый построенных на транзисторах компьютер второго поколения – TX-O.
Использование ЭВМ началось не только в военных целях, но и в государственных. Различные фирмы и компании применяли такие компьютеры для подсчетов. Это привело к созданию новых технологий. Пример – разработка высокоуровневых языков программирования. К ним относят:
- Фортран;
- Кобол;
- Делфи;
- Паскаль и так далее.
Были разработаны приложения-трансляторы, при помощи которых коды с перечисленных языков преобразовывались в команды, считываемые задействованным компьютером.
Интегральные микросхемы
В 1958-60-х Роберт Нойс и Джек Килби выпустили в свет интегральные микросхемы. В основе находились кремниевые или геманиевые кристаллы. Микросхемы достигали в размерах не более сантиметра и работали быстрее «предшественников». Использовали меньше энергии. Это – шаг к появлению третьего поколения компьютеров.
В 1964 фирма IBM создала первый компьютер семейства SYSTEM 360. В основе него лежали интегральные микросхемы. Так началось массовое производство компьютеров. Мир увидел более 20 тысяч экземпляров SYSTEM 360.
В 1972 СССР разработали единую серию компьютеров. Это – стандартизированные комплексы для работы вычислительных центров с общей системой команд. В основе лежит американская система IBM 360.
Далее компания DEC предложила вниманию мини-компьютер PDP-8. Это – первый коммерческий проект соответствующей области. Небольшая стоимость позволила приобретать девайс даже небольшим корпорациям.
В это же время начали развиваться операционные системы, а также периферийные устройства. Языки программирования тоже получили более широкое распространение и развитие.
Персональные компьютеры в мире
Четвертым поколением компьютеров считают девайсы, созданные после 1970. Тогда возникли интегральные микросхемы. С ними компьютеры обладали такими характеристиками и особенностями:
- выполнение в секунду тысячи миллионов операций;
- емкость оперативной памяти возросла до 500 000 000 двоичных разрядов;
- снижение себестоимость микрокомпьютеров.
Стив Джобс и компания Apple – первые производители персональных компьютеров. Сконструированы такие девайсы в 1976. Назывались Apple 1. Стоили по 500 долларов. В 1977 в свет вышло поколение Apple 2.
Компьютеры начали походить на бытовые приборы: получили не только широкое распространение, но и оригинальные дизайн с интерфейсов, которым было удобно пользоваться рядовому юзеру.
В 1979 IBM выпустила свой первый компьютер на рынок товаров и услуг. А в 1981 появился первый микрокомпьютер. Он имел:
- открытую архитектуру;
- 16-разрядный микропроцессор 8088 от Intel;
- монохромный дисплей;
- 2 дисковода для дискет;
- оперативную карту на 64 килобайта;
- операционную систему от Microsoft.
В 1984 Apple разработала машину Macintosh, обладающую удобным пользовательским интерфейсом.
Пятое поколение
Начинается примерно с 1992 года. Концепция получила формулировку: вычислительные машины, созданные при помощи сверхсложных микропроцессоров. У них параллельно-векторная структура, позволяющая одновременно выполнять десятки последовательных команд, заложенных в программное обеспечение.
У таких машин несколько сотен процессоров с параллельной работой. Помогают создавать эффективно функционирующие сети и очень быстро производить обработку данных.
Нынешнее время
Примерно с 2013 года началось стремительное развитие машин вычислительного типа шестого поколения. Представлены электронными и оптоэлектронными ЭВМ с работой на основе десятков тысяч микропроцессоров. Они наделены параллелизмом. Способны моделировать архитектуру нейронных биологических систем, благодаря чему возможно успешное распознавание сложных образов.
Сейчас для «крупных» операций в качестве решений используют суперкомпьютеры. Они не предназначаются для стационарного «домашнего» применения. Обладают множеством функций и огромной мощностью. Основная сфера применения – Big Data.
Технологии и IT стремительно развиваются. Неизвестно, какие еще идеи будут реализованы в ближайшее время. Но в эру цифровых технологий разработчики стараются внедрять в свои машины искусственный интеллект.
Тенденции показывают то, что фирмы-производители стараются по сей день совершенствовать рассматриваемые «девайсы». Настоящее время демонстрирует следующее — они больше ориентированы на «рядового пользователя». Наделяются не только красивым интерфейсом, но и обладают неплохими мощностями.
P. S. Интересуют компьютеры и сфера информационных технологий? Обратите внимание на профессиональные курсы Otus!
Электроника. Лекционный курс. Введение.
Темпы развития многих областей науки и техники в значительной степени связаны с развитием электроники. В настоящее время невозможно найти какую-либо отрасль промышленности, в которой не использовались бы электронные приборы или электронные устройства автоматики, вычислительной или измерительной техники.
В каждой из многочисленных отраслей современной техники электроника дает толчок качественно новому этапу развития, производит подлинную техническую революцию.
Электроника как наука (принято называть физической электроникой) занимается изучением электронных явлений и процессов, связанных с изменением концентрации и перемещением заряженных частиц в различных средах (в вакууме, газах, жидкостях, твердых телах) под воздействием различных условий (температура, давление, электрические и магнитные поля, излучения различного вида, в т. ч. и световые).
Задача электроники как отрасли техники (техническая электроника) – разработка, производство и эксплуатация электронных приборов, устройств и систем самого различного назначения.
Эффективность электронной техники обусловлена высоким быстродействием, точностью и чувствительностью входящих в нее элементов, важнейшими из которых являются электронные приборы.
С помощью электронных приборов удается преобразовывать неэлектрические виды энергий в электрическую и наоборот.
Исключительно велика роль электроники при создании средств вычислительной техники, в том числе высоко-эффективных электронных вычислительных машин (ЭВМ) и персональных компьютеров (ПК).
Классификация электронных приборов.
Электронные прибор, составляющие основу электроники, можно классифицировать по двум признакам:
— по принципу работы;
— по функциональному назначению.
По принципу работы электронные приборы могут быть разделены на четыре класса:
Электронные приборы – поток электронов движется между электродами, находящимися в высоком вакууме, т.е. в среде столь разряженного газа, что движущиеся электроны не испытывают столкновений с частицами газа.
Газоразрядные приборы – движение электронов в межэлектродном пространстве происходит в условиях столкновения их с частицами газа (с молекулами и атомами), что при определенных условиях приводит к ионизации газа, резко изменяющего свойства прибора. Такие приборы называются ионными.
Электрохимические приборы – принцип действия основан на явлениях, связанных с происхождением электрического тока в жидких телах с ионной проводимостью. Такие приборы работают на основе явлений, изучаемых электрохимией и электроникой – хемотроникой.
Полупроводниковые приборы – принцип действия основан на электронных явлениях в веществах, имеющих кристаллическое строение, для которого характерно закономерное и упорядоченное расположение атомов в пространстве. Связанные между собой атомы располагаются строго определенным способом, что образует кристаллическую решетку твердого тела.
По функциональному назначению электронные приборы могут быть разделены на три группы:
Электропреобразовательные – это приборы, в которых электрическая энергия одного вида (например, постоянного тока) преобразуется в электрическую энергию другого вида (например, переменного тока различной формы). К ним относятся выпрямительные, усилительные, переключающие, стабилизирующие приборы и т.п.
Электроосветительные – это приборы, в которых электрическая энергия преобразуется в энергию оптического излучения. К ним можно отвести электронносветовые индикаторы, ЭЛТ, знаковые индикаторы, лазеры, в т.ч. светоизлучающие диоды и т.д.
Фотоэлектрические – это приборы, в которых энергия светового излучения преобразуется в электрическую энергию. Это фотоэлементы, фотодиоды, фототранзисторы, видеокамеры и т.п.
Общим для всех электронных приборов является то, что в них осуществляется преобразование энергий различных видов, поэтому приборы, имеющие существенные отличия в принципе действия, применяются по одному и тому же функциональному назначению, т.е. для одной и той же цели и обладают близкими свойствами.