Как отличить дырочный проводник
Перейти к содержимому

Как отличить дырочный проводник

  • автор:

 

10.Электронная и дырочная проводимость полупроводников

Электронная проводимость.Одни полупроводники, например окислы алюминия, цинка, титана и др., обладают подобно металлам электронной проводимостью и называются полупроводниками типа n (от слова negative — отрицательный), так как в них ток представляет собой перемещение электронов, т. е. отрицательно заряженных частиц. В этих полупроводниках имеется большое количество полусвободных электронов, которые очень слабо связаны с ядрами атомов и совершают беспорядочное тепловое движение между атомами кристаллической решетки.

Дырочная проводимость.Полупроводники второго типа, к которым относятся закись меди, селен и другие вещества, обладают так называемой дырочной проводимостью и называются полупроводниками тина р (от слова positive — положительный). Электрический ток в них следует рассматривать как перемещение положительных зарядов. В полупроводниках типа р полусвободных электронов нет. Поэтому в них электроны не могут двигаться так, как в полупроводниках типа n. Атом полупроводника типа р под влиянием тепловых или других воздействий может потерять один из более удаленных от ядра электронов. Тогда атом будет иметь положительный заряд, численно равный заряду электрона.

11.Носители заряда в примесных полупроводниках.

Примесь, атомы которой отдают электроны, называют донорной, При введении донорной примеси концентрация электронов в кристалле резко возрастает. Она определяется в основном концентрацией атомов примеси. Одновременно происходит генерация пар «электрон – дырка», но количество электронов, возникающих при этом, значительно меньше, чем количество электронов, отдаваемых донорами. Поэтому концентрация электронов становится значительно выше концентрации дырок:

Электрический ток в таком полупроводнике создается в основном электронами, т.е. преобладает электронная составляющая тока. Полупроводник, обладающий преимущественно электронной электропроводностью, называют полупроводником n-типа. В таком полупроводнике электроны являются основными носителями заряда, а дырки – неосновными носителями заряда.

12. Полупроводниковый диоды. Виды диодов. Свойства диодов. Обозначения на схемах.

Полупроводниковый диодполупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода.

Обозначения диодов на схеме.

13. Полупроводниковый диод при включении внешнего напряжения в прямом направлении. Прямая ветвь вах диода.

ВАХ – это вольт амперная характеристика. Ну а нас в этом разделе интересует вольт амперная характеристика полупроводникового диода.

График ВАХ диода показан на рис. 6.

Рис. 6. ВАХ полупроводникового диода.

На графике изображены ВАХ для прямого и обратного включения диода. Ещё говорят, прямая и обратная ветвь вольт-амперной характеристики. Прямая ветвь (Iпр и Uпр) отображает характеристики диода при прямом включении (то есть когда на анод подаётся «плюс»). Обратная ветвь (Iобр и Uобр) отображает характеристики диода при обратном включении (то есть когда на анод подаётся «минус»).

На рис. 6 синяя толстая линия – это характеристика германиевого диода (Ge), а чёрная тонкая линия – характеристика кремниевого (Si) диода. На рисунке не указаны единицы измерения для осей тока и напряжения, так как они зависят от конкретной марки диода.

Что же мы видим на графике? Ну для начала определим, как и для любой плоской системы координат, четыре координатных угла (квадранта). Напомню, что первым считается квадрант, который находится справа вверху (то есть там, где у нас буквы Ge и Si). Далее квадранты отсчитываются против часовой стрелки.

Итак, II-й и IV-й квадранты у нас пустые. Это потому, что мы можем включить диод только двумя способами – в прямом или в обратном направлении. Невозможна ситуация, когда, например, через диод протекает обратный ток и одновременно он включен в прямом направлении, или, иными словами, невозможно на один вывод одновременно подать и «плюс» и «минус». Точнее, это возможно, но тогда это будет короткое замыкание))).

Собственная и примесная проводимость полупроводников

В полупроводниках основная зона разделена с зоной возбужденных уровней конечным интервалом энергий ∆ E . У проводника она получила название валентной, а зона возбужденный состояний – зоной проводимости.

Если T = 0 К , то валентная зона заполняется целиком. В этом случае, зона проводимости свободна. Отсюда следует, что вблизи абсолютного нуля полупроводники не способны проводить ток. Отличие диэлектриков и полупроводников состоит в ширине запрещенной зоны ∆ E . Диэлектриками считают полупроводники при ∆ E > 2 э В .

Собственная и примесная проводимость полупроводников

Если температура увеличивается, электроны начинают производить обмен энергии с ионами кристаллической решетки. Это может стать причиной обретения добавочной кинетической энергии ≈ k T . Ее количества достаточно для перевода некоторой части электронов в зону проводимости. Там они способны проводить ток.

В валентной зоне освобождаются квантовые состояния, которые электронами не заняты. Эти состояния называют дырками. Они являются носителями тока.

Электроны способны совершать квантовые переходы в незаполненные состояния. Заполненные состояния в этом случае освобождаются, то есть становятся дырками. В результате чего можно наблюдать появление равновесной концентрации дырок.

При отсутствии внешнего поля ее значение одинаковое по всему объему проводника. Квантовый переход сопровождается его перемещением против поля. Он способен уменьшить значение потенциальной энергии системы. Переход, который связан с перемещением в направлении поля, способен увеличить потенциальную энергию системы. При наличии преобладания количества переходов против поля над переходами по полю через полупроводник начнет протекать ток по движению приложенного электрического поля. Незамкнутый полупроводник характеризуется течением тока до тех пор, пока электрическое поле не будет компенсировать внешнее. Конечный результат такой же, как если бы в качестве носителей тока были не электроны, а положительно заряженные дырки. Отсюда следует, что различают два вида проводимости полупроводников: электронная и дырочная.

Носителя тока в металлах и полупроводниках считаются электроны, а дырки введены формально. Дырки в качестве положительно заряженных частиц не существует. Но перемещение в электрическом поле такое же, как и при классическом рассмотрении положительно заряженных частиц. Небольшая концентрация электронов в зоне проводимости и дырки в валентной зоне позволяют применять классическую статистику Больцмана.

Дырочная и электронная проводимости не связаны с наличием примесей. Ее называют собственной электропроводностью полупроводников.

Если имеется идеально чистый проводник без примесей, то каждому освобожденному электрону при помощи теплового движения или света соответствовало бы образование одной дырки, иначе говоря, количество электронов и дырок, участвующих в создании тока, было бы одинаковое.

Существование идеально чистых полупроводников невозможно, поэтому при необходимости их создают искусственным путем. Даже наличие малого количества примесей способно повлиять на изменение свойств полупроводника.

Примесная проводимость полупроводников

Электропроводность полупроводников, вызванная наличием примесей атомов других химических элементов, называют примесной электрической проводимостью.

Небольшое их количество способно существенно влиять на увеличение проводимости. В металлах происходит обратное явление. Примеси способствуют уменьшению проводимости металлов.

Увеличение проводимости с примесями объясняется тем, что происходит появление дополнительных энергетических уровней в полупроводниках, находящихся в запрещенной зоне полупроводника.

Донорные и акцепторные примеси

Пусть дополнительные уровни в запрещенной зоне появляются около нижнего края зоны проводимости. Если интервал, отделяющий дополнительные уровни энергии от зоны проводимости, мал при сравнении с шириной запрещенной зоны, то произойдет увеличение числа электронов в зоне проводимости, значит, сама проводимость полупроводника возрастет.

Примеси, которые перемещают электроны в зону проводимости, называют донорами или донорными примесями. Дополнительные энергоуровни получили название донорных уровней.

Полупроводники с донорными примесями – это электронные или полупроводники n -типа.

Пусть с введением примеси возникают добавочные уровни около верхнего края валентной зоны. В этом случае электроны из этой зоны переходят на добавочные уровни. Валентная зона характеризуется появлением дырок, так как появляется дырочная электропроводность проводника. Примеси такого рода получили название акцепторных. Дополнительные уровни, располагаемые в них, называют акцепторными.

Полупроводники с акцепторными примесями получили название дырочных или полупроводников p -типа. Имеют место на существование смешанные полупроводники.

Вид проводимости, которым обладает полупроводник, определяют по знаку эффекта Холла.

Легирование – это процесс введение примесей. Если примесный уровень обладает высокой концентрацией, то происходит их расщепление. Перекрытие границ соответствующих энергетических зон считается результатом процесса.

Объяснить, к какому типу примеси относят атомы мышьяка, бора, находящихся в кристаллической решетке кремния.

 

Решение

Кремний является четырехвалентным атомом, значит, атом содержит 4 электрона. Мышьяк пятивалентен, то есть содержит 5 , причем пятый из которых отщепляется по причине наличия теплового движения. Положительный ион мышьяка вытесняет из решетки один из атомов кремния и встает на его место. Происходит возникновение электрона проводимости между узлами решетки. Отсюда следует, что мышьяк считается донорной примесью для кремния.

При рассмотрении бора в качестве примеси для кремния видно, что атом бора имеет наружную оболочку, состоящую из трех электронов. Атом бора захватывает четвертый электрон из соседнего места, находящегося в кристалле кремния. Именно там происходит появление дырки. Отрицательный ион бора, появившийся в ней, вытесняет атом кремния из кристаллической решетки и занимает его место. Говорят о возникновении в нем дырочной проводимости. Бор считается акцепторной примесью.

Ответ: мышьяк – донорная примесь, бор – акцепторная.

Даны термоэлементы с протеканием тока от металла к полупроводнику и наоборот. Объяснить, почему это происходит.

Решение

По условию, электронная и дырочная проводимость проходит в горячем спае. Это объясняется тем, что на конце электронного полупроводника с высокой температурой скорость электронов намного больше, чем в холодном. Отсюда следует, что электроны имеют возможность проходить от горячего конца к холодному до возникновения по причине перераспределения зарядов электрического поля и не останавливать поток диффундирующих электронов.

Только после установления равновесного состояния горячему концу, который потерял все электроны, соответствуют положительные заряды, а холодному – отрицательные. Можно сделать вывод, что имеется разность потенциалов между горячим и холодным концами с положительным знаком.

Дырочный полупроводник характеризуется обратным процессом. Диффузия идет от горячего конца к холодному, причем первый из них обладает отрицательным зарядом, а холодный – положительным. Получаем, что разности потенциалов имеют отрицательное значение, в отличие от электронного полупроводника.

Полупроводники p и n типа, p-n переход

Внесение в полупроводник примесей существенно влияет на поведение электронов и энергоуровни спектра кристалла. Валентные электроны примесных атомов создают энергетические уровни в запрещенной зоне спектра. К примеру, если в решетке германия один атом замещен пятивалентным атомом фтора, то энергия дополнительного электрона станет меньше, чем энергия, которая соответствует нижней границе зоны проводимости. Энергетические уровни подобных примесных электронов находятся ниже дна зоны проводимости. Эти уровни заполненные электронами называют донорными. Для перевода электронов с донорных уровней в зону проводимости необходима энергия меньше, чем у чистого полупроводника. После того как электроны переброшены в зону проводимости с донорных уровней, говорят, что в полупроводнике появилась проводимость n-типа. Полупроводники с донорной примесью называют электронными (донорными) или полупроводниками n-типа (negative — отрицательный). Электроны в полупроводниках n — типа служат как основные носители заряда, дырки — неосновными. Энергетическая диаграмма такого полупроводника изображена на рис.1.

Полупроводники p типа

В полупроводнике, который содержит акцепторную примесь, электроны довольно легко переходят из валентной зоны на акцепторные уровни. В такой ситуации в валентной зоне появляются свободные дырки. Число дырок в данном случае существенно больше, чем свободных электронов, которые образовались при переходе из валентной зоны в зону проводимости. В данной ситуации дырки — основные носители заряда, электроны — неосновные. Проводимость полупроводника, который включает акцепторную примесь, носит дырочный характер, сам проводник при этом называется дырочным (акцепторным) или полупроводником p-типа (positive — положительный). Энергетическая диаграмма полупроводника p-типа приведена на рис.2.

p-n переход

p-n переход создают в естественном полупроводнике легированием донорными и акцепторными примесями по разные стороны от границы раздела. При этом область, в которую вводились донорные примеси становится n-областью с электронной проводимостью, область в которую ввели акцепторные примеси — p-областью с преимущественной дырочной проводимостью.

Так как в n- области концентрация электронов больше (в сравнении с концентрацией дырок), а в p- области наоборот, то электроны диффундируют из n- области, в p- область, а дырки в обратном направлении. В результате в n- области возникает положительный заряд, а в p- области отрицательный Появляющаяся таким образом, разность потенциалов и электрическое поле пытаются замедлить диффузию положительных и отрицательных зарядов. При некотором напряжении возникает равновесие. Так как заряд электрона меньше нуля, то рост потенциала ведет к уменьшению потенциальной энергии электронов и росту потенциальной энергии дырок. Как следствие роста потенциала n- области потенциальная энергия электронов в этой области уменьшается, а в p- области увеличивается. С потенциальной энергией дырок дело обстоит наоборот. Характер изменения электрического потенциала совпадает с характером изменения потенциальной энергии дырок.

Итак, возникает потенциальный барьер, который противостоит потоку диффузии электронов и дырок со стороны перехода с их большей концентрацией, то есть напору электронов со стороны n- области и напору дырок из p- области. Этот потенциальный барьер растет до величины, при которой появляющееся на переходе электрическое поле порождает такие токи из носителей заряда, которые полностью компенсируют диффузионные потоки. Так достигается стационарное состояние.

Электроны и дырки в зоне проводимости полупроводников имеют конечное время жизни. Дырки, которые попали из p- области в n- область диффундируют в ней в течение некоторого времени, а затем аннигилируются с электронами. Так же ведут себя электроны, которые попали из n- области в p- область. Следовательно, концентрация избыточных дырок в n- области и концентрация электронов в p- области уменьшается (по экспоненте) при удалении от границы перехода.

[Примечание] Обычно энергия Ферми p и n- областей полупроводников отличается примерно на 1эВ. Значит, разность потенциалов, которая появляется на переходе и выравнивает энергии Ферми по разные стороны перехода, имеет величину порядка 1В.

Электрический ток, через p-n переход

Допустим, что напряжение приложено так, что у n- области потенциал имеет знак минус, со стороны p- области — плюс. Потенциальный барьер в таком случае, для основных носителей тока уменьшатся. Следовательно, сила тока основных носителей растет. Сила тока неосновных носителей почти не изменяется, так как диффузионный ток определен концентрацией носителей заряда и не зависит от приложенной разности потенциалов.

Если внешнее напряжение приложено так, что у n- области потенциал больше нуля, а со стороны p- области меньше нуля, то для основных носителей тока потенциальные барьеры увеличиваются. Тогда ток основных носителей почти равен 0. Ток неосновных носителей не изменяется. Если ток в направлении от n- области к p-области не течет, то такое направление называют запорным. Обратное направление называют проходным.

Переход металл — полупроводник имеет способность пропускать ток в одном направлении и не пропускать в другом. Причем, полупроводник может быть любого типа. Это явление связано с тем, что любой полупроводник по отношению к металлу очень беден свободными электронами. В случае перехода металл — проводник, проходным направлением будет направление от полупроводника к металлу.

p-n переход действует как диод, так как имеет одностороннюю проводимость. Наиболее часто применяемыми материалами для создания p-n переходов служат германий и кремний. У германия концентрация основных носителей больше, чем у кремния, больше их подвижность. Из-за этого проводимость p-n переходов в германии в проходном направлении существенно больше, чем у кремния, но соответственно больше обратный ток. Кремний же можно использовать в широком спектре температур.

Задание: Вольт — амперная характеристика для p-n перехода в кремний изображена на рис. 3. p-n перехода для германия на рис. 4. Сравните их, объясните различия.

Вольтамперная характеристика p-n перехода показывает, переход имеет одностороннюю проводимость, а именно проводит ток в направлении из области p в область n. (Положительные значения напряжение U соответствуют изменению потенциала на переходе от p области к n области).

Возможной причиной отличий вольтамперной характеристики кремния (рис.3) от вольт — амперной характеристики германия служит низкая концентрация неосновных носителей в кремнии. Получается при небольших приложенных напряжениях плотность тока (j) неосновных носителей очень мала и только при U=0,6B сила тока начинает расти по экспоненте (у германия это происходит при U=0 B).

Задание: Что такое туннельный эффект?

При большой концентрации атомов примеси в полупроводниках происходит расширение примесных уровней. Уровни перекрывают границу между зонами. Как результат — уровень Ферми попадает внутрь либо проводящей, либо валентной зоны. При отсутствии внешнего напряжения энергии Ферми по разные стороны перехода одинаковы. При сильном легировании переход становится узким, концентрация неосновных носителей мала.

Если приложить внешнее напряжение в проходном направлении, то появляется небольшой диодный ток. Но, так как по разные стороны перехода, который делится потенциальным барьером энергии носителей равны, возникает так называемый туннельный эффект Носители проходят через потенциальный барьер без изменения энергии. Из-за этого через потенциальный барьер течет значительный ток. При увеличении напряжения энергия электронов в n-области растет, в p —области уменьшатся, при этом область перекрытия примесных уровней становится меньше. Как следствие, уменьшается сила тока. (Максимум тока достигается, когда зоны перекрывают друг друга наибольшим образом). В тот момент, когда примесные зоны сдвигаются относительно друг друга настолько, что каждой из них на другой стороне перехода противостоит запрещенная зона, туннелированние прекращается. При этом сила тока через переход уменьшается. При высоких напряжениях зоны проводимости n и p областей оказываются на одном уровне, возникает обычный диодный ток. Сила тока снова растет. В интервале от первого максимума тока до следующего за ним минимума туннельный диод проявляет эффект отрицательного сопротивления, когда увеличение напряжения ведет к уменьшению силы тока. Рис.5 Вольт — амперная характеристика туннельного диода.

Примесная проводимость полупроводников.

Отличительной особенностью полупроводников является их способ­ность существенно увеличивать проводимость при добавлении примесей в кристалл. Проводимость эта, в отличие от собственной, так и называется — примесная проводимость. Именно благодаря этому свойству полупроводники нашли столь широкое практическое применение.

Примесная проводимость полупроводника, в зависимости от вида примеси, может быть электронной — ее создают донорные примеси — либо дырочной — ее создают акцепторные примеси. Полупроводники с электронной проводимостью называются полупроводниками n-типа (от слова negative — отрицательный). Полупроводники с дырочной примесной проводимостью называются полупроводниками pтипа (от слова positive — положительный).

Донорные примеси .

Донорными примесями являются такие, добавление которых приводит к существенному увеличению концентрации свободных электронов в кристалле. Для того, чтобы примесь была доно­ром электронов, необходимо, чтобы валентность элементов, ее составляющих, была больше вален­тности атомов решетки. Для кремния такой донорной примесью являются атомы пятивалентного мышьяка (As). Четыре электрона As участвуют в образовании парноэлектронной связи, а пятый электрон оказывается очень слабо связанным с атомом As и легко становится свободным.

Акцепторные примеси .

Акцепторные примеси приводят к увеличению концентрации дырок. В соответствии с вышес­казанным, валентность атомов акцепторной примеси ниже валентности атомов решетки кристал­ла. Для кремния такой примесью является трехвалентный индий (In). Теперь для образования нормальных парноэлектронных связей с соседями не хватает одного электрона. В результате об­разуется дырка. При наличии поля возникает дырочная проводимость.

В полупроводнике n-типа электроны являются основными носителями заряда, а дырки — неосновными. В полупроводнике p-типа дырки являются основными носителями заряда, а электро­ны — неосновными.

p — n Переход .

pnереход — это простейшая полупроводниковая структура, которая используется в большинстве полупроводниковых приборов. Для получе­ния p-n-перехода полупроводниковый образец легируют (вводят в него примеси) таким образом, чтобы в одной его части преобладали донорные примеси, а в другой — акцепторные, в результате получают контакт полу­проводника n-типа с полупроводником p-типа.

Примесная проводимость полупроводников

Основным свойс­твом p-n-перехода является его способность пропускать ток только в одном направлении, если напряжение приложено к образцу так, что про­водимость осуществляется основными носителями тока, как это показано на рисунке выше: «-» со стороны полупроводника n-типа, «+» — со стороны p-типа (электроны из n-области переходят в p-область, и наоборот).

Если теперь поменять полярность приложенного напряжения U, то ток через p-n-переход практически не идет, т. к. переход через контакт осуществляется неосновными носителями, которых мало. Вольт-амперная характеристика р-n-перехода изображена на рисунке ниже.

Примесная проводимость полупроводников

Здесь правая часть графика — это прямой переход (осуществляемый основными носителями), левая, пунк­тирная часть — обратный переход (осуществляемый неосновными носите­лями). Свойства p-n-перехода используются для выпрямления переменно­го тока в устройствах, которые называются полупроводниковыми диодами.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *