Что такое пассивное охлаждение
Перейти к содержимому

Что такое пассивное охлаждение

  • автор:

Как устроена пассивная система охлаждения в компьютерах MIC-7900

После нашей статьи про безвентиляторные компьютеры MIC-7000 было много вопросов про систему охлаждения^ действительно ли она полностью пассивная или внутри есть какие-то активные механизмы охлаждения? Некоторые комментаторы сомневались, что система может работать на пассивном охлаждении без троттлинга, то есть снижения частоты процессора по достижению пороговых температур.

Чтобы развеять мифы, мы решили протестировать систему пассивного охлаждения и провести стресс-тесты для наглядности.

Тесты мы будем проводить на компьютере MIC-7900-S5A1E. Это не самая производительная модель в линейке, но ее мощности достаточно для многих задач т.н. edge computing — размещения вычислительного узла максимально близко к конечному оборудованию, что широко используется для систем машинного зрения, автоматизации, станков.


Компьютер MIC-7900 с установленным модулем расширения MIC-75S20 на 2 PCIe платы и 2 жестких диска

Тестируемый компьютер оснащен процессором Xeon D-1559 с частотой 1.50 ГГц (2.10 ГГц в режиме Turbo Boost), 12 ядер, 24 потока. Тепловыделение составляет 45 Ватт, это немного, по сравнению с топовыми процессорами, у которых TDP может быть более 100 Ватт, но все же существенно.

Половину компьютера занимает цельный массивный радиатор. Системы с активным охлаждением могут быть намного легче и компактнее, но главное достоинство пассивного охлаждения — надежность. Системы с вентиляторами требуют частого обслуживания, забиваются пылью и выходят из строя. Системы с пассивным охлаждением не засасывают пыль и требуют намного меньше внимания.


Радиатор занимает половину корпуса компьютера.

Изучим устройство термоинтерфейса. Разберем компьютер и посмотрим на место крепления термораспределителя процессора к радиатору. Для этого просунем камеру в зазор между материнской платой и радиатором, который составляем примерно 8мм.

Крепление радиатора к теплораспределительной крышке процессора. Процессор припаян к материнской плате.

В тестируемой модели процессор припаян к материнской плате, что позволяет добиться меньшего зазора между радиатором и платой. Минусом такого решения является невозможность замены процессора. Существуют также модели MIC-7000 с привычным сокетом, позволяющим заменять процессор.

Тестирование

До загрузки системы посмотрим, какие датчики температуры доступны в BIOS:

Датчики температуры в BIOS

Измерим температуру радиатора в простое без нагрузки с помощью инфракрасного пирометра. Для этого оставим систему на несколько часов с загруженной операционной системой, но без запущенных программ.

Температура радиатора без нагрузки, в режиме простоя

Тестировать систему будем с помощью программы AIDA64, с помощью теста стабильности системы. Этот тест одновременно нагружает процессор и память, а также может задействовать графический процессор. Для объективности будем выполнять тест в течение длительного времени. Мы оставили систему на всю ночь.


Нагрузочное тестирование с помощью AIDA64. Видно, что за все время теста троттлинг не проявляется.

По графикам видно, что температура ядер процессора не поднималась выше 70°C, что укладывается в допустимые значения для данной модели процессора. На протяжении всего теста в помещении была температура около 24°C. Радиатор компьютера не обдувался, в помещении работала центральная вытяжка.
На графиках видно, что эффект троттлинга, то есть механизм пропуска процессорных тактов для снижения нагрузки, не проявляется. Система работает в штатном режиме.

Решетка радиатора при этом нагрелась до 58°C, на ней можно было держать руку без дискомфорта в течение пары секунд.

Заключение

Полностью пассивное охлаждение возможно и работает хорошо. Понижение частоты процессора не происходит, процессор работает в штатном режиме при максимальной нагрузке без ограничения по времени. Системы MIC-7000 можно использовать на объектах, требующих повышенной надежности и продолжительности безотказной работы, на удаленных объектах, где обслуживание затруднено, а также в условиях повышенной загрязненности воздуха, где активные системы охлаждения быстро выходят из строя.

Как сделать игровой компьютер с пассивным охлаждением. Мой опыт

Хочу поделиться своим опытом создания тихого компьютера. Сейчас эта тема становится все более и более актуальной и востребованной. Растет популярность HTPC, большинству граждан вообще не требуется горячая машина для серфинга интернета и просмотра почты. Но здесь речь пойдет немного о другом подходе.

Да, основная задача машины, которую я хотел собрать, действительно просмотр фильмов и прослушивание музыки на большом телевизоре в гостиной, но вот незадача, мне не чужды игры…

Перед тем как приступить к описанию своего проекта, я расскажу немного о том, как я вообще пришел к желанию получить то, что будет описано ниже. Что я имею? У меня 55-ти дюймовый телевизор 4K, напольная акустика B&W и интегральный усилитель Cambridge Audio со встроенным ЦАП. Также было приобретено сетевое хранилище, Synology, чтобы вопрос о наличии свободного пространства отпал навсегда. Кстати, с приобретением NAS сервера я получил намного больше, чем просто огромный внешний диск, как я изначально ожидал, но это совсем другая история. В общем, для всего этого добра нужен был транспорт.

Изначально использовался домашний MBP, но постоянная коммутация, лежащие повсюду провода (а их как минимум набиралось три! — питание, HDMI, USB-аудио). У меня был MBP Late 2014 с Retina, он подходит в качестве цифрового транспорта весьма неплохо! Он очень тихий и все еще весьма способный, но встроенное видео начисто перечеркивало игровые возможности компьютера, а постоянное наличие проводов в гостиной, как я уже сказал, меня совершенно не радовало. И даже не смотря на это я готов бы был жить с таким вариантом, все равно на игры уже совсем не хватает времени. Но эстетическая сторона вопроса не давала мне спокойно спать, хотелось большего…

Затем мой взгляд пал на такую замечательную штуку, как BD-плеер от Cambridge Audio. Вот, подумал я, то, что нужно! Великолепный дизайн, качество исполнения на высшем уровне! Этот плеер замечательно бы смотрелся рядом с моим усилителем! Кроме того, судя по многочисленным обзорам в сети, этот плеер Компании удался весьма способный: все цифровые форматы аудио и видео плеер воспроизводит на 5 баллов! Кроме того, я очень полюбил в последнее время хорошую музыку, а сей девайс обладает весьма нетривиальными музыкальными способностями!

Я почти остановился на таком варианте и даже почти смог закрыть глаза на весьма немалую его стоимость, но что-то все же меня тормозило! Видимо, это была какая-то неготовность к тому, чтобы перейти от компьютера, его неограниченными возможностями, на узкоспециализированный девайс, хоть и обладающий вроде бы всем, что мне было нужно. Но как же серфинг в сети на большом экране? Как же домашний компьютер для каких-то общих задач? Как же игры, в конце концов?! Решено было собирать HTPC.

Это был долгий путь, на котором я не буду акцентировать Ваше внимание. Скажу лишь, что все компоненты были выбраны сразу, но потом началась эпопея с подходящим корпусом… Сначала был куплен Cooler Master Elite 110, но он мне не подошел по высоте. Сам не знаю как так вышло, он должен был стоять в тумбе, рядом с усилителем, высота которой 205 мм. Не хватило в общем буквально чуть-чуть, мой прокол, не промерил как следует. Затем был долгий и мучительный поиск альтернативного корпуса.

Просмотрел все, что представлено на рынке под платы mini-ITX, от Sharkoon QB-One и разных моделей от Fractal Design и до SilverStone Raven разных генераций и даже LianLi PC-Q19. Везде что-то меня не устраивало, то дизайн, то размеры. Общей претензией оказалось качество изготовления, что особенно заметно на фоне немалой цены большинства моделей. Затем взор упал корпуса Streacom, не представленные в России. Стал выбирать, прорабатывать возможность доставки и сборки компьютера без единого вентилятора. В общем, эта идея мной завладела полностью, о чем и пойдет этот рассказ дальше.

Начав со Streacom мой взор плавно перешел на такую компанию, как HD-Plex. При идентичной концепции этих изготовителей, второй оказался намного больше освещен на просторах сети. Стал читать обзоры и тесты данных корпусов. Обычно, такие корпуса используются в качестве транспорта в системах Hi-Fi, но, что меня особенно зацепило, так это возможность сборки в таком корпусе игрового ПК среднего уровня! Финальным аспектом в принятии решения стала удобная доставка до России, которую предлагает HD-Plex.

Была выбрана модель HD-Plex H2 второго поколения (ряд фото ниже приведен с сайта изготовителя http://www.hd-plex.com/).
Из описания на сайте изготовителя следует, что корпус обладает типичными размерами для аппаратуры Hi-Fi: 430 x 353 x 115 мм. Изготовлен корпус из экструдированных алюминиевых панелей и способен вместить практически любые компоненты. Судя по фотографиям и множеству описаний, качество изготовления корпуса не вызывает никаких вопросов. Так был оформлен заказ. Вместе с корпусом была также приобретена система для пассивного охлаждения процессора GPU.

Доставка была оформлена на Российский адрес, оплата картой на сайте изготовителя и через полторы недели заветное уведомление от почты России оказалось в моем почтовом ящике! Стоит отметить, что, несмотря на весьма приличный ценник, отправление было сделано через весьма недорогой сервис Deutsche Post, партнером которого в России выступает наша доблестная Почта России. Благо номер для отслеживания был предоставлен. В общем, через полторы недели сотрудник Почты России радостно выволок большущий фирменный мешок (точь в точь как из под картошки, только белый) с просьбой “получите и распишитесь”. У меня наворачивались слезы на глазах от вида того, как обращаются с моей покупкой при мне и мысли о том, что она испытала в пути! Естественно, распаковал корпус я прямо на почте и к своему удивлению обнаружил, что большая внешняя помятая коробка вмещала в себя еще одну коробку в которую и был упакован сам корпус. Она была в полной сохранности и я, перекрестившись, оставил Почте свой автограф и отправился домой.

Прежде чем продолжать дальше я хотел бы немного остановиться на блоке питания для сборки будущего ПК. Не секрет, что выбор блоков питания с приличной мощностью и пассивным охлаждением, скажем так, мягко говоря скуден. Сам же изготовитель корпуса предлагает несколько решений для питания, ориентированных, в первую очередь, на достижением максимально “чистого” питания для высококлассного аудио транспорта, но мои задачи подразумевали другие приоритеты. С одной стороны, нужна была большая мощность блока питания, чем предполагают решения HD-Plex, а во вторых, у меня нет повышенных “аудиофильских” требований к качеству питания, поскольку используется USB Audio и внешний ЦАП, встроенный в мой интегральный усилитель, а устанавливать звуковую карту в ПК я не планировал. Во-первых, улучшения качества звука я вряд ли добился бы несмотря на формально более качественный ЦАП в звуковой карте даже уровня ASUS Xonar Essence STX II. Во-вторых же, мне нужен слот PCIe для установки дискретной видеокарты, а материнская плата mini-ITX уже имеется в наличии и переходить на более крупную не хотелось. В общем, после долгого поиска выбор пал на блоке питания ZF240 Fanless 240W ZeroFlex PSU (изображение с сайта изготовителя).

Блок питания, согласно заверениям изготовителя, имеет заявленную мощность 240 Вт (особо отмечается, что будь этот блок собран в корпусе с активным охлаждением, он был бы сертифицирован как модель мощностью 400 Вт), полностью пассивное охлаждение и КПД, равный 93% (это означает, что в тепло уходит не более 17 Вт, что совсем не много!). Заказан был сей замечательный девайс на eBay и доставлен таким же способом и также в целости и сохранности (причем также быстро!).

Наконец я могу перейти от вступительной части и описания моих приготовлений непосредственно к тому, ради чего была затеяна данная тема. Здесь мне, наверное, следует извиниться перед Вами за столь длительное повествование, но, мне кажется, оно было важным для понимания моих решений. Еще мне кажется, что данные извинения нужно было принести в начале статьи… Раз уж Вы дочитали до данных строк, то бросать дальнейшее чтение уже не имеет совершенно никакого смысла и мы продолжаем.

Как я писал выше, все компоненты будущего компьютера были уже приобретены ранее и, надо сказать, не слишком они подходят для ПК с полностью пассивным охлаждением в привычном понимании. Ниже приведен перечень всех компонентов.

Корпус HD-Plex H2 Gen2 с комплектом охлаждения GPU
Блок питания Streacom ZF240 Fanless 240W ZeroFlex PSU, 240 Вт
Материнская плата: ASUS H110I-PLUS (чипсет Intel H110, память DDR4) (макс. 15 Вт)
Процессор Intel i5-6500 Skylake (TDP 65W)
Память 2x 8 Гб Kingston HyperX FURY DDR4 (не более 3 Вт)
SSD Samsung 750 Evo 250 Gb (максимальное потребление 4 Вт)
Видеокарта ASUS Turbo GeForce® GTX 1060 6 Gb (TDP 120 Вт)

Итак, взглянув на перечень выше многие из Вас сразу же скажут, что эти компоненты не слишком подходят для пассивного охлаждения. Особенно в глаза бросается видеокарта! GP106 великолепен в плане энергопотребления, но 120 Вт есть 120 Вт, их сложно рассеять с помощью простого радиатора. К тому же, заявляемая изготовителем корпуса максимальная рассеиваемая мощность для видеокарты не более 95 Вт. Нестыковочка…, но об этом ниже… По сумме максимальной потребляемой мощности все сходится с приличным запасом (максимум 207 Вт). Можно приступать к сборке.

Я не буду рассказывать о процессе сборки ПК в данном корпусе. Скажу лишь, что все компоненты корпуса (а он поставляется в полностью разобранном состоянии) упакованы отлично, что обеспечивает их полную защиту при транспортировке. К тому же, весь процесс сборки корпуса и установки компонентов очень подробно описан в прилагаемом 35-ти страничном руководстве (доступно на сайте изготовителя, кому интересно). Отмечу лишь, некоторые моменты, на которые я обратил внимание. Ни один из них не доставляет проблем, но все же, было бы замечательно, если бы изготовитель учел критику.

Во-первых, на просторах сети очень много обзоров сборки ПК в данном корпусе и большая часть из них утверждает, что сборка идет быстро и просто. Так вот, я бы так не сказал. Конечно, все мы разные, и руки у нас всех растут всё же из немного разных мест, но к “рукожопым” я себя бы не отнес. Мой процесс сборки занял примерно 8-10 часов!

Во-вторых, в комплекте идет шестигранник для сборки корпуса (2,5 мм на сколько я могу судить). Немного нестандартный размер. Но почему нет микрошестигранника для установки штифтов кнопки включения?! Cудя по всему 1 мм или меньше, такого в обычном наборе инструментов вообще не найти! Было бы лучше сделать эти шпильки под плоскую отвертку.

Третье, на что я обратил внимание, это отсутствие головки с внутренним шестигранником для установки внутренних опор и стопорных гаек. Там также дробный размер, которого в моем наборе инструментов не оказалось.

Мне также показалось нелогичным отсутствие крепежных отверстий для опор видеокарты. На днище корпуса есть отверстия, но их положение не совпадает с отверстиями на плате Третье, на что я обратил внимание, это отсутствие головки с внутренним шестигранником для установки внутренних опор и стопорных гаек. Там также дробный размер, которого в моем наборе инструментов не оказалось (хотя, возможно, это уже придирки, невозможно предусмотреть крепеж любых плат).

В общем, спустя много часов времени сборка моего корпуса была успешно завершена. Ниже привожу несколько фотографий для иллюстрации процесса. Были сложности с установкой БП, пришлось немного переработать штатные крепления подручными средствами. Еще один важный момент, который я подробнее опишу позднее, это рекомендация изготовителя корпуса не применять термопасту на подошву радиатора охлаждения ЦП. Это им мотивируется зеркальной полировкой подошвы радиатора (что действительно имеет место быть, качество обработки высоко!). Тем не менее, как показала моя практика, наносить термопасту обязательно, разница очень большая! Я использовал лезвие для равномерного нанесения очень тонкого слоя.

Intel i5-6500 Skylake (3,2 ГГц)

GeForce GTX 1060 6G (GP106)

Процесс сборки

Блок питания Streacom ZF240 Fanless 240W ZeroFlex PSU, 240 Вт

Результат

ASUS Turbo GeForce® GTX 1060 6 Gb (TDP 120 Вт)

ASUS H110I-PLUS (чипсет Intel H110)

Задняя панель

Компоновка получилась довольно плотная, но, принимая во внимание концепцию охлаждения, это не имеет никакого значения. Нет потоков воздуха, нет проблем! Стоит отметить, что качество изготовления всех элементов корпуса и его финальный вид полностью соответствуют стоимости! Все монолитно, качественно, выглядит на уровне хорошей аппаратуры Hi-Fi. Причем я очень придирчивый в плане эстетики (корпус Fractal Design NODE 604 был безнадежно забракован по критерию “ощущение качества”!).

С чего начинаешь первое включение компьютера с пассивным охлаждением? Первым были панические атаки BIOSа по поводу того, что вентиляторы не крутятся. Исправил отключением мониторинга скорости вентиляторов. Затем установка Windows 10 64 бита, и, естественно, всего набора драйверов. Все это сопровождалось постоянным ощупыванием радиаторов (боковых частей) корпуса на предмет перегрева. До сих пор радиаторы оставались чуть теплыми. Затем установка всех утилит для мониторинга CPU-Z, GPU-Z, FanSpeed, FurMark, Prime95…

Первый же прогон Prime95 в режиме максимального нагрева ЦП выявил несостоятельность рекомендации изготовителя корпуса об отсутствии необходимости нанесения термопасты на подошву радиатора. Температура после часа теста выросла до 81 градуса. Причем, при этой температуре тротлинга не наблюдалось, ЦП продолжал поддерживать частоту 3,2 ГГц.

После такого опыта я оказался в печале, сказать честно! Это же явно не нормальная работа! О каких 95 Вт TDP процессора вообще может идти речь? А что я буду делать с видеокартой, имеющей TDP 120 Вт?! Печаль…

Первое, что я решил сделать, это разобрать корпус и нанести таки термопасту на радиатор процессора. Причем при сборке на радиатор охлаждения видеокарты термопаста была нанесена изначально ввиду значительно худшего качества обработки радиатора видеочипа. Последующая сборка, прогон тех же тестов и… максимальная температура составила 74 градуса и больше не росла даже после 3 часов разогрева! Уже лучше, но все же — это много! Внешний радиатор корпуса был очень горячий, горячее порога, который может терпеть рука!

Честно говоря, несмотря на улучшение результатов и полную стабильность ПК и тот факт, что такую температуру в реальной жизни невозможно получить, я был расстроен! После размышлений на тему “что бы предпринять” пришла мысль о том, что можно бы снизить напряжение питания ЦП… Путем нехитрого подбора выставил значение сдвига -165 мВ. При таком подходе напряжение питания остается плавающим, но максимальное значение снижается на величину сдвига.

Результат меня впечатлил! Максимальная температура, которую удалось достичь после 2 часов прогона теста Prime95 температура перестает расти и стабилизируется на уровне 64 градуса! Это максимум, который удалось достичь, что является вполне приемлемым! Забегая вперед скажу, что час игры в Doom (2016 года) на максимальных настройках Ультра на протяжении 2 часов температура ЦП составляет … меньше 45 градусов! При таких условиях ЦП бустит весьма умеренно, но, с другой стороны, задачи постановки рекордов производительности не ставилось.

Ниже приведу несколько скриншотов для иллюстрации сказанного и чтобы показать общий уровень производительности ЦП в попугаях.


В общем что имеем в итоге, вполне приемлемая для любых повседневных задач производительность, совпадающая с таковой другой аналогичной системы, при вполне вменяемой температуре.

Вот теперь я поверил в этот корпус! Но меня еще ждала видеокарта с TDP 120 Вт! Еще есть силы читать? Тогда продолжаем!

С опаской я запустил FurMark… Первый же прогон расстроил. За 15 минут температура выросла до 78 градусов без даже намека на стабилизацию! Это провал, подумал я, но решил пойти по уже проверенному пути undervolting’а! Несмотря на то, что карта у меня от ASUS мне прекрасно помогла программа от MSI Afterburner.

За счет новых технологий буста частоты ядра, ее регулировка представляется процессом непростым. Не буду слишком вдаваться в подробности, опишу лучше кратко полученный результат. Используя MSI Afterburner была поправлена кривая напряжения ядра. К сожалению, без принудительного ограничения TDP карты это помогает лишь частично.

В итоге, что имеем сейчас… Карта проходит два часа стресс-теста FurMark с выходом на стабильную температуру 71 градус, работая при частоте 1540 МГц. Память стабильно работает на частоте 9 330 МГц. В играх Diablo III (2160p, максимальные настройки), Doom (2016 года, 1080p, настройки Ультра) потребление карты составляет от 60 до 70% от максимального TDP (от 70 до 85 Вт), температура ядра не превышает 70 градусов, буст обычно держится на уровне 1800 МГц — 2000 МГц. Таким образом, имеем производительность выше стандартной, играбельность на отличном уровне в любых играх на 1080p и приемлемую температуру.

Ниже четыре скриншота из FurMark’а. Первые два при разгоне и undervolting’е, вторые два — при работе карте в состоянии из коробки. По два на каждом из стандартных пресетов 720 и 2160 (4K/UHD).

Разгон памяти, undervolting, FurMark пресет 720

Разгон памяти, undervolting, FurMark пресет 2160 (4K/UHD)

Стандартное состояние (default), FurMark пресет 720

Стандартное состояние (default), FurMark пресет 2160 (4K/UHD)

И теперь полная тишина…

P.S. Буду рад поделиться опытом или ответить на Ваши вопросы. Также буду рад замечаниям и критике.

По поводу пассивного охлаждения. Наверняка вы заметили очень высокую температуру чипсета, более 70 градусов. Для решения этой проблемы заказ приличный медный радиатор EnzoTech. Я же, в свою очередь хотел бы выслушать советы по поводу охлаждения видеокарты. На какие еще элементы (см. фото выше) стоит установить радиаторы?

Спасибо за советы и за Ваше терпение! =)

Добавление от 03.10.2016. Охлаждение элементов цепей питания GPU.

Хочу спросить совета знающих граждан. Стоит ли устанавливать радиаторы для охлаждения всех элементов, выделенных красным? Или же что-то из этого не требует дополнительного охлаждения?

Как сделать игровой компьютер с пассивным охлаждением. Мой опыт

Ultra-silent office PC with Intel Core i7 — проект ПК с пассивным охлаждением

Впервые представленный на CES в январе 2013 года кулер Zalman FX100 Cube корейской компании Zalman Tech Co., Ltd., безусловно, стал одной из самых интересных новинок в сфере воздушного охлаждения для центральных процессоров и заслуженно получил одну из наград той выставки. Выглядел он совершенно нетипично для процессорного охладителя и скорее напоминал собой какой-то HTPC-корпус, нежели кулер. Столь оригинальный вид новинки позволил нам тогда даже усомниться, что дело дойдёт до серийного производства, но, к счастью, наши опасения оказались напрасными, и Zalman FX 100 совсем недавно был представлен официально. С его особенностями и возможностями мы и познакомимся в сегодняшней статье.

Фреоновые установки

Принцип работы системы охлаждения на основе фреона, несмотря на внешне сложное устройство, довольно прост. Это холодильник в компьютере.

В замкнутом контуре циркулирует газ (фреон), который забирает тепло от центрального процессора или видеокарты. Двигаясь дальше по контуру, он охлаждается в специальном радиаторе. Дальше, охлажденный фреон под давлением, поступает к охлаждаемым компонентам и процесс повторяется снова.

  • Можно добиться очень низких температур, что положительно скажется на возможностях разгона.
  • Сложность монтажа и обслуживания
  • При неправильном подходе, может образовываться конденсат, что приведет к выходу из строя электроники
  • Высокое энергопотребление и цена.

⇡#Технические характеристики и рекомендованная стоимость

Технические характеристики системы охлаждения приведены в следующей таблице:

Наименование технических характеристик Zalman FX100
Размеры кулера (ВхШхТ), вентилятора(ов), мм 156x156x157 (92×92х25, опционально)
Полная масса, г 770
Материал радиатора и конструкция никелированная «кубическая» конструкция из шести отдельных секций алюминиевых пластин на 10 медных тепловых трубках диаметром 6 мм, 4 из которых проходят через медное основание
Количество пластин радиатора, шт. 118 (19х4 + 21х2)
Толщина пластин радиатора, мм 0,4
Межрёберное расстояние, мм 4,0
Расчётная площадь радиатора, см2 5 750
Термическое сопротивление, °С/W
Тип и модель вентилятора ZM-F2 LED(BL) (рекомендованный опционально)
Скорость вращения вентилятора, об/мин 1500–2800 (±10%)
Воздушный поток, CFM н/д
Уровень шума, дБА 20,0–35,0
Статическое давление, mm H2O н/д
Количество и тип подшипников вентилятора 1, скольжения
Время наработки вентилятора на отказ, часов/лет 30 000 / >3,4
Номинальное/стартовое напряжение вентилятора, В 12
Сила тока вентилятора, А 0,38
Примерное пиковое энергопотребление вентилятора, Вт 4,56
Возможность установки на процессоры с разъёмами Intel LGA775/1155(6)/1366/2011, AMD Socket AM2(+)/AM3(+)/FM1(2)
Дополнительно (особенности) Безвентиляторный режим работы, предельный тепловой пакет — 95 Вт, опциональная возможность установки 92-мм вентилятора, термопаста Zalman ZM-STG2
Рекомендованная стоимость, долларов США 69

Воздушное

Можно разделить на →

  • Пассивное
  • Активное

Принцип работы пассивного охлаждения заключается в передаче тепла от нагревающегося элемента на радиатор. Радиатор


может быть сделан из алюминия или меди, а более продвинутые модели имеют тепловые трубки, которые помогают увеличить площадь рассеивания тепла.

Радиатор полученное тепло рассеивает в окружающее пространство, тем самым отводя его от нагревающихся компонентов.

Эффективность такого пассивного охлаждения, напрямую зависит от циркуляции воздуха и его температуры.

Чем больше объема воздуха, участвует в теплообмене и чем ниже его температура, тем лучше работает пассивное охлаждение.

Субъективно, полностью пассивную воздушную систему охлаждения создать невозможно, так как для создания потоков воздуха внутри замкнутого объема, так или иначе нужны вентиляторы.

  • Относительная бесшумность
  • Меньше вентиляторов — выше надёжность, но надо просчитать, хватит ли возможностей вашей пассивной системы для охлаждения всех компонентов компьютера.
  • Заводское пассивное охлаждение дорогое удовольствие. В основном им занимаются моддеры и энтузиасты, для которых цена не важна
  • Требуется компьютерный корпус большого объема, для достаточной циркуляции воздуха и продуманную систему охлаждения всего системного блока
  • В таких условиях, к разгону компьютера нужно подходить очень осторожно.

Ну а теперь подробно разберем активное воздушное охлаждение. Оно самое распространенное и недорогое. Главное подойти к его организации с умом.

В этом способе используются вентиляторы совместно с радиаторами


. Обычно их называют куллерами. Вентилятор обдувает радиатор, который отводит тепло от греющего его компонента компьютерной системы. Чем больше воздушный поток проходящий через радиатор и чем он холоднее, тем эффективнее происходит охлаждение.

  • Дешевле и надежнее, чем жидкостное охлаждение
  • Большая гибкость в организации систем охлаждения ПК.
  • Шум от большого количества работающих вентиляторов. Если брать вентиляторы большего размера, хорошего качества и с небольшой скоростью вращения, можно сильно снизить издаваемый шум системным блоком. Нужен комплексный подход
  • В мощных системах, где большое энергопотребление и соответственно высокое выделение тепла, требуется грамотная организация воздушных потоков и обдуманного подхода к охлаждению каждого сильно греющегося компонента (видеокарта и процессор).

Теперь перейдем к альтернативным способам охлаждения ⇒

⇡#Упаковка и комплектация

Кулер запечатан в большую картонную коробку чёрного цвета. На её лицевой стороне приведено название компании-производителя, модели и три её ключевые особенности.

На боковых и обратной сторонах изображён сам кулер, его спецификации и перечень поддерживаемых платформ.

Внутри картонной оболочки находится дополнительный пластиковый бокс, отлитый по форме радиатора и надёжно фиксирующий его.

Аксессуарам отведён небольшой полиэтиленовый пакетик, болтающийся в коробке сам по себе. В нём есть всё необходимое для установки кулера, включая термопасту Zalman ZM-STG2.

Выпускается FX100 в Корее (Южной, разумеется) и уже продаётся по рекомендованной цене 69 долларов США. На кулер предоставляется гарантия сроком два года.

⇡#Особенности конструкции

Zalman FX100 по своей форме действительно выглядит как куб, да и его размеры 156x156x157 мм говорят о том же. Никелированные пластины радиаторов и тепловые трубки вкупе с рифлёными пластиковыми вставками по углам делают данное устройство весьма привлекательным внешне. Впрочем, смотрите сами.

Уже по внешнему виду можно догадаться, что FX100 является безвентиляторным кулером, в чём инженеры корейской компании видят целый ряд преимуществ.

Отсутствие вентилятора, помимо исключения шума как такового, приводит к уменьшению образования пыли, не влечёт за собой необходимость обслуживания и снижает стоимость кулера. С последним утверждением мы можем не согласиться, учитывая цену FX100.

Конструкция Zalman FX100 действительно довольно интересная. При внешнем осмотре видны четыре независимых радиатора одинаковых размеров.

Каждый из них набран 19 алюминиевыми никелированными пластинами толщиной 0,4 мм, припаянными к трубкам с межрёберным расстоянием 4 мм. Типичная конфигурация для системы охлаждения, ориентированной на работу в условиях естественной конвекции.

Сверху кулер закрыт металлической сеткой, а снизу видны ещё два радиатора.

В них по 21 пластине такой же толщины и с таким же межрёберным расстоянием. Несмотря на кажущуюся громоздкость, общая площадь радиатора составляет всего 5750 см2, что совсем немного по современным меркам воздушных кулеров.

Пластиковые углы и верхняя сетка легко снимаются.

Благодаря этому можно составить более полное представление о конструкции радиатора.

Всего в нём десять тепловых трубок диаметром 6 мм, однако с основанием контактируют только четыре из них, и лишь две крайние из этих четырёх распределяют тепловую нагрузку непосредственно по алюминиевым пластинам пары внутренних секций.

Две центральные тепловые трубки, на которые, как правило, и приходится основная часть тепловой нагрузки, создают своеобразный каркас, и уже к ним припаяны ещё шесть тепловых трубок, на которых размещены пластины. Так их и получилось 10.

Подобная конструкция весьма сомнительна с точки зрения эффективности охлаждения, но до проведения тестов мы не будем спешить с выводами.

В основании тепловые трубки уложены в желобки и аккуратно пропаяны.

Контактная поверхность ровная, к тому же отполирована до зеркального состояния.

Отпечатки на процессоре конструктива LGA2011 получились полноценными, пусть закрытой оказалась не вся площадь большого теплораспределителя Intel Core i7-3970X Extreme Edition.

Добавим, что при необходимости внутрь Zalman FX100 можно установить вентилятор типоразмера 92х92х25 мм, который закрепляется входящими в комплект скобами.

Zalman рекомендует для этой цели использовать собственную модель ZM-F2 LED с подсветкой.

Проект корпуса на 3D принтере Ender 3 Pro

И теперь начнем с самого интересного!

Моей основной хотелкой было желание попробовать нечто новое в корпусном деле и прибегнуть не к готовым решениям, а попробовать создать что-то свое. Металлический корпус слегка дорог в производстве и его изготовление занимает некоторое время, вариант из фанеры прост, но не универсален и достаточно хрупок. Следующей инстанцией было 3D моделирование и изготовление корпуса из пластика, к чему я с энтузиазмом приступил.

В качестве платформы остановился на принтере Ender 3 Pro, сочетающем простоту сборки и хорошее качество выходной продукции, рабочее пространство 220 х 220 х 250 мм, чего хватит на корпуса формата mini-ITX или склейки из пары деталей чего-нибудь более крупного. Первые наработки и эксперименты на простых фигурках вызывали восторг, но далее пошли и первые сложности.

После пластика PLA для более термоустойчивых и твердых изделий я перебрался на пластик ABS и ABS+, выдерживающий нагрев до 100°С, что для пассивной системы выглядит логичным вариантом. Однако у него нашлась слабость: он чертовски плохо печатается на большой площади, постоянно отлипая от поверхности, загибаясь, иногда происходил разрыв слоев. Перепробовал две марки пластика, различные клеи и настройки принтера. Ничего не спасало ситуацию. Но опытные люди посоветовали переключиться на пластик PETG, он и печатается легче, да и температуру держит до 80°С и выше, поэтому перешел на него.

Напечатать корпус из ABS я попросил знакомых коллег, на что ушло около 8 часов при скорости

40 мм/с и сопле 0,4 мм для личного тест-драйва, но они столкнулись с теми же проблемами загиба краев. Сам же я напечатал корпус из PETG с первой попытки за 4.5 часа.

Слева — корпус ABS со слегка отшлифованными краями наждачкой Р800, справа — необработанный PETG, только что из-под принтера, горяченький.

Корпус печатался при скорости 45 мм/с с 25% заполнением соплом 0.6 мм и слоем 0.3 мм.

Единственная особенность печати 3D принтера заключена в наплывающих слоях, что является его и «фишкой» (можно использовать в дизайне/оформлении), и недостатком. Убираются механической обработкой.

А вот сквозные монтажные прорези получили «наплывы» и я устранял их сверлом. Для кабелей использовал отверстия 3.5 мм, но с учетом натекающего пластика надо было остановиться на 3.7-3.8 мм.

После шлифовки наждачкой первого слоя грунтовки я распечатал и наклеил контур детали для проводов, чтобы подчеркнуть их место соприкосновения с корпусом.

После небольшой покраски и обработки поверхности.

Отдельно распечатаны четыре стойки для винтового крепления материнской платы к корпусу. Конструкция корпуса же подразумевает, что плата устанавливается на каркас и фиксируется бортиком 1 мм по периметру, не позволяющим ей проваливаться, а винтами они стягиваются.

Своего друга Алексея aka ModPC я попросил подготовить комплект кабелей в качественной оплетке 24-Pin для материнской платы, 8-Pin для процессора длиной 15 см для широкой дуги и 13 см для внутреннего радиуса.

Первые наброски и оценка кабель-менеджмента выявили свои достоинства и недостатки, например, трудности в подключении коннекторов и симпатичный внешний вид, совмещенный с простотой и минимализмом дизайна.

Завершающие штрихи подключения проводов и держателей.

⇡#Совместимость и установка

Zalman FX100 можно установить на любую современную платформу. Для этого в комплекте есть универсальная усилительная пластина с пластиковыми наконечниками и наборы креплений. Пожалуй, на LGA2011 кулер устанавливать проще всего. Как обычно, сначала вворачиваем в отверстия креплений двусторонние шпильки с резьбой.

Затем устанавливаем на них стальные направляющие.

Ну а потом остаётся только нанести термопасту и равномерно притянуть кулер прижимной пластиной с двумя винтами. Правда, для этого потребуется длинная отвёртка, которой, к сожалению, в комплекте нет. Иначе внутренние радиаторы будут мешать закреплению Zalman FX100.

Расстояние от нижней пластины радиатора кулера до материнской платы составляет более 60 мм, что позволит ему успешно соседствовать с высокими радиаторами на модулях оперативной памяти.

Как мы ни усердствовали, прижимая Zalman FX100, но после установки кулер слегка смещался на процессоре, то есть прижим оказался недостаточно сильным. В корпусе он выглядит интересно и даже в какой-то степени многообещающе.

Но, на наш взгляд, Zalman FX100 становится ещё интереснее без пластиковых «обвесов» и верхней сеточной крышки.

92-мм вентилятор можно даже не закреплять, так как он плотно вставляется между боковыми радиаторами.

Жидкостное

Принцип работы состоит в передаче тепла от нагревающегося элемента охлаждающему радиатору. Это происходит при помощи рабочей жидкости (обычно воды), которая циркулирует в системе по специальным трубкам.

  • Эффективность охлаждения, лучше традиционного воздушного
  • Качественные системы работают очень тихо
  • Такая система может выглядеть очень красиво в прозрачном корпусе, если есть подсветка.
  • Водянка будет стоить всегда дороже, чем вентиляторы
  • Высокие требования к качеству сборки и установки. Необходим надежный компьютерный корпус
  • Постоянный контроль за работой системы и ее обслуживание, если что-то пойдет не так и будет протечка жидкости, то вы можете лишиться дорогостоящего оборудования.

⇡#Тестовая конфигурация, инструментарий и методика тестирования

Тестирование систем охлаждения было проведено в закрытом корпусе системного блока следующей конфигурации:

  • Системная плата: Intel Siler DX79SR (Intel X79 Express, LGA2011, BIOS 0559 от 05.03.2013);
  • Центральный процессор: Intel Core i7-3970X Extreme Edition 3,5–4,0 ГГц (Sandy Bridge-E, C2, 1,1 В, 6×256 Kбайт L2, 15 Мбайт L3);
  • Термоинтерфейс: ARCTIC MX-4;
  • Оперативная память: DDR3 4×4 Гбайт Mushkin Redline (2133 МГц, 9-11-10-28, 1,65 В);
  • Видеокарта: AMD Radeon HD 7770 GHz Edition 1 Гбайт GDDR5 128 бит 1000/4500 МГц (с пассивным медным радиатором кулера Deepcool V4000);
  • Системный диск: SSD 256 Гбайт Crucial m4 (SATA-III, CT256M4SSD2, BIOS v0009);
  • Диск для программ и игр: Western Digital VelociRaptor (SATA-II, 300 Гбайт, 10000 об/мин, 16 Мбайт, NCQ) в коробке Scythe Quiet Drive 3,5″;
  • Архивный диск: Samsung Ecogreen F4 HD204UI (SATA-II, 2 Тбайт, 5400 об/мин, 32 Мбайт, NCQ);
  • Корпус: Antec Twelve Hundred (передняя стенка — три Noiseblocker NB-Multiframe S-Series MF12-S2 на 600 об/мин; задняя — два Noiseblocker NB-BlackSilentPRO PL-1 на 600 об/мин; верхняя — штатный 200-мм вентилятор на 400 об/мин);
  • Панель управления и мониторинга: Zalman ZM-MFC3;
  • Блок питания: Corsair AX1200i (1200 Вт), 120-мм вентилятор.

Предельный разгон процессора мы определяли эмпирическим путём и расскажем вам о нём в разделе с результатами тестирования. Технология Turbo Boost во время тестирования была выключена, а вот Hyper-Threading для повышения тепловыделения была активирована. Напряжение модулей оперативной памяти было зафиксировано на отметке 1,65 В, а её частота составляла 2,133 ГГц с таймингами 9-11-10-28. Прочие параметры BIOS, относящиеся к разгону процессора или оперативной памяти, не изменялись.

Тестирование проведено в операционной системе Microsoft Windows 7 Ultimate x64 SP1. Программное обеспечение, использованное для теста, следующее:

  • LinX AVX Edition v0.6.4 — для создания нагрузки на процессор (объём выделенной памяти — 4500 Мбайт, Problem Size — 24234, два цикла по 11 минут);
  • Real Temp GT v3.70 — для мониторинга температуры ядер процессора;
  • Intel Extreme Tuning Utility v4.0.6.102 — для мониторинга и визуального контроля всех параметров системы при разгоне.

Полный снимок экрана во время проведения одного из циклов тестирования выглядит так:

Нагрузка на процессор создавалась двумя последовательными циклами LinX AVX с указанными выше настройками. На стабилизацию температуры процессора между циклами отводилось 8–10 минут. За окончательный результат, который вы увидите на диаграмме, принята максимальная температура самого горячего из шести ядер центрального процессора в пике нагрузки и в режиме простоя. Кроме того, в отдельной таблице будут приведены температуры всех ядер процессора и их усреднённые значения. Комнатная температура контролировалась установленным рядом с системным блоком электронным термометром с точностью измерений 0,1 °C и возможностью почасового мониторинга изменения температуры в помещении за последние 6 часов. Во время данного тестирования она колебалась в диапазоне 24,6–25,0 °C.

С точки зрения эффективности мы сравнивали Zalman FX100 ($69) с кулером примерно такой же стоимости, но всё же изначально разработанным не для пассивного или безвентиляторного режима. Речь идёт о Phanteks PH-TC14PЕ ($75), который мы тестировали совсем без вентиляторов:

Нет, конечно, в дополнение мы протестировали Phanteks PH-TC14PЕ с одним вентилятором Corsair AF140, а эффективность Zalman FX100 изучили в комплекте с 92-мм вентилятором Zalman ZM-F2 LED, но приоритет всё же был отдан тестам в пассивном режиме, для чего мы ещё и существенно снизили скорость корпусных вентиляторов.

⇡#Результаты тестирования эффективности охлаждения

Установив Zalman FX100 в штатной безвентиляторной комплектации на шестиядерный процессор, мы начали планомерное изучение его эффективности. Однако поначалу наши ожидания оказались существенно завышенными: проверку мы начали на частоте 4,3 ГГц при напряжении 1,15 В, с которыми «Куб», к сожалению, не справился. Постепенное снижение частоты и напряжения процессора позволили достичь стабильности в Linpack на 3,8 ГГц при 1,1 В и пиковой температуре наиболее горячего ядра 84 градуса Цельсия.

Zalman FX100 (пассивный режим)

Zalman FX100 (пассив, открытый радиатор)

Если снять с радиатора Zalman FX100 четыре пластиковых уголка и верхнюю сетку, в тех же условиях максимальные температуры процессора оказываются на 1–2 градуса Цельсия ниже. Признаться, в безвентиляторном режиме работы мы ожидали более впечатляющих результатов от этого недешёвого кулера, тем не менее — с учётом шести ядер, включённого Hyper-Threading и жёсткой нагрузки в виде Linpack — можно сказать, что затея Zalman удалась.

Теперь устанавливаем внутрь Zalman FX100 вентилятор типоразмера 92х92х25 мм и проводим тесты в двух скоростных режимах:

Zalman FX100 (ZM-F2 LED, 2740 об/мин)

Zalman FX100 (ZM-F2 LED, 1200 об/мин)

Уже при скорости 92-мм вентилятора 1200 об/мин Zalman FX100 начинает работать эффективнее самого себя на 10 градусов Цельсия, а при 2760 об/мин выигрывает ещё 6 градусов Цельсия. То есть с точки зрения эффективности установка вентилятора в Zalman FX100 имеет смысл, хотя и разрушает философию пассивного охлаждения.

Теперь мы знаем, какова эффективность нового творения инженеров корейской компании, и всё же давайте сравним FX100 с конкурентом в лице Phanteks PH-TC14PЕ в традиционной


и на диаграмме:

Без всяких шести независимых радиаторов, «десяти» тепловых трубок и замысловатых конструкций Phanteks в безвентиляторном режиме расправился с Zalman, как Майами Хит с Милуоки Бакс в первом раунде нынешнего плей-офф НБА. Шутка ли, в пассивном режиме PH-TC14PЕ демонстрирует такую же эффективность, как и FX100 с вентилятором при 2760 об/мин! Установка на Phanteks 140-мм вентилятора уже при крайне тихих 600 об/мин выливается в преимущество в виде четырёх градусов Цельсия, а повышение оборотов до отметки 1100 даёт отыграть ещё 4 градуса Цельсия. Спрашивается, зачем Zalman было городить весь этот огород?

И всё же, раз эффективность Zalman FX100 существенно возрастает при установке в него вентилятора, мы проверили процессор на дальнейший разгон. Как оказалось, предельной частотой для FX100 в такой конфигурации стали 4,2 ГГц при 1,2 В. Результаты тестирования представлены ещё в одной


и на диаграмме:

И снова Zalman FX100 при 2760 об/мин охлаждает процессор так же, как и Phanteks PH-TC14PЕ в безвентиляторном режиме работы. А при использовании на последнем 140-мм вентилятора FX100 проигрывает от 6 до 12 градусов Цельсия. Вот такие дела.

Криогенное или азотное

Жидкий азот представляет собой прозрачную жидкость, без цвета и запаха, с температурой кипения -196 градусов по Цельсию!

Криогенные системы охлаждения с жидким азотом представляют из себя металлический (чаще всего медный) стакан


. Такие стаканы делают в основном для охлаждения процессора и видеокарты. Они, как и радиаторы, плотно закрепляются с охлаждаемым элементом. Далее компьютер запускается и начинает вручную наливаться в стакан/ы азот. В процессе охлаждения он постепенно испаряется, поэтому его постоянно необходимо подливать.

На охлаждении азотом, ставятся все рекорды по разгону железа.

Криогенные установки используются только для экстремального охлаждения.

Плюс у данного вида охлаждения ПК только один — этот способ лучше всего охлаждает.

Охлаждение процессора и видеокарты компьютера

Чтобы понять, как работает система охлаждения, вспомним физику. Такого понятия как «холод» – не существует, оно относительно и его невозможно изменить. Есть понятие тепло – любой элемент компьютера, который потребляет энергию выделяет тепло. Все вокруг нас имеет определенный заряд тепла, который постоянно передается от большего к меньшему.

Это очень упрощенное объяснение. Но теперь мы знаем, что воздух, который проходит через радиатор, не охлаждает его, а просто забирает тепло на себя. Есть еще теплопроводность и теплоемкость материалов. Радиаторы делают из максимально теплопроводных материалов с минимальной теплоемкостью. Суть в том, чтобы они могли быстро поглотить тепло и быстро его отдать, не накопляя в себе эту энергию.

Такой же принцип применяется и для охлаждения видеокарты. Но из-за большого количества производителей и особой формы этого компонента, радиаторы все разные и изготавливаются под конкретную модель видеокарты, в то время как радиаторы ЦП стандартизированы.

Некоторые нагруженные элементы материнской платы, такие как цепь питания или чипсет, комплектуются радиаторами без вентиляторов. Если ваша система предусматривает разгон, использование мощной видеокарты и процессора, то вам нужен хороший продув корпуса. Тогда поток свежего воздуха будет охлаждать все элементы с пассивной системой охлаждения.

Зачем нужен радиатор?

Корпус процессора сделан из алюминия (на фото) – разве он не может сам отдавать температуру в воздух, зачем нужен радиатор? Тут нужно понимать, что существует такое понятие, как площадь контакта. Сам процессор очень маленький, а воздух имеет недостаточную теплопроводность, чтобы отвести все то тепло, которое производит даже самый простенький процессор.

Процессор

Для этого на процессор цепляется радиатор. Он через медные трубки передает тепло на алюминиевую решетку, через которую прогоняется большой объем воздуха с помощью вентилятора. Таким образом, мы рассеиваем тепло с гораздо большей эффективностью.

На фото хорошо видно, как медные трубки переходят в алюминиевую решетку.

Такой же принцип применяется и для охлаждения видеокарты. Но из-за большого количества производителей и особой формы этого компонента, радиаторы все разные и изготавливаются под конкретную модель видеокарты, в то время как радиаторы ЦП стандартизированы.

be quiet! SHADOW ROCK SLIM

Цепь питания материнской платы

Северный мост

Южный мост

Некоторые нагруженные элементы материнской платы, такие как цепь питания или чипсет, комплектуются радиаторами без вентиляторов. Если ваша система предусматривает разгон, использование мощной видеокарты и процессора, то вам нужен хороший продув корпуса. Тогда поток свежего воздуха будет охлаждать все элементы с пассивной системой охлаждения.

Если продув корпуса недостаточный, то вентиляторы процессора и видеокарты просто будут гонять по кругу уже горячий воздух. А как мы знаем, процесс теплообмена происходит от большего к меньшему, и нагретый воздух уже не так эффективно принимает в себя тепло. В итоге тепловая энергия накапливается в корпусе, что приводит к перегреву: в лучшем случае сработает автоматика и компьютер выключится, в худшем – сгорит какой-то компонент.

Как разобраться в системах охлаждения компьютера

Всего существует три вида охлаждения – воздушный, водяной и «аквариумное» охлаждение

Вентилятор и кулер – это одно и то же. В английском языке слово «cooler» помимо прочего означает «вентилятор», с приходом компьютерной техники оно плотно вошло в лексикон околокомпьютерной тематики.

Воздушное охлаждение

Выше были описаны именно принципы воздушного охлаждения. Оно подразумевает наличие вентиляторов на больших радиаторах и воздушный продув всего корпуса. Таким образом, вам нужно обеспечить впереди корпуса забор холодного воздуха, а сзади – возможность выброса теплого.

Водяное охлаждение

Более сложный в монтаже и гораздо более дорогой способ отвести тепло из компьютера. Зато и более эффективный, а сама система существенно тише и красивее. Именно водяное охлаждение устанавливают в игровые компьютеры премиум класса.

Можно приобрести элементы с подсветкой и синхронизировать их с материнской платой. Например, ASUS предлагает комплект простой установки СВО для процессоров Asus ROG Strix LC 360 RGB. Подсветка синхронизируется с материнками и видеокартами ASUS серии ROG. Управление производится через общее ПО.

HYPEPRC WaterCooling 360

Помните радиатор башенного типа с медными рубками, который был показан выше? Водяное охлаждение вместо медных трубок использует трубки с водой или специальной жидкостью, которая имеет большую теплопроводность и высокую теплоемкость. Устанавливаются небольшие медные или алюминиевые пластины, которые называются водоблоками. Они снимают температуру с чипа или процессора и передают ее жидкости, а та, в свою очередь, отдает ее радиатору. Радиаторы водяных систем охлаждаются обычными вентиляторами.

Сложность установки СВО (системы водяного охлаждения) в том, что под каждый компонент (процессор, видеокарта) нужны конкретные радиаторы с подходящим типом крепления.

Водоблок для процессора

Водоблок для видеокарты

«Аквариумное» охлаждение

Готовых решений на рынке нет, это самодел, который и по эффективности мало кому интересен. Самое большое его преимущество – полное отсутствие пыли. Заливать аквариум водой – плохая затея, она просто сразу же закоротит все контакты, а также начнется окисление. Вместо воды применяют масло с низкой электропроводностью или «сухую воду».

«Аквариумное» охлаждение

Сухая вода – это изобретение американской компании 3M, которая разрабатывалась для тушения пожаров. На самом деле состав этого вещества далек от воды, у них ничего общего нет, кроме пары похожих физических свойств, вроде того, что это жидкость, она течет, пропускает свет и все такое.

Недостаток «аквариумного» охлаждения в том, что область эта мало изучена, а также сложно найти вентиляторы, которые будут работать под водой. Несмотря на высокую теплопроводность этих жидкостей, вам все же придется установить радиатор и каким-то образом гонять через него воду. Также желательно иметь одну из стен аквариума сделанную из алюминия, чтобы обеспечить еще более эффективный отвод тепла.

Этот вариант подойдет только самым отчаянным энтузиастам, которые не боятся экспериментировать.

Как поменять вентилятор

Все подвижные части в компьютере или любой другой технике выходят из строя. Где-то отвалится лопасть, где-то будет гудеть подшипник, в некоторых случаях замена кулера чисто косметическая, например, хочется сделать подсветку или создать особый дизайн за счет необычных лопастей.

Как вытащить вентилятор из компьютера

Перед заменой нужно избавится от старого кулера. Обычный корпусный вентилятор крепится на четырех винтах, в некоторых случаях это могут быть быстросъемные зажимы или специальные антивибрационные силиконовые винтики. Открутите крепления или отцепите быстросъемы.

Вентилятор

Между корпусом и вентилятором должна быть антивибрационная прокладка из силикона или резины, а также пылевой фильтр. Аккуратно снимите их – при долгой эксплуатации прокладки могут хорошо прилипнуть к корпусу, если они потрескались или уже успели рассыпаться, то их нужно заменить.

Лучше использовать антивибрационную прокладку, а не силиконовые винтики, она работает гораздо лучше и продлит время эксплуатации кулера. Если он надежно прижат к корпусу, то его вибрации не будут расшатывать ось. Силиконовые винтики не гасят вибрацию, а просто препятствуют ее передачи на корпус.

Один из вариантов исполнения антивибрационной резинки.

Отключить штекер питания от материнской платы тоже очень просто, достаточно немного потянуть за провод, защелки нет. Вариантов подключения может быть несколько – некоторые кулеры включаются в материнку, некоторые по MOLEX разъему напрямую к блоку питания. Отсоединить MOLEX очень легко, там тоже нет никаких защелок.

Как поставить кулер на корпус

При установке вентилятора главное соблюдать направление воздуха. Обычно на корпусах забор идет спереди, а сзади выдув. Если вы установите неправильно, то эффективность охлаждения снизится в разы.

Вентилятор

Чтобы установить вентилятор на корпус, прикрутите его болтами в соответствующие отверстия или используйте силиконовые прижимы. Ничего тут сложно нет, все отверстия стандартизированы, нужно только выбрать вентилятор подходящего диаметра.

Стандартными для корпуса считаются кулеры 120 мм на переднюю сторону, а сзади используются 80 мм или 90 мм. Игровые корпуса обычно комплектуются вентиляторами 120 мм со всех сторон. Особые дизайнерские модели могут иметь оригинальную систему продува.

Обычно к таким корпусам идет комплект установленного охлаждения или хотя бы инструкция.

Как подключить кулер к материнской плате

После того, как вы прикрутили на свое место кулер, его нужно подключить. На материнской плате есть разные разъемы, обычно это 3 PIN и 4 PIN. Если у вас вентилятор на 3 контакта, то его можно подключить к 3 PIN разъему и 4 PIN разъему, а вот если вы подключите 4 PIN кулер к 3 PIN разъему, то не сможете использовать для него систему регулировки через утилиту.

Как подключить кулер к материнской плате

Как регулировать скорость кулеров

Для этого есть отдельные приспособления – плата-концентратор или реобас.

Плата-концентратор

Плата-концентратор позволит вам подключить много кулеров на один выход материнской платы. Минус в том, что она не имеет выносного регулятора, также вы не сможете задавать команду каждому отдельному вентилятору, а только всем вместе.

Реобас механический

Реобас механический не имеет таких недостатков, вы можете регулировать каждый отдельный кулер так как вам захочется, но придется иметь постоянно открытый датчик температур, а это не очень удобно. Такая модель, как на фото не имеет своего экрана, что ограничивает его возможности.

Реобас электронный

Реобас электронный имеет экран и выводит всю необходимую информацию на него, через сенсорную панель вы легко сможете отрегулировать скорость вращения вентиляторов.

На самом деле, реобас – скорее элемент декора и практического применения у него нет. Современные платы сами регулируют скорость вращения всех вентиляторов в зависимости от температуры на модулях корпуса. Но если вы захотите установить один из них, то ставятся они в отверстие под 3,5” устройства, а это чаще всего DVD-ROM. Учтите, что на современных игровых корпусах очень часто такого отверстия просто нет.

Замена охлаждения видеокарты

Если у вас проблемы с радиатором, то простого решения тут нет. Все системы охлаждения на видеокарты разнятся в зависимости от модели и производительности. Вам придется искать точно такой же радиатор, и выгоднее всего его заказать в фирменном сервисном центре или поискать на разборках. Чаще всего кулеры и радиаторы – это все самое ценное, что можно вытащить из сгоревшей карточки, так что цена не будет очень высокой.

Когда у вас на руках будет новый радиатор, приступаем к замене.

Как заменить радиатор на видеокарте

Отключите все провода от видеокарты и вытащите ее из корпуса. Открутите все болтики с верхней стороны платы.

Разборка видеокарты

Затем нужно отключить кабель питания. Благо о нас подумал производитель и сделал разъем, а не припаял проводки напрямую.

Кабель питания вентилятора в видеокарте

Важно! Видеокарта очень разогревается в процессе работы, и не всегда термопаста выдерживает такие нагрузки. В испорченном состоянии паста превращается в камень и может намертво приклеить радиатор к чипу. Не дергайте и не делайте резких движений, попытайтесь нежно расшатать радиатор, пытаясь найти слабое место. Только так можно снять радиатор с уже поюзанной карты.

Видеокарта в разборе

Теперь нужно хорошо зачистить все от старой термопасты. Используйте только пластиковые инструменты и спирт – чип должен остаться невредимым, даже небольшая царапина может сказаться на его работоспособности. Не используйте моющие растворы на основе воды, а только те, которыми можно мыть платы. Попадание воды на дорожки через несколько недель или месяцев приведет к окислению, и придется менять видеокарту.

Некоторые места не промазываются термопастой, в частности это относится к чипам памяти с пластиковым корпусом. Для их охлаждения используются специальные термопрокладки (на фото). Не используйте старые, вам обязательно нужно купить новые, только так вы обеспечите надежный отвод тепла.

Очистка поверхности видеокарты

Следующая задача – смазать чип термопастой. Не экономьте деньги на таком важном элементе. В первые пару дней даже самая дешевая термопаста будет показывать великолепные результаты. Но через пару недель, а в лучшем случае через месяц, она засохнет, и карточка начнет перегреваться. Качественные пасты долго не засыхают и имеют максимальную теплопроводность.

Нанесение термопасты на видеокарту 1

Стоит также сказать об уже вымирающей КПТ-8, советской термопасте. Не используйте ее никогда для современной электроники. Она была рассчитана на совсем другие задачи и чипы совсем другого размера. Стоимость современных специализированных термопаст не так уж велика, чтобы рисковать перегревом из-за использования КПТ-8.

Наносить термопасту нужно самым тонким слоем, каким только сможете. На картинке показано, как правильно должно выглядеть место стыка в разрезе. Если вы делаете это в первый раз, то выдавите на чип видеокарты капельку размером с половину головки спички и аккуратно размажьте его пластиковой картой, маленьким пластиковым шпателем или просто пальцем, предварительно обвернув его пищевой пленкой или полиэтиленовым пакетом.

Нанесение термопасты на видеокарту 2

После этих операций можно установить на место новый радиатор и слегка прижать его. На местах крепления всегда присутствуют пружинки, которые не дадут вам возможности пережать и раздавить чип. Помните, что винтики должны быть закручены не до конца, а лишь до плотного прилегания радиатора к чипам.

Замена кулера на видеокарте

В отличии от кулеров на корпусе, видеокарта имеет декоративную пластиковую накладку, на которой уже размещены кулеры. Поменять каждый отдельно достаточно сложно, разные производители используют разные типы крепления и разные подшипники, нужно смотреть про каждый конкретный случай отдельно.

Некоторые производители, например MSI, стараются ставить отдельные кулеры, которые крепятся к радиатору с помощью трех винтиков. Менять их очень просто: выкручиваем старый вентилятор и отсоединяем его, потом прикручиваем новый и подключаем его на место старого. В отличие от радиатора, тут не нужна термопаста или другие изощрения, все максимально просто .

Единственная сложность может возникнуть, если производитель запараллелил два вентилятора на один разъем. В таком случае вам придется перепаивать провода. Это несложная задача, нужно лишь соблюдать распиновку. Учитывая, что у вас будет новый кулер с готовым входом, то трудностей с этим не должно возникнуть, главное при распайке соединять провода по порядку. Обязательно изолируйте места спайки, при коротком замыкании может что-то сгореть еще до того, как включится защита, если она включится вообще и предусмотрена вашим производителем.

Поменять пластиковую накладку вместо со всеми кулерами – намного проще. Там всего лишь нужно открутить старый пластмассовый щиток и на его место прикрутить новый.

Как правильно установить радиатор башенного типа на процессор

Почти все современные модели воздушного охлаждения для процессоров – это башенные радиаторы (на фото). Другие модели с прямым продувом в сторону материнской платы используются только на очень слабых моделях ЦП. Любой более-менее мощный процессор требует радиатора башенного типа.

Начнем с того, что нужно вытащить материнскую плату из корпуса и отключить от нее все устройства, снять все модули (оперативная память, SSD и т.д.).

Отключите кулер имеющегося охлаждения и далее инструкция будет немного отличаться для процессоров Intel и AMD.

Башенное охлажднеие процессора

Снимите старый радиатор, отсоединив быстросъемную скобу. Это можно сделать повернув, эксцентриковый зажим. Дальше нужно снять термопасту и нанести новую (технология описана выше). В результате термопаста должна лишь заполнять микротрещины, а не быть прослойкой между двумя металлическими поверхностями. Обратите внимание, что на многих радиаторах уже с завода нанесена термопаста, в таком случае не нужно наносить новую.

Обычный же кулер крепится все той же клипсой с эксцентриком или крючком. Просто установите его на место и зажмите быстросъемным механизмом.

Затем нужно подключить вентилятор к материнской плате через 4 PIN разъем и на этом установка радиатора башенного типа закончена.

INTEL

Снять старый радиатор можно, если провернуть против часовой стрелки быстрозажимные крепления с защелками. Далее идет чистка старой термопасты и нанесение новой.

К новому кулеру нужно прикрутить крепления с ножками-защелками. Прикручивайте их снизу, иначе ножки не достанут до материнской платы.

После того как вы оборудовали новый радиатор креплениями, нужно поставить его на место старого, защелкнуть пластиковые ножки в посадочные гнезда и повернуть по часовой стрелке блокиратор.

Подключите кулер к материнской плате и дело сделано, ничего настраивать не нужно.

Как правильно установить кулер на материнскую плату

На саму материнскую плату есть смысл устанавливать радиатор только на цепь питания, иногда даже производитель сам устанавливает охлаждение в местах, где могут перегреваться мосты.

Если вы активно пользуетесь функцией разгона процессора, то у вас может идти перегрев цепей питания (MOSFET’ов). В таком случае нужно туда установить радиаторы или систему радиаторов с кулерами.

Радиторы материнской платы - Самые простыеСамые простые
Радиторы материнской платы - Совсем элементарныеСовсем элементарные
Радиторы материнской платы - СтильныеСтильные
Радиторы материнской платы - Для системы водяного охлажденияДля системы водяного охлаждения
Радиторы материнской платы - Тяжелая артиллерияТяжелая артиллерия

Как видите, выбор достаточно широк. Но нужно ли это вам? Мосфеты или же цепь питания рассчитывается вместе с другими компонентами материнской платы под те модели процессоров, которые она поддерживает.

Обычно материнские платы, рассчитанные под разгон, выпускаются уже с необходимым количеством радиаторов, чаще всего стилизованных, чтобы не портить эстетический вид.

Если же вы нещадно разгоняете ваш процессор, а при этом перегревается материнка, то одними радиаторами на этих транзисторах дело не обойдется.

Если же вы все-таки решили установить радиатор на материнку, то единственный способ это сделать в обход рекомендациям производителя – приклеить радиатор с помощью термопроводной самоклеящейся прокладки или воспользовавшись специальной термопастой-клеем.

Под радиаторы для системы водяного охлаждения должно быть предусмотрено крепление на самой материнке.

Замена охлаждения ноутбука

Чтобы добраться до радиатора с вентилятором, вам нужно полностью разобрать ваш ноутбук. Как это сделать – можно узнать через поисковик. Каждая модель ноутбука разбирается по-разному и никаких универсальных рекомендаций дать невозможно. В любом случае потребуется крестовая отвертка и маленький пластиковый шпатель для отсоединения защелок на корпусе.

Если нужно заменить всю систему охлаждения, то опять же, универсальных систем нет. Вам нужна именно под вашу модель, иначе она просто не влезет. Если ноутбук с дискретной видеокартой, то скорее всего, на нем стоит одна медная трубка, которая снимает тепло с графического чипа и с процессора. Ее особый изгиб вам не повторить, это достаточно сложно, особенно учитывая необходимость пайки съемника тепла.

Замена охлаждения ноутбука

Единственное, что можно снять с такого радиатора – это кулер (на фото). Они, в принципе, взаимозаменяемы, не нужно искать под вашу конкретную модель, достаточно выбрать точно такой же по размерам. Медная трубка и радиатор не разборные и припаяны друг к другу для лучшей передачи тепла.

Как только вы найдете подходящую систему охлаждения, можно смело снимать старую. Открутите ее и аккуратно снимите, не повредив чипы засохшей термопастой. Новую нужно прикрутить на ее место, предварительно смазав термопастой чипы.

Не забудьте подключить вентилятор в материнскую плату, иначе придется разбирать ноутбук еще раз.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *