Оптический датчик, лидар — характеристики, принцип работы
Рассмотрим принцип работы оптического датчика, его устройство и основное предназначение. В конце статьи видео-обзор принципа работы лидара (оптического датчика). Рассмотрим принцип работы оптического датчика, его устройство и основное предназначение. В конце статьи видео-обзор принципа работы лидара (оптического датчика).
Оптический датчик или другими словами лидар (Light Detection and Ranging) – специальный фотоэлектрический датчик для измерения дистанции и обнаружения объектов. Основой работы такого датчика являются электромагнитные волны (инфракрасные), благодаря которым он определяет расстояние до объекта.
Что такое оптический датчик
Представить современный автомобиль без пассивной или активной системы безопасности практически невозможно, да и многие страны попросту могут отказаться от подобных машин. Почти каждая система безопасности использует определенные датчики для снятия и сбора определенной информации. Основой для таких систем стал оптический датчик или по-другому — лидар. В зависимости от требований к датчику и его предназначения, внешний вид и устройство внутри могут отличаться, но принцип работы остается без изменений.
Основной задачей считается замер расстояния (дистанции к объекту), хотя в некоторых случаях он так же может замерять и скорость объекта находящегося впереди. В некоторых случаях по функционалу лидар выступает как альтернатива автомобильному радару, за счет чего в характеристиках машины может быть отмечен как лазерный радар для разных активных систем безопасности. По радиусу действия, расстояние достигает 250 метров, а угол разрешения достигает 180 градусов. Таким образом, использовать лидар можно как в пассивных, так и активных системах безопасности, а малые габариты позволяют установить в самых нестандартных местах автомобиля.
Как устроен лидар автомобиля
Устройство лидара (оптического датчика) своеобразно, и по сути напоминает электронную схему, собранную в одном элементе. Среди основных деталей лидара специалисты выделяют:
Каждый из перечисленных элементов выполняет весьма важную роль в механизме лидара. Рассмотрим более подробно, за что отвечает каждая деталь. Основную роль и все начало работы берется с диода, который передает инфракрасное излучение (луч). Интенсивность инфракрасного луча, в случае необходимости изменяется за счет модулятора. В свою очередь в зависимости от типа модуляции, выделяют два типа лидаров: импульсного и непрерывного действия. Все же специалисты говорят, что лидар непрерывного типа отживает свое, тем самым уступая более прогрессивному импульсному оптическому датчику. Чтоб повысить эффективность оптического датчика на основе импульсного метода работы, инженеры одновременно начали использовать несколько импульсов для передачи, тем самым сделав технологию многоимпульсной.
Не менее важным считается оптический элемент, через который проходят импульсы. Миновав оптический элемент, световой импульс поступает на фотодиод, благодаря которому он преобразуется в электрический сигнал для распознавания другими элементами. Следующий в этой цепочке лидара стоит АЦП или аналого-цифровой преобразователь другими словами. Именно благодаря ему, электрический сигнал с фотодиода преобразуется в цифровой сигнал. Последний этап в работе оптического датчика – обработка полученного цифрового сигнала микропроцессором, именно он выдает блоку управления информацию, которую считал лидар.
Как уже говорили, внешний вид оптического датчика может отличаться, как по производителям, так и по моделям одной марки автомобиля. Но основная задача и принцип работы механизма отличаться не будет.
Принцип работы оптического датчика
Разобравшись, какие основные элементы входят и выполняют работы оптического датчика, неплохо рассмотреть его принцип работы и тем самым понять, где основные плюсы и минусы, а так же что может навредить работе механизма.
Несмотря на внешние отличия и структуру строения, принцип работы лидара одинаковый на любом автомобиле и системе безопасности. В момент срабатывания, инфракрасный свет направляется на цель, отраженный свет от цели частично рассеивается (теряется), а частично возвращается к излучателю, тем самым попадая в фотодиод.
Как правило, ток на фотодиоде пропорциональный инфракрасному свету, который воздействует от отраженного объекта. Фотодиод, после распознавания инфракрасного пучка импульсов производит электрический сигнал, передавая его в аналого-цифровой преобразователь. Суть такого элемента, точней целого интегрального набора деталей, создать такой сигнал, который мог бы распознать микропроцессор.
По внешнему виду это небольшая микросхема, так же как и микропроцессор, но без АЦП управляющие блоки не смогут работать. Следующие два шага – передача цифрового сигнала в микропроцессор и в дальнейшем отправка его в основной электронный блок управления. Именно в ЭБУ анализируется полученная информация, распознаются образы объектов впереди автомобиля, а так же другие непредсказуемые ситуации, в которых используется оптический датчик.
Где применяется лидар
Использование оптических датчиков в автомобилях может быть самым разным и вовсе не предсказуемым. Самые разные системы активной и пассивной безопасности используют данные элементы для получения той или иной информации. Например, система мониторинг расстояния к объектам впереди или сзади автомобиля. Так же данный элемент могут использовать для снятия скорости или момента вращения деталей.Если говорить более понятным языком, то это может быть система распознавания и определения пешеходов, адаптивный круиз-контроль, система мониторинга объектов и прочие. Благодаря вертикальному и горизонтальному расширению оптического датчика, элемент может считывать больше информации, а перемещение передатчика инфракрасного излучателя и поворотного зеркала, в разы увеличивает возможности механизма. Можно твердо говорить, что такой механизм вполне отрабатывает поставленную логику и в нужный момент передать информацию в блок управления.
Преимущества и недостатки оптического датчика
Как и в любом механизме, оптический датчик автомобиля имеет свои преимущества и недостатки. Основной плюс это скорость срабатывание, точность обработки полученной информации, а так же огромный спектр возможностей для использования в разных системах безопасности.
Помимо положительных моментов, есть и отрицательные (недостатки) от которых никак нельзя избавиться, даже в наши дни. Как показывает практика использования, оптический датчик очень чувствительный к погодным условиям и рельефному покрытию. Эффективность работы лидара уменьшается с ухудшением погодных условий, в частности на дождь, снег, туман и прочие погодные явления.
Механизм попросту не может получить отображение инфракрасного луча, а так же искажается за счет погодных явлений. Загрязнение датчика так же негативно сказывается на работе системы. Механизм попросту выдает неправдивую информацию или не срабатывает на заявленную производителем дальность.
Стоимость оптического датчика для автомобиля
Говорить об определенной стоимости оптического датчика нельзя, хотя принцип работы одинаковый для многих. Вся основа цены заключается в системе (механизме) где применяется лидар или же его строении. Самый обычный датчик без особых излишних функций обойдется от $10, если же говорить о системах безопасности, в частности адаптивный круиз-контроль или мониторинг объектов впереди автомобиля обойдется от $100.
В современных электромобилях оптические датчики расставлены по всему периметру. Таким образом, производители добавляют и дорабатывают системы безопасности и комфорта. Как пример, лидар для адаптивного круиз-контроля компании Nissan обойдется от $160, для современной системы ночного видения от Mercedes-Benz или Toyota по цене $235 за один такой оптический элемент.
На первый взгляд оптический датчик неприметный и кажется, что от него мало толку, но разобравшись в деталях и его возможностях понимаешь – это сердце большинства систем безопасности и комфорта, которые мониторят ситуацию вокруг автомобиля в режиме реального времени.
Для чего нужны оптические датчики? Где применяются и как работают
Термин оптический датчик может означать две разные вещи:
- Существуют датчики для света, по существу, определяющие такие свойства, как оптическая мощность или интенсивность.
- Другие устройства измеряют неоптические свойства, такие как силы, смещения и наклоны, деформация, температура, химические или электрические свойства, и каким-то образом используют свет для этой цели.
Полезные статьи:
Световые датчики
Различные свойства света могут быть рассмотрены с помощью определенных типов оптических датчиков:
- В большинстве случаев измеряется оптическая мощность или интенсивность. Для этой цели часто используется фотодиод или какой-либо другой вид фотоприемника. Иногда используется тепловой детектор, в котором оптическое излучение преобразуется в тепло и измеряется результирующее повышение температуры, обычно с помощью электронных средств. Датчики мощности или интенсивности могут быть интегрированы в измерительные приборы, такие как измерители оптической мощности и мониторы оптической мощности.
- Существуют приложения, в которых необходимо определить пространственное положение светового луча. Для таких целей существуют позиционно-чувствительные детекторы разных видов, некоторые из них с чрезвычайно высоким пространственным разрешением.
- Другие оптические датчики могут проверять дополнительные свойства световых лучей или рассеянного света, например, в отношении поляризации или оптического спектра.
Датчики, использующие свет
В этом разделе объясняются датчики, которые измеряют неоптические свойства на основе принципа измерения, который включает использование света.
Оптические датчики могут иметь существенные преимущества перед конкурирующими технологиями, например, в отношении производительности или удобства использования в экстремальных условиях.
Такие датчики конкурируют с другими сенсорными технологиями, например, основанными на чисто электронных средствах. По сравнению с ними оптические датчики часто дороже, но, тем не менее, могут быть предпочтительнее из-за определенных преимуществ.
Например, для приложений для измерения в конкретных жестких условиях, проявляющих сложные аспекты, такие как интенсивные электрические поля, радиоволны или экстремальные температуры, может быть выгодно иметь относительно прочный и непроводящий чувствительный элемент. Такой как оптическое волокно, содержащее волоконную дифракционную решетку (Брэгга).
Такие типы датчиков могут работать, не создавая проблем с изоляцией или взрывоопасности, требуя электроэнергии в неудобном месте или подвергаясь чрезмерному влиянию определенных помех в окружающей среде.
Другим аспектом является иногда превосходная производительность, например, чрезвычайно высокое разрешение, с которым можно измерить механическую деформацию, особенно в случае интерферометрических датчиков.
В некоторых случаях используется оптический измерительный прибор, к которому подключен один или несколько внешних оптических датчиков. Например, можно иметь несколько или даже много волоконных брэгговских решеток, встроенных в длинное оптическое волокно, или использовать своего рода распределенное зондирование по всей длине волокна.
Возможный принцип измерения заключается в определении местоположения по времени поступления импульсных сигналов с использованием конечной скорости света. Такая распределенная сенсорная система также может быть существенно более экономичной, чем система, основанная на длинной цепочке электронных сенсорных элементов. Они требуют множество электрических кабелей или сложной системы электронных шин.
Далее мы обсудим наиболее распространенные типы оптических датчиков (сгруппированные по измеряемым величинам), не стремясь создать что-либо близкое к полному обзору сенсорных технологий, поскольку это огромная область.
Датчики присутствия
Датчики, основанные на принципе светового барьера, часто используются для обнаружения присутствия людей или некоторых других объектов. Здесь один посылает луч света, например, лазерный луч от инфракрасного лазерного диода, через определенную область и обнаруживает прибывающий луч, который, может быть заблокирован человеком, входящим в область.
Аналогичным образом, оптические датчики могут использовать рассеянный свет или излучаемое тепловое излучение.
Оптические датчики механических величин
Волоконно-оптические датчики деформации, смещения, наклона, вращения, силы и ускорения стали довольно распространенными и могут иметь удивительные показатели производительности.
Широкий спектр оптических датчиков может использоваться для измерения и контроля механических величин, таких как силы, перемещения и наклоны (= изменения положения вращения) и деформации. Они могут быть основаны на самых разных принципах измерения. Например, изменения положения можно очень точно отслеживать с помощью различных видов интерферометров, которые могут быть реализованы либо с помощью объемной оптики, либо с помощью волоконной оптики.
Те же принципы могут быть использованы для измерения механических сил, поскольку их можно легко преобразовать в перемещения, используя упругую деформацию некоторой механической части.
Аналогичным образом, ускорения могут быть измерены, например, через относительное движение испытуемой массы или через силы инерции. Кроме того, существуют различные методы измерения вибраций, частично с высоким временным разрешением и чувствительностью. Для определения вращений существуют оптические гироскопы, например, на основе кольцевых лазеров, которые могут быть чрезвычайно чувствительными.
Многие из этих устройств реализованы в виде волоконно-оптических датчиков.
Часто, но не всегда с использованием волоконных брэгговских решеток. Часто такие датчики также чувствительны к изменениям температуры, но существуют различные способы разделения таких влияний; на самом деле, существует множество датчиков, которые одновременно могут измерять деформацию и температуру.
Часто используемый метод заключается в использовании двух идентичных волоконных решеток Брэгга, где обе решетки подвергаются воздействию одинаковой температуры, но только одна из них подвергается определенной деформации.
Датчики брэгговской решетки
Влияние деформации и температуры можно различить с помощью различных методов. Например, с помощью эталонных решеток, которые подвергаются воздействию одной и той же температуры, но не деформации, или комбинируя различные типы волоконных решеток. Так что деформация и температура получаются одновременно.
Существуют также лазерные датчики с брэгговской решеткой, в которых реализованы небольшие волоконные лазеры, состоящие из двух решеток и редкоземельного легированного волокна между ними. В качестве альтернативы, может быть один ВБР и широкополосный отражатель с другой стороны.
При подаче света накачки такое устройство выдает сигнал с длиной волны, близкой к длине волны Брэгга. Затем можно измерить эту длину волны излучения, и, что примечательно, на нее практически невозможно повлиять даже во время распространения в довольно длинном волокне – в отличие от сигналов с амплитудным кодированием, на которые может повлиять затухание.
Датчики огня и дыма
Огонь можно обнаружить по-разному:
- Можно ощутить результирующее повышение температуры с помощью какого-либо температурного датчика
- Можно измерить генерируемое тепловое излучение (тепловое излучение, инфракрасный свет) с помощью своего рода инфракрасного детектора.
- Можно обнаружить генерируемый дым. Например, в домашних хозяйствах стало очень распространенным использование оптических устройств дымовой сигнализации, которые обнаруживают рассеяние света, генерируемого небольшим светодиодом (LED). Этот свет может рассеиваться в направлении ближайшего фотоприемника, который установлен таким образом, что без дыма генерируемый свет не может достичь его. Обычно источник света не работает непрерывно, и при обнаружении дыма генерируется громкий сигнал тревоги, чтобы люди могли принять меры. Из-за низкого потребления электроэнергии в обычном режиме мониторинга компактной батареи может хватить на годы.
Химические датчики
Химические датчики могут реагировать на концентрацию определенного вещества или на некоторые химические параметры, такие как значение pH, указывающее степень кислотности. Были разработаны различные типы оптических датчиков, которые можно использовать для таких целей. Они могут быть основаны на самых разных принципах работы:
- Величина, представляющая интерес, может изменять показатель преломления или оптическое поглощение вещества, которое можно контролировать с помощью света. Здесь могут потребоваться измерения, зависящие от длины волны. Например, это делается в колориметрических датчиках.
- В других случаях некоторые химические вещества излучают флуоресцентный свет (часто контролируемым образом возбуждаемый падающим зондирующим светом), который может быть чувствительно обнаружен – возможно, даже с существенным пространственным разрешением.
- Часто какой-либо вид зондирующего света взаимодействует с химическим образцом, например, с пучком свободного пространства, проходящим через измерительную ячейку, или с очень локализованным контактом мимолетного света из своего рода волновода с окружающей средой.
- Некоторый агент может быть привлечен определенными химическими веществами, измеряя оптические эффекты этого агента, можно определить концентрацию других химических веществ.
- Химическое зондирование также может быть выполнено на больших расстояниях, например, до положения высоко в атмосфере Земли.
Датчики электрических и магнитных величин
Существуют различные способы, с помощью которых электрические величины можно контролировать с помощью оптических средств.
Например, показатель преломления некоторых кристаллических материалов линейно зависит от напряженности приложенного электрического поля. Этот электрооптический эффект может быть использован для электрооптического отбора проб, например, при исследовании определенных электронных чипов. Аналогичным образом, можно использовать эффект Фарадея для оптических датчиков, адресуемых магнитным полям. Поскольку магнитные поля часто генерируются электрическими токами, их также можно использовать для изготовления датчиков тока, которые могут быть полезны.
Например, для измерения токов в жестких условиях высокого напряжения, таких как системы передачи электроэнергии сверхвысокого напряжения, включая подземные кабели.
Оптические и фотодатчики. Разновидности и принципы работы
Постараюсь популяризировать эти электронные устройства по порядку. Теория, классификация, практика, реальные модели датчиков и производители. На эту тему у меня есть несколько статей, вот основные – разновидности датчиков и схемы включения датчиков. Другие ссылки буду давать по ходу.
Будет много фотографий, которые делал я сам. И фактов, которые знаю только я.
Для начала, чтобы понимать, о чём речь, и в какой области знаний мы сейчас очутились –
Название и терминология применительно к оптическим датчикам
Как видно сразу из названия, в этих датчиках используется оптика, а значит – световое излучение различных диапазонов. То есть датчик, реагирующий на свет. И, разумеется, выдающий на факт обнаружения света какой-то сигнал. В английской терминологии оптические датчики часто называют PhotoCell Sensor, или Light Sensor, что означает фотодатчик, или световой датчик.
У нас тоже, кроме распространенного “оптического“, те же устройства называют фотодатчиками, или фотоэлектрическими датчиками.
Простейший и самый распространенный вариант такого датчика – датчик освещенности, который дискретно реагирует на уровень освещенности, и выдает сигнал на включение освещения с наступлением сумерек (основное применение)
СамЭлектрик.ру в социальных сетях:
Подписывайтесь! Там тоже интересно!
Работа оптических датчиков
Активация. Вот ключевое слово, которое должно использоваться при описании работы любых датчиков. В нашем случае активация (или деактивация, но об этом позже) происходит, когда свет, попадающий на вход датчика, обладает достаточной интенсивностью.
Логика работы такова, что когда свет попадает в датчик беспрепятственно, он будет активирован. А когда этот свет прерывается барьером (человек, заготовка, деталь станка) – датчик деактивируется.
Внимание! Не путайте! Активен – совсем не значит, что у него контакты замкнуты, и есть напряжение на выходе! Работа схемы обнаружения света и выходного ключевого элемента могут различаться! Возможно, что свет прерывается, и это как раз и служит сигналом активности. Всё зависит от конкретного применения.
Оптические датчики (так же, как и индуктивные датчики приближения) являются бесконтактными, то есть механического контакта с наблюдаемым объектом (активатором) не происходит. В отличии от (например) концевых выключателей и датчиков давления.
В большинстве случаев для повышения помехоустойчивости используют свет не обычного спектра, а излучение лазерного источника света (как правило, красного цвета). Такой источник прост в изготовлении, излучение легко фокусируется в тонкий луч. А благодаря тому, что излучение в видимой части диапазона, положение датчика просто настроить в пространстве.
А вот один из раритетных датчиков с обычной лампочкой накаливания, который я застал при его жизни. Излучатель – лампочка накаливания на 6 В с линзой. Приемный элемент – фотодиод. Далее – усилитель и триггер Шмитта на транзисторах.
Оптический датчик с лампочкой накаливания и линзой. Внизу видно световое пятно
Этот датчик стоит в производственной линии 1980 года, купленной за нефтедоллары в Швейцарии.
Современные датчики реагируют только на “свой” участок спектра, что позволяет им чётко работать в условиях помех и плохой видимости.
Помехой может быть солнечный свет или искусственное освещение, пыль, дым.
В случае плохого ухода помехой может быть обыкновенная пыль и грязь:
Загрязненный оптический датчик, сбоку – регулятор настройки чувствительности, излучающая часть смотрит вниз
На оптических датчиках в большинстве случаев существует переключатель “Dark On / Light On”. Что он означает? Он инвертирует логику работы. При “Dark On” датчик активируется тогда, когда на его вход свет не попадает, то есть на входе – темнота. При попадании света датчик деактивируется, то есть его выход приходит в нормальное состояние. В режиме “Light On” датчик активируется тогда, когда его вход засвечивается.
Есть модели, где присутствует таймер – выходной сигнал появляется через время после активации (срабатывания).
Поскольку в датчике присутствует пороговый элемент, нужно, чтобы он срабатывал чётко. При этом используется свойство гистерезиса, снижающее дребезг (частые изменения сигнала в “зыбкой” зоне). Чтобы облегчить настройку, сейчас производители в корпусе датчика устанавливают не только индикатор активации но и индикатор стабильного уровня сигнала. Если он горит, то это указывает, что обнаружение происходит стабильно, с достаточным уровнем сигнала, а не на краю диапазона чувствительности.
Различия по способу передачи света
Это – основные различия, по которым классифицируются дискретные оптические датчики. Различие – в способе “доставке” света на входной оптический элемент датчика.
С раздельным приемником и передатчиком
Такие датчики менеджеры по продажам называют барьерными, или с пересечением луча. Хотя, я это считаю некорректным – все дискретные датчики работают с пересечением луча каким-то барьером.
Оптический датчик типа передатчик-приемник с раздельными частями
Это самый надежный тип датчика в смысле дальности и помехоустойчивости. Во всех остальных датчиках передатчик и приемник излучения находятся в одном корпусе, а в этом могут быть разнесены на десятки метров.
То есть, передатчик установлен в одном месте, и к нему подведено питание. Он излучает, не выполняя больше никаких функций и не имея настроек. А приемник установлен на отдалении, и там может регулироваться чувствительность и другие параметры и функции.
Излучатель и приемник должны быть из одной пары (комплекта), хотя могут приобретаться отдельно. Передатчики и приемники разных фирм не подходят друг к другу (но это не точно).
Такие датчики на производстве применяются там где нужно контролировать большое расстояние. Также – в цепях безопасности, в охранных системах и там, где воздух может быть загрязнен (пыль, газ).
Есть вариант и в бытовом применении – видел барьерные фотодатчики в лифте:
Оптический датчик в лифте
Пока какая-то одежда или часть тела пересекает траекторию луча датчика – никто никуда не поедет.
С рефлектором (рефлекторный)
Эти датчики совмещают источник (передатчик) и приемник излучения в одном корпусе.
Рефлекторный оптический датчик со световозвращателем
Свет отражается от рефлектора, и попадает обратно. Поэтому некоторые производители называют такие датчики ретрорефлекторными (обратное отражение).
Оптический датчик с отражением от рефлектора
Кстати, на фото видны переключатель Dark / Light On, регулятор чувствительности, и индикаторы стабильности и срабатывания.
А вот хорошее фото, видна оптика передатчика и приемника:
Датчик рефлекторный со стороны оптики, закреплен на кронштейне
Такой датчик – это обязательно система. Для примера – конвейер, и система датчик – отражатель контролирует прохождение заготовки:
Датчик рефлекторный по одну сторону конвейера
Рефлектор может также называться отражателем, световозвращателем или катафотом:
Рефлектор для оптического датчика с другой стороны конвейера
Максимальное рабочее расстояние, на котором обеспечивается стабильная работа – у разных моделей от 5 до 10 м. Теоретически можно и больше, но практически очень трудно обеспечить стабильную работу – малейшее смещение луча из-за вибрации или ослабление света из-за пыли, и всё.
Датчик загрязнен пылью, предельная дальность в этом случае падает примерно на 30%
Датчики рефлекторного типа на производстве используются чаще всего.
Диффузный
Этот тип датчика – с отражением от объекта.
Диффузный оптический датчик с отражением от объекта
У него самая малая дальность действия (до полуметра), зато есть важное свойство – при должной настройке он детектирует появление объектов в зоне действия. Ведь на каждую коробку или бутылку катафот не поставишь!
Объект может быть на оси действия датчика, на расстоянии. По мере приближения датчик, как пороговый элемент, срабатывает.
В простейшем случае регулировка одна – чувствительность.
В крутых датчиках несколько кнопок или регуляторов, и его можно программировать и обучать:
Диффузный датчик с обучением и множеством настроек
Различия по конструкции
Тут просто. Если не рассматривать датчики специального исполнения (например, щелевые), то оптические датчики могут быть двух типов – в прямоугольном и в цилиндрическом корпусе.
Фото прямоугольных я привёл достаточно, а вот цилиндрические:
Оптические датчики в цилиндрическом корпусе с отражателем. Контроль прохождения по конвейеру
Подключение и виды выходного сигнала
Здесь главная путаница. Иногда трудно понять, что такое Нормально Открытый (НО), а что такое Нормально Закрытый (НЗ) выход датчика. Те кто читал мои предыдущие статьи (ссылки в начале), тот прекрасно знает, что это. Но применительно к оптическим датчикам нелишне повториться.
Надо увязать три события:
- попадание света нужной интенсивности,
- включение индикатора активности
- переключение выходного элемента (транзистор или реле)
Путаница возникает, когда под активностью (срабатыванием) понимают попадание света, либо попадание объекта. И что при этом происходит – зависит от переключателя Dark / Light и типа выхода – НО или НЗ.
В НЗ датчиках индикатор может гореть, когда контакт замкнут, а может – когда датчик активен (Это разные события!). Зависит от производителя.
По подключению датчиков статья у меня есть (ссылка в начале), вот ещё. Как правило, схема подключения приведена на корпусе:
Схема подключения на корпусе датчика. Переключатели, регуляторы, индикаторы и клеммы – под герметичной полупрозрачной крышкой
В общем, нужно внимательно читать инструкцию, и всё проверять на практике.
Специфические датчики
Световая решетка
Это две линейки, расположенные точно напротив. На одной расположены светодиоды, на другой – фотодиоды. Таким образом, анализируя перекрытие пар свето/фотодиод, можно измерить с некоторой погрешностью геометрические данные объекта. Например, высоту или ширину объекта.
Световой барьер – линейка для измерения геометрии объектов
Световая решетка подключается к специализированному контроллеру, которые дает данные на главный контроллер.
Световой барьер
Он используется в основном для безопасности, для недопущения людей, или неправильной формы предметов в контролируемую зону.
Пара фоток, чтоб было понятно, о чем речь:
Барьер безопасности – по конвейеру проходит только то, что нужно, и только тогда, когда нужно!
Барьер в системе с датчиками
Это довольно сложная система, в которую кроме того ещё входят минимум 2 рефлекторных датчика (на фото – 4) и свой контроллер.
Лазерные
Это оптические датчики, в которых есть возможность измерения расстояния до объекта.
Лазерный оптический датчик
Лазерный оптический датчик с отображением расстояния
Лазерный оптический датчик с измерением расстояния
Принцип действия – измерение времени прохождения луча. Как в радиолокации.
Щелевые датчики
Отдельный вид датчиков с приемником и передатчиком – щелевые датчики (вилкообразные). Они удобны тем, что хоть передатчик и приемник разнесены, но расположены фактически в одном корпусе, в конструкции которого есть щель.
Щелевые оптические датчики. Два датчики, одно кольцо с прорезями.
Когда в щель между излучателем и приемником попадает активатор (предмет), датчик срабатывает. Щелевые датчики удобны там, где объект, перемещение которого детектируется, имеет небольшую фиксированную толщину. Такая конструкция очень похожа на принцип действия инкрементного энкодера.
Оптоволоконные, или волоконно-оптические
Мне встречались такие датчики в диффузном исполнении, и с приемником+передатчиком.
Смысл в том, что оптические элементы и электронная схема разнесены в пространстве, а свет передается посредством оптоволокна (пластиковый фибер).
Чувствительный элемент оптоволоконного датчика
Видите красную точку? Это выход волоконно-оптического датчика.
В отдалении на расстоянии 4 метра стоят такие блоки оптоволоконных усилителей (для трех датчиков):
Оптоволоконные усилители для датчиков
Такую систему ставят там, где очень стесненное пространство (как настраивать?) и там, где электроника работать не любит – вибрация, влажность, высок риск повреждения.
Ещё несколько фото датчиков с оптоволоконным кабелем:
Два приемопередатчика с оптоволоконными проводами к электронному блоку. Видите потертости? Это следы от индуктивных датчиков, которые постоянно ломались из-за несовершенства механики…
Электронный блок (оптоволоконный усилитель)
Оптическая часть волоконно-оптического датчика. Даже сфотографировать проблематично, не то что настроить!
Электронные блоки – оптоволоконные усилители к оптоволоконным датчикам на фото выше.
Эксперт компании LAN-ART по оптическим передатчикам — Березкин Е.Н.
Комментирует специалист, эксперт компании LAN-ART по оптическим передатчикам — Березкин Евгений Николаевич: “Сегодня в каждом современном доме существуют оптические приемники и передатчики, работающие по оптоволокну. Оптический передатчик сетей кабельного телевидения (КТВ) служит для формирования оптического сигнала, промодулированного электрическим телевизионным сигналом с диапазоном частот группового ТВ-сигнала 47… 862 МГц. В таких передатчиках используют лазеры, в приемниках – фотодиоды. В системе используется оптическое излучение с длиной волны 1100-1600 нм. “
Аналоговые
Аналоговыми эти датчики являются по виду выходного сигнала. Принцип работы может быть как у лазерного, или просто измеряется интенсивность отраженного сигнала.
В данном случае – аналоговый сигнал, соответствующий расстоянию до поверхности разматываемой катушки, подается на аналоговый вход контроллера (АЦП). И контроллер рассчитывает диаметр катушки.
Оптический датчик, измеряющий расстояние до объекта. Красная точка справа показывает место измерения. Корпус датчика защищен от ударов элементом крепления
Этот же датчик приведен в самом начале статьи. У него также есть и дискретный выход, который можно запрограммировать, и он сработает при определенном расстоянии.
Оптический датчик пламени
Этот датчик стоит особняком – он воспринимает свет от пламени сгораемого газа либо другого топлива. Используется в промышленных котельных, где нужна повышенная безопасность.
Вот такая есть модель:
Датчик пламени для котельной с дискретным выходом
Датчик наличия пламени от сгорания газа
Принцип действия – как у радиолампы.
Эй, кто-нибудь ещё помнит, что были аналоговые телевизоры на радиолампах?! Статья про то, как я включил старый ламповый телевизор.
Неисправности и уход за оптическими датчиками
Так же как и оптика зеркальных фотоаппаратов – нужна чистка, аккуратная протирка и проверка механической целостности.
Я для чистки оптики использую салфетки, смоченные в воде с добавлением ничтожного количества нейтрального моющего средства. Например, для посуды. Потом вытираю сухой салфеткой. Главное – чтобы не попал абразив.
Ещё особенность. В оптических датчиках излучающий элемент – как правило, светодиод. Он имеет свой ресурс работы, и со временем интенсивность его излучения падает. Поэтому неудивительно, что раз в несколько лет приходится настраивать чувствительность датчиков, такова селяви…
Скачать книгу про датчики
Всё в статью не вместилось, есть ещё много фото и интересных историй про оптические датчики, но статья не резиновая)))
Поэтому задавайте вопросы и делитесь опытом и фото в комментариях, буду рад!
А ещё буду рад увеличению количества подписчиков и активности в моей группе ВК! Заходите, там самая оперативная информация, которая иногда даже не появляется на блоге.
Также жду новых читателей и подписчиков на моем канале Яндекс.Дзен. Кстати, вот интересная статья в тему на Дзене – разновидности и примеры реального применения энкодеров. Приведены описания реальных узлов оборудования, в которых применяются энкодеры.
ОПТИЧЕСКИЕ СЕНСОРЫ
Область исследований оптических химических сенсоров — это быстро растущая область исследований за последние 30 лет. Оптические сенсоры являются частным случаем химических сенсоров (ХС). Такие сенсоры выгодно отличаются от ХС тем, что нечувствительны к электромагнитным и радиационным полям и способны передавать аналитический сигнал без искажения на большие расстояния. Кроме того, они имеют невысокую стоимость и могут использоваться, когда применение ХС неэффективно.
В зависимости от типа оптических сенсоров их действие основано на следующих принципах:
- • поглощения света (абсорбция);
- • отражения первичного (падающего) светового потока;
- • люминесценции;
- • теплового эффекта.
При этом используются зависимости оптических свойств сред (коэффициентов преломления, отражения и др.) от концентраций определяемых веществ.
Из оптических ХС перспективны сенсоры на основе волоконной оптики. Такие сенсоры имеют чувствительный слой, роль которого может выполнять поверхность волокна-световода или иммобилизованная на световоде фаза, содержащая подходящий реагент. Волоконно-оптические световоды на основе кварца, германатных, фто- ридных, халькогенидных стекол, кристаллов галогенидов таллия, серебра или цезия и полимерных материалов позволяют работать в ИК, видимом и УФ-диапазонах спектра. Созданы оптические сенсоры для определения pH растворов, ионов К + и Na + , С02, 02, глюкозы и других веществ.
В волоконно-оптических сенсорах (ВОС) на торце световода закрепляется (иммобилизуется на каком-нибудь носителе по одному из способов, рассмотренному выше) реагентсодержащая фаза (РСФ). При описании таких устройств иногда используют термин «оптрод», являющийся комбинацией слов «оптика» и «электрод». Этим подчеркивается, что ВОС по своему назначению близки к электродам, на основе которых функционируют ЭХС. Однако по природе сигнала и механизму отклика они различны.
Характеристика материала световода определяет оптический диапазон и, соответственно, аналитические возможности всего устройства. Если оптическое волокно изготовлено из кварца, то такой оптрод работает в широкой области спектра, включая ультрафиолетовую его часть. Для стекловолокна область длин волн охватывает лишь видимую область спектра. Если оптоволокно изготовлено из полимерного материала, то диапазон длин волн, в котором работает ВОС, находится за пределами > 450 нм. Такие устройства имеют невысокую стоимость. Химически активный материал создается на основе специально подобранных или синтезированных флуоресцентных красителей, иммобилизованных в полимерной матрице. Луч света, распространяясь вдоль оптического волокна, производит своеобразный опрос химического покрытия. При взаимодействии с определяемым веществом полярность окружения красителей меняется и они отвечают на стимул соответствующими изменениями в спектре флуоресценции.
Используют как одиночные оптические волокна, так и пучки из многих оптических волокон (рис. 9.1).
Рис. 9.1. Модель волоконно-оптического сенсора
Оптические волокна позволяют осуществить передачу оптических сигналов на очень большие расстояния и, следовательно, идеальны для тех случаев, когда объект анализа удален от исследователя. Кроме того, их можно изогнуть (однако угол изгиба не должен быть слишком острым), а поэтому их можно использовать в самых разнообразных оптических светочувствительных устройствах, таких как проточные ячейки для непрерывного мониторинга.
ВОС классифицируют на активные и пассивные сенсоры. Пассивные сенсоры состоят из такого материала, который не влияет на оптические свойства волокна. В активных сенсорах, наоборот, волокна модифицируются материалом, который придает им существенную аналитическую чувствительность, например покрывают волокна аналитически-чувствительным индикатором методом плакирования. В этом случае оптические свойства волокна в некотором роде модулированы в присутствии анализируемого вещества.
Оптосенсоры могут быть обратимыми и необратимыми. Сенсор обратим, если РСФ не разрушается при ее взаимодействии с определяемым веществом. Если часть реагента потребляется в ходе определения, сенсор работает необратимо. Обратимые ВОС для определения pH среды основаны на поглощении света. Устройство такого сенсора является достаточно простым (рис. 9.2): два пластиковых волокна вмонтированы в целлюлозную трубочку, содержащую краситель фиолетовый, иммобилизованный с помощью ковалентного связывания на полиакриламидных микрошариках. Кроме этих микрошариков, внутрь трубочки помещены такого же размера шарики из полистирола для лучшего рассеяния света.
Рис. 9.2. Схема функционирования обратимого волоконно-оптического сенсора для определения кислотности среды:
7 — падающее излучение от источника: 2 — детектируемое излучение
Через одно волокно свет от вольфрамового источника излучения входит, а через другое — выходит. Интенсивность выходящего потока света измеряется детектором, настроенным на соответствующую область длин волн. Пробка на торце трубочки удерживает РСФ механически и препятствует ее взаимодействию с определяемым компонентом в торцевой части.
Подобный оптрод может быть использован и для определения концентрации 02. В этом случае сигнал связан с тушением флуоресценции реагента при взаимодействии с кислородом. Такого типа оптроды могут быть использованы и для определения pH в живом организме.
Необратимые оптроды из-за расходования РСФ имеют ограниченный срок службы. Однако его можно продлить заменой РСФ на новую фазу. Стабильный сигнал от этих ВОС может быть получен лишь в условиях стационарного массопереноса определяемого компонента в зону его взаимодействия с РСФ. Любая помеха, нарушающая массоперенос, дает ошибку в показаниях ВОС. Обратимые и необратимые ВОС отличаются друг от друга так же, как потенциометрические ХС от амперометрических. Для последних условия массопереноса в зону реакции с чувствительным слоем определяют стабильность отклика.
В необратимом сенсоре (оптроде) на кислород определяемый компонент диффундирует через селективную мембрану с соответствующим размером пор в полость, содержащую иммобилизованный флуоресцирующий краситель (рис. 9.3). Его свечение гасится в присутствии 02 пропорционально парциальному давлению кислорода. Степень гашения фиксируется соответствующим устройством. Если резервуар с РСФ достаточно велик, то потребление реагента незначительно и сенсорное устройство может служить долго.
Рис. 9.3. Схема работы необратимого волоконно-оптического сенсора на кислород
К числу недостатков ВОС-технологии следует отнести определенную сложность приборов данного типа в целом: необходимость в стабилизированном источнике возбуждающего света и др., что увеличивает стоимость устройства, его энергопотребление и массогабаритные характеристики.
Необходимо также упомянуть, что значительное число флуоресцентных красителей имеет ограниченное время жизни