Что такое датчик?
При изучении робототехники возникает вопрос – что такое датчики? Датчики еще часто называю сенсорами.
Датчики — это детекторы, которые имеют возможность измерять некоторые физические качества, такие как давление или свет.
Датчик после этого будет преобразовывать измерение в сигнал, который может быть передан для анализа. Большинство датчиков, используемых сегодня существует для того, чтобы иметь возможность общаться с электронным устройством, которое будет делать измерения и записи.
датчик что это
Наличие датчиков обязательно для всех систем автоматизации. Именно датчики позволяют создать робота, который может реагировать на изменение различных параметров окружающей среды. Получая информацию от датчиков, робот выполняет различные действия согласно заложенной в него программе.
Можно сказать, что наличие датчиков и обратной связи с ними, отличает робота от автоматизированного устройства. Изучая робототехнику можно быстро узнать, что такое датчик и как использовать различные типы датчиков.
Сегодня вы сможете найти датчики в широком диапазоне различных устройств, которые вы используете регулярно. Сенсорный экран, который у вас есть на телефоне.
экран смартфона
Ультразвуковые датчики для открытия дверей в торговых центрах, герконовые датчики для систем сигнализации и множество других. Датчики являются очень распространенной частью повседневной жизни.
Введение в датчики
Мир полон сенсоров. В нашей повседневной жизни мы сталкиваемся с автоматизацией во всех видах деятельности. Автоматизация включает включение света и вентилятора, с использованием мобильных телефонов. Управление телевизором с помощью мобильных приложений.
управление и мониторинг
Регулировки температуры в помещении. Обеспечение пожарной безопасности при помощи детекторов дыма и т.д. Все это делается с помощью датчиков. В наши дни любой встроенный системный продукт имеет встроенные датчики. Есть множество приложений, таких как мобильные управляемые камеры видеонаблюдения.
Приложения мониторинга и прогнозирования погоды и т. д. Датчики играют очень важную роль в профилактике и обнаружении заболеваний в здравоохранении. Поэтому, прежде чем проектировать датчик, использующий приложение, мы должны понять, что такое датчик, что именно делает датчик и сколько типов датчиков доступны.
Что такое датчик?
Датчик определяется как устройство или модуль, который помогает обнаружить любые изменения в физической величине такой как давление, сила или электрическая величина, как ток или любой другой вид энергии. После наблюдать изменениями, датчик посылает обнаруженный входной сигнал к микроконтроллеру или микропроцессору.
микроконтроллер
Наконец, датчик выдает считываемый выходной сигнал, который может быть либо оптическим, либо электрическим, либо любой формой сигнала, соответствующей изменению входного сигнала. В любой измерительной системе большую роль играют датчики.
Фактически, датчики являются первым элементом в структурной схеме измерительной системы, который вступает в непосредственный контакт с переменными для получения действительного выхода. Теперь вы знаете, что такое датчик и что на самом деле означает датчик.
Классификация датчиков
Активный датчик
Что такое активные датчик – это тип датчиков, который производит выходной сигнал с помощью внешнего источника возбуждения.
Собственные физические свойства датчика изменяются в зависимости от применяемого внешнего воздействия. Например, тензометрический датчик.
тензометрический датчик
При нажатии на такой датчик воздействие преобразуется в электрический сигнал и сигнал передается в считывающее устройство.
Пассивный датчик
Пассивные датчики тип датчиков, который производит выходной сигнал без помощи внешнего источника возбуждения.
Им не нужны никакие дополнительные токи или напряжения. Например, термопара, которая генерирует значение напряжения, соответствующее приложенному теплу.
датчик температуры
Она не требует никакого внешнего электропитания.
Также датчики подразделяются на
Аналоговые
Что такое аналоговый датчик – это сенсор, который производит непрерывный сигнал относительно времени с аналоговым выходом.
Сформированный аналоговый выходной сигнал пропорционален измеряемому им входному сигналу. Как правило, аналоговое напряжение лежит в диапазоне от 0 до 10 В или в качестве выходного сигнала используется ток.
аналоговый датчик Arduino
Примерами физических параметров для непрерывных сигналов могут служить температура, усилие, давление, смещение и др. Например, аналоговый датчик линии Arduino.
Цифровые
Цифровые датчики-это те, которые производят дискретные выходные сигналы.
Дискретные сигналы будут не непрерывными во времени и могут быть представлены в “битах” для последовательной передачи и в “байтах” для параллельной передачи. Измеряемая величина будет представлена в цифровом формате. Цифровой выход может быть в форме логики 1 или логики 0 (включено-выключено).
Цифровой датчик состоит из датчика, кабеля и передатчика. Измеренный сигнал преобразован в цифровой сигнал внутри датчика самого без любого внешнего компонента. Кабель используется для передачи на большие расстояния. Примером цифрового датчика может служить энкодер.
энкодеры
Он включает в себя цифровой светодиод и фотодиод, используемый для получения цифрового сигнала для измерения скорости вращающегося вала. Диск прикреплен к вращающемуся валу. Вращающийся вал имеет по окружности прозрачные пазы. Когда вал вращается со скоростью, диск также вращается вместе с ним.
принцип работы энкодера
Сигнал от светодиода проходит через паз и фиксируется фотодиодом. Выходным сигналом будет логическая 1 или логический 0. Выходные данные отображаются на ЖК-дисплее после прохождения через счетчик.
В настоящее время есть огромное количество датчиков для различных целей и каждый год датчики становятся все совершеннее. Сейчас все больше становится программируемых датчиков, которые можно калибровать и программировать на различные виды измерений.
Обычно в комплекте с этими датчиками идет достаточно подробная инструкция со схемами подключения, способами настройки и программирования датчиков.
Автоматизация производства Лекция №3 Первичные преобразователи (датчики).
Датчик — средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному восприятию наблюдателем. Датчики, выполненные на основе электронной техники, называются электронными датчиками. Отдельно взятый датчик может быть предназначен для измерения (контроля) и преобразования одной физической величины или одновременно нескольких физических величин.
Просмотр содержимого документа
«автоматизация производства Лекция №3 Первичные преобразователи (датчики).»
Лекция №3 Первичные преобразователи (датчики).
Датчик — средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному восприятию наблюдателем. Датчики, выполненные на основе электронной техники, называются электронными датчиками. Отдельно взятый датчик может быть предназначен для измерения (контроля) и преобразования одной физической величины или одновременно нескольких физических величин.
В состав датчика входят чувствительные и преобразовательные элементы. Основными характеристиками электронных датчиков являются чувствительность и погрешность.
Датчики широко используются в научных исследованиях, испытаниях, контроле качества, телеметрии, системах автоматизированного управления и в других областях деятельности и системах, где требуется получение измерительной информации.
Общие сведения
Датчики являются элементом технических систем, предназначенных для измерения, сигнализации, регулирования, управления устройствами или процессами. Датчики преобразуют контролируемую величину (давление, температура, расход, концентрация, частота, скорость, перемещение, напряжение, электрический ток и т.п.) в сигнал (электрический, оптический, пневматический), удобный для измерения, передачи, преобразования, хранения и регистрации информации о состоянии объекта измерений.
Исторически и логически датчики связаны с техникой измерений и измерительными приборами, например термометры, расходомеры, барометры, прибор «авиагоризонт» и т. д. Обобщающий термин датчик укрепился в связи с развитием автоматических систем управления, как элемент обобщенной логической концепции датчик — устройство управления — исполнительное устройство — объект управления. В качестве отдельной категории использования датчиков в автоматических системах регистрации параметров можно выделить их применение в системах научных исследований и экспериментов.
Определения датчика
Широко встречаются следующие определения:
чувствительный элемент, приемник, преобразующий параметры среды в пригодный для технического использования сигнал, обычно электрический, хотя возможно и иной по природе, например — пневматический сигнал;
законченное изделие на основе указанного выше элемента, включающее, в зависимости от потребности, устройства усиления сигнала, линеаризации, калибровки, аналого-цифрового преобразования и интерфейса для интеграции в системы управления. В этом случае чувствительный элемент датчика сам по себе может называться сенсором.
датчиком называется часть измерительной или управляющей системы, представляющая собой конструктивную совокупность измерительных преобразователей, включающую преобразователь вида энергии сигнала, размещенную в зоне действия влияющих факторов объекта и воспринимающий естественно закодированную информацию от этого объекта.
датчик — конструктивно обособленная часть измерительной системы, содержащая один или несколько первичных преобразователей, а также один или несколько промежуточных преобразователей.
Эти определения соответствуют практике использования термина производителями датчиков. В первом случае датчик это небольшое, обычно монолитное устройство электронной техники, например, терморезистор, фотодиод и т. п., которое используется для создания более сложных электронных приборов. Во втором случае — это законченный по своей функциональности прибор, подключаемый по одному из известных интерфейсов к системе автоматического управления или регистрации. Например, фотодиоды в матрицах (фото) и др. В третьем и четвёртом определении акцент делается на том, что датчик является конструктивно обособленной частью измерительной системы, воспринимающей информацию, а следовательно обладающий самодостаточностью для выполнения этой задачи и определенными метрологическими характеристиками.
Применение датчиков
Датчики используются во многих отраслях экономики — добыче и переработке полязных ископаемых, промышленном производстве, транспорте, коммуникациях, логистике, строительстве, сельском хозяйстве, здравоохранении, науке и других отраслях — являясь в настоящее время неотъемлемой частью технических устройств.
В последнее время в связи с удешевлением электронных систем всё чаще применяются датчики со сложной обработкой сигналов, возможностями настройки и регулирования параметров и стандартным интерфейсом системы управления. Имеется определённая тенденция расширительной трактовки и перенесения этого термина на измерительные приборы, появившиеся значительно ранее
массового использования датчиков, а также по аналогии — на объекты иной природы, например, биологические.
Датчики по своему назначению и технической реализации близки к понятию «измерительный инструмент» («измерительный прибор»). Однако показания приборов воспринимаются человеком, как правило, напрямую (посредством дисплеев, табло, панелей, световых и звуковых сигналов и проч.), в то время как показания датчиков требуют преобразования в форму, в которой измерительная информация может быть воспринята человеком. Датчики могут входить в состав измерительных приборов, обеспечивая измерение физической величины, результаты которого затем преобразуются для восприятия оператором измерительного прибора.
В автоматизированных системах управления датчики могут выступать в роли инициирующих устройств, приводя в действие оборудование, арматуру и программное обеспечение. Показания датчиков в таких системах, как правило, записываются на запоминающее устройство для контроля, обработки, анализа и вывода на дисплей или печатающее устройство. Огромное значение датчики имеют в робототехнике, где они выступают в роли рецепторов, посредством которых роботы и другие автоматические устройства получают информацию из окружающего мира и своих внутренних органов.
В быту датчики используются в термостатах, выключателях, термометрах, барометрах, смартфонах, посудомоечных машинах, кухонных плитах, тостерах, утюгах и другой бытовой технике.
Датчики и микроконтроллеры. Часть 1. Матчасть
В эпоху готовых отладочных плат и тысяч готовых модулей к ним, где достаточно взять пару блоков, соединить их вместе, и получить нужный результат, далеко не каждый понимает основы схемотехники, почему и как это работает, а главное — что надо делать, если это работает не так.
В этом цикле я расскажу о датчиках — как о немаловажном элементе системы управления неким объектом или тех. процессом.
Все свое повествование я буду вести касаемо практических вопросов реализации цифровых систем управления на базе микроконтроллеров.
- Часть 1. Мат. часть. В ней мы рассмотрим датчик, не привязанный к какому-то конкретному измеряемому параметру. Рассмотрим передаточные функции и динамические характеристики датчика, разберемся с его возможными подключениями.
- Часть 2. Датчики климат-контроля. В ней я рассмотрю особенности работы с датчиками температуры, влажности, давления и газового состава В ней я коснусь измерения тока и напряжения
Введение
В системе управления технологической установкой снятие текущих показаний некоторой величины — температуры, влажности, давления, уровня жидкости, напряжения, тока и проч. осуществляется с помощью датчиков — устройств и механизмов, предназначенных для преобразования сигнала внешнего воздействия в форму, понятную системе управления. Например, датчик влажности генерирует электрический сигнал, пропорциональный текущему значению влажности воздуха.
Как правило, датчики используются не сами по себе, а входят в состав системы управления, обеспечивая сигнал обратной связи.
Рисунок 1. Типовая схема замкнутой системы регулирования
На рисунке 1 представлена типовая схема системы регулирования. Имеется сигнал задания Xз, который сравнивается с сигналом на выходе, получаемым с помощью датчика, имеющего передаточную функцию Wд(p). Ошибка управления подается на регулятор, который, в свою очередь, формирует сигнал управления исполнительным узлом, формирующим выходной сигнал Y.[1]
Простой пример — центробежный регулятор частоты вращения двигателя, где датчиком является платформа с шарами, которая, вращаясь, устанавливает то или иное положение топливной рейки. Заслонка, управляемая этой рейкой, регулирует количество топлива, подаваемое на двигатель. Сигналом задания будет являться требуемое значение скорости.
1.1 Классификация датчиков
- Пассивные, которые не нуждаются во внешнем источнике электроэнергии, и в ответ на входное воздействие генерируют электрический сигнал. Примерами таких датчиков являются термопары, фотодиоды и пьезоэлектрические чувствительные элементы.
- Активные, которые требуют для своей работы внешний сигнал, называемой сигналом возбуждения. Поскольку, такие датчики меняют свои характеристики в ответ на изменение внешних сигналов, их называют параметрическими. Примерами активных датчиков являются терморезисторы, сопротивление которых можно вычислить путем пропускания через них электрического тока.
- Абсолютные, измеряемое значение физической величины которых не зависит от условий измерения и внешней среды.
- Относительные, когда выходной сигнал такого датчика в каждом конкретном случае трактуется по разному.
- Аналоговые датчики на выходе имеют непрерывный выходной сигнал, для снятия которого необходимо использовать аналого-цифровой преобразователь, после чего необходимо произвести преобразования значения АЦП в формат измеряемой величины.
- Цифровые датчики, информация с которых снимается с помощью различных цифровых интерфейсов. Как правило, информация доступна непосредственно в формате измеряемой величины и не требует проведения дополнительных преобразований.
- Дискретные датчики, имеющие только два варианта сигнала на выходе канала датчика — лог 0. и лог. 1. Примером такого датчика является конечный выключатель, имеющий состояния замкнут и незамкнут. Дискретный датчик может иметь несколько выходных каналов, каждый из которых находится в одном из двух состояний. Например, 12-разрядный абсолютный датчик положения.
- Импульсные датчики, формирующие импульсы выходного сигнала, амплитуда или длительность которых зависит от измеряемой величины. Например, инкрементальный датчик положения формирует на выходе код Грея. При этом, чем выше частота вращения вала датчика, тем большая частота сигнала будет на выходе, что позволит с высокой точностью определить частоту вращения вала.
2 Характеристики датчиков
Большинство датчиков имеют сложную процедуру преобразования измеряемой величины в электрический сигнал. Например, в тензорезисторном датчике давления измеряемая величина воздействует на чувствительный элемент, изменяя его сопротивление. После подачи сигнала возбуждения, падение напряжения на резисторе позволит косвенно определить его сопротивление и, на основании зависимости сопротивления от давления, вычислить измеряемую величину.
Для разработчика датчик представляет собой черный ящик с известными соотношениями сигналов между входами и выходами.
2.1 Диапазон измеряемых и выходных значений
Диапазон измеряемых значений показывает, какое максимальное значение входного сигнала датчик может преобразовать в выходной электрический сигнал, не выходя за пределы установленных погрешностей. Данные цифры всегда приводятся в спецификации на датчик, одновременно отображая возможную точность измерений в том или иной диапазоне.
Следует понимать, что одни датчики при подаче входного сигнала больше максимальных значений просто войдут в насыщение и будут возвращать неверные данные. Другие же датчики (например датчики температуры) могут выйти из строя. В дальнейшем, для каждого типа датчика будут даны свои рекомендации.
Диапазон выходных значений датчика — это минимальное и максимальное напряжение, которое датчик способен выдать при минимальном и максимальном внешнем воздействии. Так как мы рассматриваем датчики, преобразующие входной сигнал в электрический, то диапазон выходных значений датчика будет определяться в вырабатываемом им напряжении, или пропускаемом через него токе. Одной из наших задач при подключении датчика будет согласование выходного диапазона датчика со входным диапазоном измерительного тракта.
2.2 Передаточная функция — статические и динамические характеристики
При работе с датчиком требуется знать соотношение уровней сигналов на входе и выходе. Отношение Wд(p) = Y(p)/X(p) в операторном виде является передаточной функцией датчика и однозначно определяет характеристики датчика в статике и динамике.
Уравнение Y(p) = Wд(p)*X(p) в реальной плоскости, т.е. функция Y = f(x) будет являться статической характеристикой
Статическая характеристика может быть линейно и будет определяться как:
(1)
Где a – наклон прямой, определяемый чувствительностью датчика и b – постоянная составляющая(т.е. уровень выходного сигнала при отсутствии сигнала на входе)
Рисунок 2. Линейная зависимость
Помимо датчиков с линейной зависимостью, могут быть датчики с логарифмической зависимостью, с уравнением вида
(2)
Экспоненциальной:
(3)
Или степенной:
(4)
Где k – постоянное число.
Существуют датчики с более сложной характеристикой. Но на то есть документация.
Однако, передаточная функция раскрывает и то, какими свойствами обладает датчик в динамике, т. е. насколько быстро и точно отрабатывает датчик выходной сигнал при быстром изменении входной величины. Практически каждый реальный датчик имеет в себе накопитель энергии — конденсатор, массу и т. п. Рассмотрим поведение датчика, динамические характеристики которого описываются уравнением первого порядка:
(5)
В теории автоматического управления существует два тестовых входных сигнала. Это единичная функция — подача в нулевой момент времени единицы, и дельта-функция — подача сигнала бесконечной амплитуды и бесконечно малой длительности.
Рисунок 3. Единичная и дельта функции
Безынерционный, то бишь идеальный датчик в точности повторит форму входного сигнала. Реальный датчик, описанный формулой (5) выдаст следующую реакцию:
Рисунок 4. Реакция апериодического звена первого порядка на тестовые сигналы
Следует отметить, что значение на выходе датчика будет соответствовать поданному на входе только после завершения переходного процесса, которое будет длиться 3-4τ, где τ — постоянная времени нашего звена. При t=1τ, выходное значение достигнет
Нетрудно посчитать, что при t = 2τ выходное значение составит 86%, а при t = 3τ — 95% и переходный процесс будет считаться завершенным.
Таким образом нужно понимать, что, например, тот же датчик температуры будет реагировать на изменение температуры окружающей среды с некоторым запаздыванием из-за того, что между датчиком и окружающей средой имеется корпус, который должен поглотить тепло и нагреться. На это требуется время.
Разумеется, инерционные датчики могут описываться более сложными уравнениями, например представляться апериодическими звеньями второго порядка, иметь задержку реакции и т. д. Особенности поведения таких звеньев подробно описаны в [1].
2.3 Точность, нелинейность
Одной из важных характеристик датчика является его точность в диапазоне измеряемых величин. Выходной сигнал датчика соответствует значению измеряемой величины с некоторой достоверностью, называемой погрешностью.
Например, датчик температуры имеет точность ±2 градуса. Это означает, что при реальной температуре измеряемого объекта в 100 градусов, допустимые показания данного датчика температуры находятся в пределах 98 – 102 градусов.
Погрешность датчика бывает разной.
Различают аддитивную и мультипликативную погрешность.
Аддитивная погрешность постоянна во всем диапазоне измерений.
Рисунок 5. Аддитивная погрешность
Мультипликативная линейно зависит от уровня измеряемой величины:
Рисунок 6. Мультипликативная погрешность
Кроме того, существует нелинейность датчика в измеряемом диапазоне. В зависимости от текущего диапазона измерения, коэффициент наклона передаточной функции изменяется в некоторых пределах. При этом, в спецификации указываются либо кривые изменения точности по диапазону, либо худшие показатели нелинейности в том или ином диапазоне.
Рисунок 7. нелинейность датчика
Кроме того, некоторые датчики имеют эффект гистерезиса, когда для одного и того же входного сигнала после возрастания и убывания значения выходного сигнала получаются разными. Типичной причиной гистерезиса является трение и структурные изменения материалов. Наибольшему эффекту гистерезиса подвержены датчики на основе ферромагнитных материалов.
Для повышения точности и компенсации аддитивной и мультипликативной погрешности может производиться процесс калибровки датчика. Например, для линейного датчика необходимо с заведомо известной точностью определить показания в двух точках, находящиеся на разных концах рабочего диапазона. Для некоторых датчиков данные калибровки могут приводиться в паспорте на каждый конкретный экземпляр. Для проведения процедуры калибровки можно воспользоваться более точной аппаратурой, можно воспользоваться эталоном (например черное тело, эталонный килограмм и т. п.). Точность после калибровки естественно не сможет превышать точность эталона.
2.4 Чувствительность датчика, разрешающая способность и мертвая зона
Мертвая зона датчика — это нечувствительность датчика в определенном диапазоне входных сигналов. В пределах этой зоны выходные показания некорректны.
Для примера на рисунке 2 показания выходной величины для всех значений от 0 до x0 не определены. Такой особенностью грешат, например, некоторые датчики тока, имеющие нулевое напряжение на выходе при токах меньших, к примеру, 10мА.
Во всем остальном диапазоне имеет место определенная чувствительность датчика, т. е. насколько силен прирост выходного сигнала на изменение входного сигнала. т. е. чувствительность определяется следующей формулой:
Для линейного датчика, чувствительность будет постоянной на всем измеряемом диапазоне.
Разрешающая способность показывает, насколько малое изменение измеряемой величины способно вызвать изменение выходного сигнала. Например, какой-нибудь инкрементальный датчик положения имеет разрешающую способность в 1 градус. Аналоговые датчики обладают бесконечно большим разрешением, так как в их выходном сигнале нельзя определить отдельных ступеней его изменения.
3 Способ подключения датчиков
В зависимости от типа датчика, подключается он к измерительному тракту по-разному.
Подключение пассивного датчика
Так как пассивный датчик без посторонней помощи в ответ на внешнее воздействие самостоятельно вырабатывает для нас электрический сигнал, нам этот сигнал нужно считать.
В зависимости от того, будет ли наш датчик источником тока или источником напряжения, способ подключения будет отличаться.
К примеру, термопара является источником напряжения — напряжение на выходе не зависит от величины выходного тока (в разумных пределах конечно). Наша задача — измерить вырабатываемую ЭДС. Так как измерительный тракт будет иметь некоторое конечное сопротивление, схема подключения будет следующей:
Рисунок 8. Подключение источника напряжения к АЦП
Если Radc будет много больше внутреннего сопротивления r, тогда падение напряжения на нем будет стремиться к нулю и напряжение на входе АЦП будет стремиться к значению ЭДС.
Во второй части я подробно рассмотрю термопару, как один из самых точных и быстродействующих датчиков.
Другой случай, если наш датчик является источником тока, т.е генерируемое им напряжение зависит от пропускаемого через нагрузку тока.
Подключение датчика аналогично:
Рисунок 9. Подключение источника тока к АЦП
Однако, сопротивление нагрузки источника тока теперь должно стремиться к нулю. Для этого, датчик шунтируется резистором необходимого сопротивления, превращая тем самым, источник тока в источник напряжения:
Рисунок 10. Правильное подключение источника тока к АЦП
Сопротивление резистора Rш рассчитывается как частное от деления максимального напряжения, подаваемого на вход АЦП на максимальный ток, который способен выдать датчик
Наиболее яркий представить такого датчика — датчик тока.
Подключение активного датчика
Рассмотрим активные датчики, представляющие собой переменное сопротивление. В частности это терморезисторы, тензорезисторы и прочие подобные датчики. Чтобы сопротивление датчика измерить, его необходимо подключить к источнику тока и определить падение напряжения на нем:
Рисунок 11. Подключение датчика к нерегулируемому источнику тока
Источник тока вырабатывает ток постоянного значения известной величины. Тогда, выходное напряжение будет определяться по формуле:
(7)
Например, рассчитаем выходное значение напряжения при токе источника 10мА если наш датчик изменяет сопротивление от 0,1кОм до 1 кОм. Тогда максимальное выходное напряжение будет равно (8)
Что вполне соответствует требуемому значению напряжения для аналоговой системы управления на базе операционных усилителей.
Где взять источник тока? Бывает так что он встроен в сам микроконтроллер. Например в микроконтроллерах ADuCM360/361 есть два встроенных источника тока 0,01-1мА. Правда там у них диагностическая задача — подавая малый ток через цепи датчика можно убедить в его наличии и исправности.
Конечно, нам привычнее использовать источник напряжения с делителем:
Рисунок 12. Подключение датчика к источнику напряжения с делителем
Если говорить на чистоту, то цепочка U-R1 образует тот же самый источник тока, только его параметры зависят от нагрузки — Rд. Напряжение на выходе будет определяться по следующей формуле:
(9)
И тут всплывает главная проблема такого метода — от сопротивления нашего датчика в знаменателе не избавишься никак и показания становятся нелинейными, в отличие, кстати, от первого варианта.
Встает вопрос — каким должно быть сопротивление R1? Оно должно обеспечивать максимальный диапазон выходного напряжения. т. е. при известных значениях минимального и максимального сопротивления датчика Rд1 и Rд2, abs(Uвых1 — Uвых2) —>max
С другой стороны, максимальное выходное напряжение у нас ограничено входными цепями измерительного устройства. Например, на вход микроконтроллера с питанием 5В необходимо подать напряжение, к примеру, не более 2,5В. Отмечу, что если максимально возможное напряжение, подаваемое на вход АЦП меньше напряжения питания, то мы сможем его туда подать.
Если наш датчик изменяет сопротивление от 0,1кОм до 1 кОм, то примем сопротивление резистора R1 равное верхней границе сопротивления датчика. Тогда Uвых сможет изменяться в пределах от 1/11Uвх до 1/2Uвх. В абсолютных цифрах данного примера — от 0,45 до 2,5В. И такими значениями мы используем (2,5-0,45)/2,5 = 82% всего диапазона АЦП, что довольно неплохо.
Еще датчик можно воткнуть в состав измерительного моста и измерять разницу напряжений в его плечах:
Рисунок 13. Датчик в составе измерительного моста
В этом случае мы работаем с дифференциальным АЦП, измеряя разность потенциалов Uab. Она будет равна: (10)
Причем сопротивление резистора R1 может быть таким, чтобы Uab могло быть и отрицательным. Существуют датчики, внутренняя схема которых уже представляет собой балансный мост с необходимыми характеристиками. Позднее я рассмотрю примеры таких датчиков.
Существуют более удобные в использовании датчики. Они выдают необходимый аналоговый сигнал и без танцев с резисторами. Например, аналоговый датчик влажности HIH-4010-004 — трехвыводной корпус, 5В питание, линейный выход. Подключается это чудо так:
Рисунок 14. Подключение датчика влажности HIH-4010-004
Два провода к источнику опорного напряжения, выход — к АЦП микроконтроллера.
Подключение цифровых датчиков по стандарту 1-Wire
1-Wire это двунаправленная низкоскоростная цифровая шина передачи данных, требующая всего два провода — информационный провод и землю. Шина достаточно проста в использовании, поддерживает паразитное питание устройств от линии и позволяет подключать параллельно множество однотипных устройств вроде датчиков температуры(всеми любимыми DS18B20), или микросхем идентификации (iButton).
Паразитное питание организовывается следующим образом:
Рисунок 15. Паразитное питание устройств шины 1-Wire
А это обычное активное питание устройства, когда до источника рукой подать.
Рисунок 16. Питание устройства 1-Wire от внешнего источника
Количество подключенных параллельно датчиков фактически ограничено лишь параметрами линии.
Возможно горячее подключение и идентификация на ходу. Причем вычислительная сложность алгоритма идентификации O(log n)
Более подробно с этим протоколом мы поработаем во второй части.
А пока, про сам протокол можно почитать по классической ссылке: http://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
Подключение цифровых датчиков по стандарту I2C(Twi)/SMBus
Если 1-Wire требовала один провод данных, то эта шина, исходя из названия Two-Wire Bus — два.
Один из проводов — SCL будет тактирующим, по второму — SDA, полудуплексом будут передаваться данные.
Шина с открытым коллектором, следовательно обе линии необходимо подтянуть к питанию. Датчик будет подключаться следующим образом:
Рисунок 17. Подключение датчиков по I2C
Общее количество устройств, которые можно подключить к шине I2C — 112 устройств при 7-разрядной адресации. Каждому устройству на деле выделяется два последовательных адреса, младшим битом выставляется режим — на чтение или запись. Есть строгое требование по емкости шины — не более 400пФ.
Общеупотребительные значения скоростей — 100 кбит/сек и 10 кбит/сек, хотя последние стандарты допускают и скоростные режимы в 400 кбит/сек и 3.4мбит/сек.
Шина может работать как с несменяемым мастером, там и с передачей флага.
Огромное количество информации по протоколу можно найти по этой ссылке: http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus.html
Подключение цифровых датчиков по стандарту SPI
- CLK — линия тактового сигнала.
- MOSI — выход мастера, вход слейва
- MISO — вход мастера, выход слейва
- CS — выбор чипа (опционально).
Рисунок 18. подключение по SPI и суть передачи
Каждое устройство в цепи содержит свой сдвиговый регистр данных. С помощью сигналов тактирования, спустя 8 тактов содержимое регистров меняется местами, тем самым, осуществляя обмен данными.
SPI — Самый скоростной из представленных интерфейс передачи данных. В зависимости от максимально-возможных частот тактирования скорость передачи данных может составлять 20, 40, 75 мбит/сек и выше.
Шина SPI позволяет подключать устройства параллельно, но здесь возникает проблема — каждому устройству требуется своя линия CS до процессора. Это ограничивает общее количество устройств на одном интерфейсе.
Главная сложность в настройке SPI — это установить полярность сигнала тактирования. Серьезно. Настроить SPI не просто, а очень просто.
Коротко и ясно об SPI с описанием периферийных модулей SPI для AVR и MSP430 можно прочитать здесь http://www.gaw.ru/html.cgi/txt/interface/spi/index.htm
4 Снятие показаний с датчиков
Пора бы уже прочесть с наших датчиков хоть какую-то информацию.
В зависимости от способа подключения датчика и его типа возможны различные способы снятия показаний. Следует отметить, что некоторые датчики, например цифровые датчики, или датчики состава газа, требуют предварительного запуска режима измерения, который может длиться некоторое время.
Таким образом, процесс измерения состоит из двух тактов — такт измерения данных и такт снятия данных. При организации программы можно пойти по одному из следующих вариантов:
Рисунок 19. Процесс считывания показаний с датчика
Рассмотрим каждый вариант по отдельности и набросаем скелеты:
Вариант 1. запустили режим измерений, подождали, считали.
Вариант притягателен своей простотой, однако за ней кроется проблема — во время ожидания выполнения измерений микроконтроллер нагло простаивает, не выполняя задач. В большинстве систем автоматики такой режим — непозволительная роскошь.
В коде это будет выглядеть следующим образом:
Вариант 2. запустили режим измерений, вернулись к другим задачам, по прошествии времени сработало прерывание, считали данные.
Один из лучших вариантов. Но наиболее сложный:
Выглядит неплохо. позволяет варьировать время между циклами измерений и циклами считывания. например, датчик состава газов должен успеть остыть после предыдущих измерений, либо успеть нагреться во время измерений. Это разные периоды времени.
Вариант 3: Считали данные, запустили новый виток.
Если датчик позволяет после считывания данных запускать новый цикл измерений, то почему бы и нет — сделаем все наоборот.
Отличный способ сэкономить время. и знаете что — такой метод отлично работает и без прерываний. Цифровые датчики хранят вычисленное значение вплоть до отключения питания.А с учетом того, что считывать сигналы с датчика влажности ввиду его инерционности в 15 секунд часто и не требуется, можно и вовсе сделать так:
Может быть и такой вариант, что наш датчик самостоятельно запускает новый цикл измерений и потом с помощью внешнего прерывания он сообщает о завершении измерений. Например, АЦП можно настроить на автоматический режим считывания данных с частотой N Гц. С одной стороны, в обработчике прерывания будет достаточно реализовать только процесс считывания новых данных. С другой стороны, можно воспользоваться прерыванием АЦП с режимом Прямого Доступа к Памяти — ПДП(DMA). В этом случае по сигналу прерывания периферийный модуль АЦП на аппаратном уровне самостоятельно скопирует данные в определенную ячейку памяти в ОЗУ, тем самым обеспечивая максимальную скорость обработки данных и минимальное воздействие на рабочую программу (не надо уходить в прерывание, вызывать обработчик и проч.).
Но использование DMA сильно выходит за рамки данного цикла.
К сожалению, первый метод поголовно используется в библиотеках и примерах для Arduino, не позволяет этой платформе правильно использовать ресурсы микроконтроллера. Зато он проще в написании и отладке.
4.1 Работа с АЦП
Имея дело с аналоговыми датчиками имеем дело с АЦП. В данном случае рассматривается АЦП встроенный в микроконтроллер. Так как АЦП является по сути тем же датчиком — преобразует электрический сигнал в информационный — для него справедливо все что описано выше в разделе 2. Главными характеристиками АЦП для нас являются его эффективная разрядность, чувствительность, опорное напряжение и быстродействие. При этом, выходным значением АЦП преобразования будет некоторое число в выходном регистре, которое необходимо перевести в абсолютное значение в единицах измеряемой величины. В дальнейшем, для отдельных датчиков будут рассмотрены примеры таких расчетов.
4.1.1 Опорное напряжение
Опорное напряжение АЦП — это напряжение, которому будет соответствовать максимальное выходное значение АЦП. Опорное напряжение подается от источника напряжения, как встроенного в микроконтроллер, так и внешнего. От точности этого источника зависит точность показаний АЦП. Типовое опорное напряжение встроенного источника равняется напряжению питания или половине напряжения питания микроконтроллера. Могут быть и другие значения.
Например, таблица возможных значений опорного напряжения для микроконтроллера Atmega1280:
Рисунок 20. Выбор опорного напряжения для АЦП микроконтроллера Atmega1280
4.1.2 Разрядность АЦП и чувствительность
Разрядность АЦП определяет максимальные и минимальные значения в выходном регистре при минимальном и максимальном входном воздействии электрического сигнала.
Следует отметить, что максимальная разрядность АЦП может не соответствовать его эффективной разрядности.
Часть младших разрядов может быть отдана на шум. Обратимся к датащиту на микроконтроллер ADuCM360, имеющему 24-разрядный АЦП с эффективной разрядностью 14 бит:
Рисунок 21. Назначение битов регистра данных АЦП
Как видно из рисунка, в 32-разрядном регистре, часть выделяется на знак, часть на нули и часть на шум. И лишь 14 разрядов содержат данные, имеющие указанную точность. В любом случае, эти данные всегда указываются в документации.
От эффективной разрядности АЦП зависит его чувствительность. Чем больше промежуточных ступеней выходного напряжения, тем выше будет чувствительность.
Допустим, опорное напряжение АЦП Uоп. Тогда, N-разрядный АЦП, имея 2N возможных значений, имеет чувствительность (11)
Таким образом, для 12-разрядного АЦП и опорного напряжения в 3,3В его чувствительность составит 3,3/4096 = 0,8мВ
Так как наш датчик также обладает определенной чувствительностью и точностью, будет неплохо, если АЦП будет обладать лучшими показателями
4.1.3 Быстродействие АЦП
Быстродействие АЦП определяет, насколько быстро считываются показания. Для АЦП последовательного приближения требуется определенное количество тактов, чтобы оцифровать уровень входного напряжения. Чем больше разрядность, тем требуется больше времени, соответственно, если к концу измерения уровень сигнала успевает измениться, это отразится на точности измерения.
Быстродействие АЦП измеряется в количестве семплов данных в секунду. Оно определяется как частота сигнала тактирования АЦП, деленная на требуемое для измерения число таков. Например, имея частоту тактирования АЦП в 1МГц и 13 тактов для снятия показаний, быстродействие АЦП будет равно 77 килосемплов в секунду. Для каждого варианта разрядности возможно рассчитать свое быстродействие. В технической документации обычно указывается максимально-возможная частота тактирования АЦП и его максимальное быстродействие при той или иной разрядности.
4.2 Цифровые датчики
Главное преимущество цифровых датчиков перед аналоговыми — они предоставляют информацию об измеряемой величие в готовом виде. Цифровой датчик влажности вернет абсолютное значение влажности в процентах, цифровой датчик температуры — значение температуры в градусах.
- Запиши в регистр A значение B
- Верни значение, хранящееся в регистре C
На этом я закончу общий материал. В следующей части мы рассмотрим датчики HVAC с примерами.
После датчиков пойдет рассмотрение исполнительных устройств — там довольно много интересного с точки значения теории автоматического управления, а потом доберемся и до синтеза и оптимизации регулятора всего этого безобразия.
UPD: Выражаю благодарность amartology, Arastas и Stross за справедливые замечания по статье. Добавил материал по 2 и 4 разделам и пояснил некоторые спорные моменты.
Датчики преобразователи устройства которые преобразуют
Измерительный преобразователь. Виды и устройство. Работа
Измерительный преобразователь – специальное устройство, которое преобразует величину неэлектрического характера в электросигнал, а также наоборот. К преобразователям также относятся приборы, переводящие измеряемый параметр в иную величину, который будет удобным для исследования, преобразования, в том числе сохранения и передачи. Эти приборы необходимы во многих сферах, поэтому они получили значительное распространение. Так, к примеру, чтобы создать систему дистанционного контроля траты тепла или воды в ЖКХ требуются преобразователи импульсов в ток или напряжение. Счетчики создают импульсы, которые впоследствии преобразуются в электрическую величину.
Измерительный преобразователь можно поделить на целый перечень устройств:
- Квантовые.
- Ионизирующего излучения.
- Оптоэлектронные.
- Адсорбционные.
- Электрохимические.
- Индукционные.
- Тепловые.
- Электромагнитные.
- Гальваномагнитные.
- Емкостные.
- Механические упругие.
- Пьезоэлектрические.
- Резистивные и так далее.
Также преобразователи можно классифицировать по целому ряду признаков:
- По виду выходного сигнала.
- По физическим закономерностям, которые используются для проведения измерений.
- Функции преобразования и так далее.
Устройство
Имеется достаточно обширное разнообразие измерительных устройств. Однако вне зависимости от их видового разнообразия у всех у них имеется первичный измерительный преобразователь, который и проводит измерение величины. Как раз его, в конечном счете, и необходимо измерить, но величина на выходе должна быть уже в электрическом виде.
- Измеряемая величина воздействует на чувствительный орган, который имеет свое наименование – датчик. Это отдельный элемент, который находится в месте измерений и выполняет функции первичного преобразователя.
- Далее находится промежуточный преобразователь, который переводит сигнал в удобную для восприятия величину. На них может быть возложены различные обязанности;
— масштабно-временное преобразование;
— цифро-аналоговое преобразование;
— масштабное преобразование;
— изменение величины;
— функциональное преобразование и так далее.
Однако следует учитывать, что в цепи могут находиться сразу несколько первичных преобразователей.
Типичным представителем преобразователя является тензорезистор. Это устройство имеет чувствительную часть, выполненную из специального тензочувствительного материала. Он крепится с помощью пайки на изделии. Для возможности преобразования от чувствительного элемента отходят выводные проводники, которые подключаются к электрической цепи. Ряд подобных устройств имеют дополнительно подложку, которая находится между изделием и чувствительной частью. Может быть установлена и защита, которая расположена поверх чувствительного элемента.
В результате типичный тензопреобразователь включает следующие элементы: чувствительный элемент, элемент связки, само изделие, подложку, узел пайки, защиту и выводные проводники.
Принцип действия
Понять принцип действия преобразователя можно на примере электронных весов. Именно в таких приборах работает измерительный преобразователь, который переводит величину силы тяжести, то есть вес какого-нибудь измеряемого изделия, в понятную для восприятия величину. Просто положив на весы небольшую запасную часть от машины, можно будет с точностью до граммов узнать его массу. В весах в качестве преобразователя работает тензометрический датчик.
Принцип действия весов объясняется измерением веса, который действует на тензодатчик. В процессе преобразования измеряется деформация, которая соответственно переводится в электрический сигнал. Последний поступает на монитор или иной элемент, с которого можно прочитать показания измеренной массы.
В основе функционирования тензодатчика используется тензоэффект, который кроется в смене сопротивления проводников во время деформации. То есть при изменении длины проводника изменяется и сопротивление.
Тензометрические преобразователи применяются не только в весах, но и во многих других устройствах.
При помощи них измеряются и исследуются:
- Деформации в изделиях, в том числе свойства материалов.
- Для получения величин, которые образуются в результате деформации соответствующего элемента.
В целом современные преобразователи получили большое распространение, ведь они удобны в управлении, имеют небольшой вес и габариты. Благодаря таким устройствам пользователь может дистанционно отслеживать все необходимые показатели.
Пьезоэлектрические преобразователи работают на базе обратного и прямого пьезоэлектрического эффектов. При механическом действии на диэлектрики наблюдается их электрическая поляризация. При обратном действии в диэлектриках появляются напряжения или меняются их размеры.
Электромеханические преобразователи работают под действием тока, вследствие чего они начинают перемещаться. Гальваномагнитные преобразователи работают по принципу воздействия на них магнитного поля. Индукционные преобразователи действуют благодаря электромагнитной индукции.
Электрохимические преобразователи действуют на принципах электродной системы и электролитической ячейки. Так при падении изменении напряжения или иного параметра в ячейке происходит изменение другой характеристики: индуктивность, емкость или сопротивлением. Базируясь на этих принципах, появляется возможность измерения температуры, давления и многих других требуемых величин.
Оптоэлектронные преобразователи работают на принципе преобразования ультрафиолетовых и тепловых излучений. Преобразование данных в подобных устройствах может происходить различными способами: за счет изменения мощности излучения, модуляции оптического канала и так далее.
Применение
Измерительный преобразователь находит широчайшее применение. Такие устройства применяют на многих производствах, лабораториях и даже в быту. Это могут быть сложные приборы, которые собирают многочисленную информацию с датчиков или же простые устройства в виде домашних кухонных весов.