Как выбрать коэффициент одновременности
Перейти к содержимому

Как выбрать коэффициент одновременности

  • автор:

 

Как выбрать коэффициент одновременности

Сообщение elalex » 28 авг 2017, 00:59

Примерные значения коэффициента одновременности

Примерные значения коэффициента одновременности

Сообщение elalex » 28 авг 2017, 17:35

Примерные значения коэффициента одновременности

Примерные значения коэффициента одновременности

Сообщение ПАВ » 28 авг 2017, 18:51

Примерные значения коэффициента одновременности

Сообщение elalex » 28 авг 2017, 19:05

Примерные значения коэффициента одновременности

Примерные значения коэффициента одновременности

Сообщение elalex » 28 авг 2017, 19:39

Примерные значения коэффициента одновременности

Сообщение ПАВ » 28 авг 2017, 20:17

Примерные значения коэффициента одновременности

Сообщение A.Li » 28 авг 2017, 20:32

Примерные значения коэффициента одновременности

Сообщение elalex » 28 авг 2017, 23:47

Примерные значения коэффициента одновременности

Сообщение Восток » 29 авг 2017, 00:54

Не совсем верно вы трактуете. Не нужно и не дают как вы выразились.
Коэффициент одновременности применяется для расчета расчетной нагрузки на линии от которой питаются N ( енное ) количество электроприемников. Так как все электрприемноки ( в частности дома или квартиры) не потребляют одновременно электроэнергию, вот и введен коэффициент одновременности в зависимости от колличества электроприемников.
Но ограничиваться только коэффициентом одновременности ошибочно, так как есть еще и понятие коэффициента максимума.

Примерные значения коэффициента одновременности

Сообщение elalex » 29 авг 2017, 02:06

Примерные значения коэффициента одновременности

Сообщение Восток » 29 авг 2017, 02:32

1. Коэффициеты беруться с анализа произведенных кроглосуточных замеров в течении года с определенного количества домов.
На основе их показаний и определяются коэффициенты.
К примеру в РМ-2696-01 есть такой пункт
Настоящая Временная инструкция разработана на основании результатов измерений фактических электрических нагрузок на 143 жилых домах в периоды осенне-зимних максимумов с 1997 по 2001 годы.
Измерения проводились с помощью автоматизированной системы учета энергопотребления (АСУЭ ЭНЭЛЭКО) на вводах квартир и линиях питания квартир, предусматривающей дистанционный съём и передачу дискретной информации об электропотреблении.
Обработка и анализ результатов измерений электропотребления выполнены в соответствии с "Методикой определения электрических нагрузок городских потребителей", утверждённой Минжилкомхозом РСФСР и Минэнерго СССР в 1981г.

2. Жильцов никогда не устраивает мощность, если они безгранично напихивают квартиру электроприемниками.
3-4 Мощность на дом и на квартиру закладывается заказчиком до начала постройки когда выдается ТЗ на проектирование. Здесь могут быть квартиры с улутшенной планировкой, и если мощность превышает 11 кВт то в квартиру заводится 3 фазы.

8 Расчетные электрические нагрузки

8.1.1 При расчете нагрузок от электроприемников квартир и коттеджей следует учитывать предполагаемый уровень их электрификации, который может относиться к одной из двух степеней:

— I степень — строящиеся, как правило, по проектам типовых серий жилые квартиры общей площадью до 90 м 2 и коттеджи общей площадью до 250 м 2 , оснащенные электрическими, газоэлектричес­кими или газовыми плитами пищеприготовления и которые, кроме традиционного набора электроприемников, не имеют ни одного из следующих стационарных потребителей электроэнергии: электрической сауны, электроводонагревателя, электроотопительного прибора, электроподогрева полов, бытового кондиционера и т. п.;

— II степень — жилые квартиры, строящиеся по индивидуальным проектам, имеющие общую площадь, как правило, превышающую 90 м 2 , и коттеджи общей площадью св. 250 м 2 , оснащенные электрическими, газоэлектрическими, газовыми плитами пищеприготовления и, кроме традиционного набора электроприемников, предусматривающие использование электрической энергии в целях нагрева с применением в различных сочетаниях электроотопительных приборов, электроводонагревателей, бытовых кондиционеров, электрокаменки и т. п.

Решение о принятии при проектировании той либо иной степени электрификации квартир и коттеджей может приниматься заказчиком и указываться в задании на проектирование.

8.1.2 Расчетную нагрузку групповых сетей освещения общедомовых помещений жилых зданий (лестничных клеток, вестибюлей, технических этажей и подполий, подвалов, чердаков, колясочных), а также жилых поме­щений общежитий следует определять по светотехническому расчету с коэффициентом спроса, равным единице.

8.1.3 Расчетная нагрузка распределительных линий, вводов и на шинах РУ-0,4 кВ ТП от электроприемников квартир и коттеджей, отнесенных к I степени по уровню электрификации определяется по формуле

где Ркв.уд — удельная нагрузка электроприемников квартир и коттеджей, принимаемая по таблице 3 в зависимости от количества квартир (коттеджей), присоединенных к линии (ТП), типа кухон­ных плит, кВт/квартиру;

n — количество квартир (коттеджей), присоединенных к линии (ТП).

Таблица 3 Удельная расчетная электрическая нагрузка электроприемников квартир и коттеджей, отнесенных к I степени по уровню электрификации*

Коэффициент одновременности работы электрооборудования пуэ

Электрооборудование не работает постоянно на полную мощность. Этот очевидный факт можно понять на бытовом примере. Освещение в квартире не включено круглосуточно. Утюгом мы пользуемся только тогда, когда надо погладить одежду. Чайник работает только тогда, когда нужно вскипятить воду. Аналогичным образом дело обстоит при потреблении электроэнергии в общественных и промышленных зданиях. Таким образом, понятие установленной и потребляемой (расчетной) мощности всем знакомо с детства.

При проектирование электроснабжения объектов неодновременность работы оборудования учитывается при помощи понижающих коэффициентов. Существует три понижающих коэффициента с разными названиями, но смысл их одинаков — это коэффициент спроса, коэффициент неодновременности, коэффициент использования.
Умножив установленную мощность оборудования на один из этих коэффициентов получают расчетную мощность и расчетный ток. По расчетному току выбирают защитно-коммутационную аппаратуру (автоматы, рубильники, УЗО и пр.) и кабели или шинопроводы.

Pрасч=K×Pуст, где
Pуст — установленная мощность оборудования,
Pрасч — расчетная мощность оборудования,
К — коэффициент спроса/одновременности/использования.

При использовании этой, казалось бы, простой формулы на практике сталкиваются с огромным количеством нюансов. Одним из таких нюансов является определение коэффициента спроса в щитах, питающих разные типы нагрузок (освещение, розетки, технологическое, вентиляционное и сантехническое оборудование).

Дело в том, что коэффициент спроса зависит нескольких параметров:

  • Мощности;
  • Типа нагрузки;
  • Типа здания;
  • Единичной мощности электроприёмника.

Соответственно, при проектировании групповой и распределительной сети, а также схем электрических щитов это нужно учитывать. Групповые сети (кабели, питающие конечных потребителей) следует выбирать без учёта коэффициента спроса (коэффициент спроса должен быть равен единице). Распределительные сети (кабели между щитами) следует выбирать с учётом коэффициента спроса. Таким образом, расчет коэффициента спроса для щитов со смешанной нагрузкой несёт дополнительные трудности и повышает трудоёмкость расчетов.

Рассмотрим как реализован расчет электрических нагрузок в DDECAD на примере щита со смешанной нагрузкой.

1. Исходные данные для расчета

В качестве исходных данных примем, что нужно выполнить расчет нагрузок для щита офиса:

  • В офисе 6 помещений;
  • Освещение при помощи светильников с люминесцентными лампами;
  • Розеточная сеть для компьютеров и «бытовых» потребителей выполнена раздельно;
  • В офисе установлены кондиционеры;
  • В офисе есть помещение приёма пищи с чайником, микроволновкой, холодильником и телевизором.

Распределяем потребителей по группам и заполняем расчетную таблицу.

2. Расчет коэффициента спроса на щит

Расчет коэффициента спроса на щит будем выполняют в два этапа:

  1. Определение коэффициентов спросов для разных типов потребителей;
  2. Определение коэффициента спроса на щит.

Однако, технически для этого в расчетной таблице DDECAD потребуется выполнить три шага:

  1. Определение коэффициентов спросов для разных типов потребителей;
  2. Определение коэффициента спроса на щит;
  3. Указание коэффициентов спроса на щит и на группы.

2.1. Расчет коэффициента спроса сети освещения

Расчет коэффициента спроса для расчета питающей, распределительной сети и вводов в здания для рабочего освещения выполняются в соответствии с требованиям п.6.13 СП 31‑110‑2003 по Таблице 6.5.

Коэффициент спроса для расчета групповой сети рабочего освещения, распределительных и групповых сетей аварийного освещения принимают равным единице в соответствии с п.6.14 СП 31-110-2003.

Установленная мощность светильников рабочего освещения Pуст осв. = 7,4 кВт. Принимаем, что рассматриваемый офис относится к зданиями типа 3 по Таблице 6.5 СП 31-110-2003. В таблице данная мощность отсутствует, поэтому, в соответствии с примечанием к таблице, определяем коэффициент спроса при помощи интерполяции. Пользователи DDECAD могут легко и быстро определить коэффициент спроса при помощи встроенного в программу расчета. Получаем Kс осв. = 0,976.

2.2. Расчет коэффициента спроса розеточной сети

Расчет коэффициента спроса розеточной сети выполняют в соответствии с п.6.16 СП 31-110-2003 и Таблице 6.6. Получаем Кс роз. = 0,2.

2.3. Расчет коэффициента спроса сети питания компьютеров

Коэффициент спроса для сети питания компьютеров выполняют в соответствии с п.6.19 СП 31-110-2003 и Таблице 6.7. По п.9 Таблицы 6.7 для числа компьютеров более 5 получаем Кс ком. = 0,4.

2.4. Расчет коэффициента спроса сети питания множительной техники

Коэффициент спроса для сети питания множительной техники выполняют в соответствии с п.6.19 СП 31-110-2003 и Таблице 6.7. По п.12 Таблицы 6.7 для числа копиров менее 3 получаем Кс множ. = 0,4.

2.5. Расчет коэффициента спроса технологического оборудования

Коэффициент спроса для сети питания кухонного оборудования выполняют в соответствии с п.6.19 СП 31-110-2003 и Таблице 6.7. Примем, в общем случае, что кухонное оборудование является технологическим оборудование пищеблока общественного здания. По п.1 Таблицы 6.7 коэффициент спроса следует принять по Таблице 6.8 и п.6.21 СП 31-110-2003. Получаем Кс кух. = 0,8.

Если технологическое оборудование пищеприготовления не является оборудование пищеблока общественного здания, а находится в помещении приёма пищи небольшого офиса, то коэффициент спроса следует принимать как для розеточной сети в соответствии.

2.6. Расчет коэффициента спроса оборудования кондиционирования

Коэффициент спроса для сети питания оборудования кондиционирования выполняют в соответствии с п.6.19 СП 31-110-2003 и Таблице 6.7. По п.5 Таблицы 6.7 коэффициент спроса следует принять по поз.1 Таблицы 6.9 СП 31-110-2003. Получаем Кс конд. = 0,78.

2.7. Вычисление коэффициента спроса щита

Вычисление коэффициента спроса щита будет происходить в два этапа.

2.7.1. Определение коэффициента спроса на щит

Вносим выбранные коэффициенты спроса для каждого типа нагрузки в столбик «Коэфф. спроса», столбик «D» в Excel. Получается, что мы устанавливаем коэффициенты спроса для групповой сети. Это неверно , но это промежуточный этап, в следующем шаге мы это откорректируем.

2.7.1. Указание коэффициента спроса на щит и на группы

После внесения коэффициентов на предыдущем шаге в нижней строке мы получаем рассчитанный итоговый коэффициент спроса на щит в столбике «Коэфф. спроса», столбик «D» в Excel.

Следующим шагом мы вносим это значение в ячейку столбика «Kс на щит», столбик «N» в Excel. После этого возвращаем групповые коэффициенты спроса в исходное значение, равное единице.

3. Результат

В результате получаем корректно рассчитанный коэффициент спроса на щит и корректные расчетные мощности и токи в групповой сети.

Далее, пользователи DDECAD продолжают заполнять расчетную таблицу, которая автоматически выполняет расчеты токов короткого замыкания, падения напряжения, токов утечки УЗО. После нажатия одной кнопки автоматически получают однолинейную схему щита в AutoCAD.

Задачей расчета электрических сетей является правильная оценка величин электрических нагрузок и выбор соответственно им таких наименьших из числа возможных сечений проводов, кабелей и шин, при которых были бы соблюдены нормированные условия в отношении:

1. нагрева проводников,

2. экономической плотности тока,

3. электрической защиты отдельных участков сети,

4. потерь напряжения в сети,

5. механической прочности сети.

Расчетными нагрузками для выбора сечений проводников являются:

1. получасовой максимум I30 — для выбора сечений по нагреву,

2. среднесменная нагрузка Iсм — для выбора сечений по экономической плотности тока,

3. пиковый ток — для выбора плавких вставок и уставок тока максимальных расцепителей автоматов и для расчета по потере напряжения. Этот расчет обычно сводится к определению потерь напряжения в силовой сети при пуске отдельных мощных короткозамкнутых электродвигателей и в троллейных линиях.

При выборе сечений распределительной сети, независимо от фактического коэффициента загрузки электроприемника, следует всегда иметь в виду возможность использования его на полную мощность и, следовательно, за расчетный ток принимать номинальный ток электроприемника. Исключение допускается лишь для проводников к электродвигателям, выбранным не по нагреву, а по перегрузочному моменту.

Таким образом, для распределительной сети расчета, как такового, не производят.

Для определения расчетного тока в питающей сети необходимо нахождение совмещенного максимума или средней нагрузки целого ряда электроприемников и при том, как правило, различных режимов работы. Вследствие этого процесс расчета питающей сети является сравнительно сложным и разделяется на три основные последовательные операции:

1. составление расчетной схемы,

2. определение совмещенных максимумов нагрузки или средних значений ее на отдельных участках сети,

3. выбор сечений.

Расчетная схема, являющаяся развитием принципиальной схемы питания, намеченной при рассмотрении вопроса о распределении электрической энергии, должна содержать все необходимые данные в отношении подключенных нагрузок, длин отдельных участков сети и выбранного рода и способа прокладки ее.

Наиболее ответственная операция — определение электрических нагрузок на отдельных участках сети — в большинстве случаев основывается на применении эмпирических формул. Коэффициенты, входящие в эти формулы, зависят в наибольшей степени от режима работы электроприемников, и правильная оценка последнего имеет большое значение, хотя и не всегда является точной.

Вместе с тем неправильность в определении коэффициентов, а, следовательно, и нагрузок, может привести либо к недостаточной пропускной способности сети, либо к необоснованному удорожанию всей установки.

Прежде чем перейти к методологии определения электрических нагрузок для питающих сетей, необходимо отметить, что входящие в расчетные формулы коэффициенты не являются стабильными. В связи с непрерывным техническим прогрессом и развитием автоматизации эти коэффициенты должны подлежать периодическому пересмотру.

Поскольку как сами формулы, так и входящие в них коэффициенты являются до известной степени приближенными, нужно иметь в виду, что результатом расчетов может быть определение только порядка интересующих величин. По этой причине следует избегать излишней скрупулезности в арифметических операциях.

Величины и коэффициенты, входящие в расчетные формулы определения электрических нагрузок

Под установленной мощностью Ру понимается:

1. для электродвигателей длительного режима работы — каталожная (паспортная) номинальная мощность в киловаттах, развиваемая двигателем на валу:

2. для электродвигателей повторно-кратковременного режима работы — паспортная мощность, приведенная к длительному режиму, т. е. к ПВ = 100%:

где ПВН0М — номинальная продолжительность включения в процентах по каталожным данным, Рном —номинальная мощность при ПВН0М,

3. для трансформаторов электропечей:

где SН0М — номинальная мощность трансформатора по каталожным данным, ква, cosφном—коэффициент мощности, характерный для работы электропечи при номинальной мощности,

4. для трансформаторов сварочных машин и аппаратов — условная мощность, приведенная к длительному режиму, т. е. к ПВ = 100%:

где Sном — номинальная мощность трансформатора в киловольт-амперах при ПВном,

Под присоединенной мощностью Рпр электродвигателей понимается мощность, потребляемая двигателем из сети при номинальной нагрузке и напряжении:

где ηном — номинальный к п. д. двигателя в относительных единицах.

Средняя активная нагрузка за максимально загруженную смену Рср.см и такая же средняя реактивная нагрузка Qcp,см представляют собой частные от деления количества электроэнергии, потребляемой за максимально нагруженную смену (соответственно WCM и VCM), на продолжительность смены в часах Тсм,

Среднегодовая нагрузка активная Рср.г и такая же нагрузка реактивная Qcp.г представляют собой частные от деления годового потребления электроэнергии (соответственно Wг и Vг) на годовую продолжительность рабочего времени в часах (Тг):

Под максимальной нагрузкой Рмакс понимают наибольшую из средних нагрузок за тот или иной интервал времени.

В соответствии с ПУЭ, для расчета сетей и трансформаторов по нагреву этот интервал времени установлен равным 0,5 ч, т. е. принимается получасовой максимум нагрузки.

Различают получасовые максимумы нагрузок : активной Р30, квт, реактивной Q30, квар, полной S30, ква, и по току I30, а.

Пиковым током Iпик называют мгновенный максимально возможный ток для данного электроприемника или для группы электроприемников.

Под коэффициентом использования за смену КИ понимают отношение средней активной нагрузки за максимально нагруженную смену к установленной мощности:

Соответственно этому годовой коэффициент использования представляет собой отношение средней годовой активной нагрузки к установленной мощности:

Под коэффициентом максимума Км понимается отношение активной получасовой максимальной нагрузки к средней нагрузке за максимально загруженную смену,

 

Величина, обратная коэффициенту максимума, представляет собой коэффициент заполнения графика Кзап

Коэффициент спроса Кс — отношение активной получасовой максимальной нагрузки к установленной мощности:

Под коэффициентом включения Кв понимается отношение рабочего времени приемника повторно-кратковременного и длительного режима работы за смену к продолжительности смены:

У электроприемников, предназначенных для непрерывной работы в течение смены, коэффициент включения практически равен единице.

Коэффициентом загрузки по активной мощности К3 представляет собой отношение нагрузки электроприемника в данный момент времени Pt к установленной мощности:

Для электродвигателей, у которых под установленной мощностью понимается мощность на валу, правильнее было бы относить Ки, Кв, К3 не к установленной, а к присоединенной к сети мощности.

Однако в целях упрощения расчетов, а также ввиду трудности учета к. п. д. участвующих в нагрузке электродвигателей, целесообразно относить эти коэффициенты также к установленной мощности. Таким образом, коэффициенту спроса, равному единице (Кс = 1), соответствует фактическая загрузка электродвигателя в размере η% от полной.

Коэффициентом совмещения максимумов нагрузки KΣ — отношение совмещенного получасового максимума нагрузки нескольких групп электроприемников к сумме максимальных получасовых нагрузок отдельных групп:

С допустимым для практических целей приближением можно принять, что

На практике, отдельные нагрузки не обязательно работают на полной мощности или одновременно. Коэффициенты ku и ks позволяют определить потребности в максимальной и полной мощности, которые реально требуются для определения параметров электроустановки.

Коэффициент максимального использования (ku)
При нормальных рабочих условиях, потребление мощности отдельным потребителем нагрузки иногда меньше, чем номинальная мощность, указанная для данного прибора, и это часто встречаемое явление оправдывает применение коэффициента использования (ku) при оценке реальной потребляемой мощности.
Этот коэффициент должен применяться для каждого отдельного потребителя нагрузки, в особенности для электродвигателей, которые редко работают на полной нагрузке.
В промышленных электроустановках этот фактор можно в среднем принять равным 0,75 для электродвигателей.
Для нагрузки, состоящей из ламп накаливания, этот коэффициент всегда равен 1.
Для цепей с розетками для подключения приборов, значение этих коэффициентов полностью зависит от типов приборов, которые питаются от данной сети.
Коэффициент одновременности (ks)
В реальной практике, потребители нагрузки, установленные в цепи одной электроустановки, никогда не работают одновременно, то есть, всегда присутствует некоторая степень неодновременности, и этот факт учитывается при оценке требуемой мощности, путем использования коэффициента одновременности (ks).
Коэффициент ks применяется к каждой группе нагрузок (например, к группе, питаемой от распределительного щита и нижележащих щитков). Расчет этих коэффициентов является обязанностью проектировщика, так как это требует подробного знания установки и условий эксплуатации отдельных цепей. По этим причинам, невозможно привести точные значения, рекомендуемые для общего применения.

Коэффициент одновременности жилого здания
Некоторые типовые значения для этого случая даны в Таб .1, и применимы для бытовых потребителей, питаемых от сети 230/400В (3 фазы, 4
провода). Для потребителей, использующих обогревательные приборы для обогрева помещений, рекомендуется коэффициент 0,8, независимо от числа пользователей.

Коэффициент одновременности для распределительных щитов
В Таб. 1 показаны гипотетические значения ks для распределительных щитов, питающих ряд цепей, где отсутствует индикация того, как между ними распределяется общая нагрузка.
Если цепи в основном используются для целей освещения, разумно принять значение коэффициента ks близким к единице.

Расчет электрических нагрузок жилых и общественных зданий

Сегодня речь пойдет о том, как правильно выполнить расчет потребляемой мощности электроэнергии для частного дома, что такое установленная и расчетная мощность нагрузки и для чего вообще нужны все эти расчеты.

Расчет электрических нагрузок производится по двум основным причинам.

Во первых имея представление, какая выделенная мощность нужна для вашего дома, вы можете обратиться в свою энергосбытовую компанию с целью получения именно той мощности, которая вам необходима. Правда надо учитывать наши реалии, далеко не всегда вам пойдут на встречу. В сельской местности зачастую электросети находятся в весьма плачевном состоянии и действует жесткий лимит на выделяемую электроэнергию, поэтому в лучшем случае вам выделят не более 15 кВт, а порой даже этого не добиться.

Во вторых расчетная мощность всех потребителей является основным показателем при выборе номинальных токов защитных и коммутационных аппаратов, а также при выборе необходимого сечения проводников.

Итак, выполнив расчет электрических нагрузок всех наших потребителей, мы узнаем суммарную расчетную мощность (расчетный ток). Под этим понятием подразумевается мощность, равная ожидаемой максимальной нагрузке сети за 30 минут.

Для того, чтобы правильно выполнить расчет нам необходимо знать установленную мощность всех электроприемников и расчетные коэффициенты.

Установленная мощность — это сумма номинальных мощностей всех устройств-потребителей электроэнергии в доме. Значение номинальной мощности берется из паспортных данных на электрооборудование и не является фактической мощностью потребления.

Расчетные коэффициенты, которые необходимо учитывать при расчетах — коэффициент спроса Кс, коэффициент использования Ки и коэффициент мощности cos φ.

Коэффициент спроса — это отношение совмещенного получасового максимума нагрузки электроприемников к их суммарной установленной мощности. То есть он вводится с учетом того, что в любой момент времени не все электроприборы будут потреблять свою полную мощность.

Кс = Рр/Ру ,

где Рр – расчетная электрическая нагрузка, кВт; Ру – установленная мощность электроприемников, кВт.

Коэффициент использования — это отношение фактически потребляемой мощности к установленный мощности за определенный период времени.

Ки = Р/Ру

Коэффициент мощности cosφ — это отношение активной мощности, потребляемой нагрузкой к ее полной мощности.

cosφ = Р/S

где P – активная мощность, кВт; Ру – полная мощность, кВА.

Все коэффициенты принимаются из таблиц соответствующих нормативных документов. Также ниже в таблице указана паспортная (номинальная) мощность отдельных электропотребителей.

Наименование Номинальная мощность кВт Расчетные коэффициенты
спроса Кс использования Ки
Стиральная машина 2 1,0 0,6
Посудомоечная машина 2 0,8 0,8
Проточный водонагреватель 3,5 0,4 1,0
Кондиционер 2,5 0,7 0,8
Электрокамин 2 0,4 1,0
Бойлер 6 0.6 0,9
Электрообогреватель 2 0,8 1,0
Тепловентилятор 1,5 0,9 0,9
Теплый пол 60 Вт/м2 0,5 1,0
Кухонные комбайны, кофеварки, электрочайники(суммарно) 4-5 кВт 0,3 1,0
Сауна 4-12 кВт 0,8 0,8
Душевая кабина 3,0 0,6 0,8
Газонокосилка 1,5 0,4 0,8
Погружной насос 0,75 – 1,5 кВт 0,8 0,9
Компьютеры 0,5 0,6 1,0
Бытовая розеточная сеть (телевизор, холодильник, утюг, пылесос и т.д) 100 Вт/розетку 0,7 — 1,0
Освещение кухни 25-30 Вт/м2 1,0 0,8
Освещение коридора 20-25 Вт/м2 0,8 0,8
Освещение гостиной 35-40 Вт/м2 0,8 0,8
Освещение спальни 25-30 Вт/м2 1,0 0,8

Для примера предположим, что у нас есть дачный домик с двумя комнатами, кухней и прихожей. Питание дома однофазное. Для дальнейших расчетов составим таблицу со всеми имеющимися в доме электропотребителями.

Помещение Потребители Номинальная мощность кВт
Кухня Освещение 2 Розетки Стиральная машина Холодильник 0,1 0,2 2,2 0,7
Комната Освещение 3 Розетки Электрообогреватель Компьютер 0,2 0,3 2 0,5
Комната Освещение 2 Розетки Вентилятор 0,1 0,2 0,3
Прихожая Освещение 2 Розетки 0,1 0,3

Далее переходим уже непосредственно к расчету мощности с учетом всех коэффициентов. Все однотипные электроприемники, такие как розеточная сеть, освещение, объединим в группы и сложим их номинальную мощность. Остальные приемники посчитаем отдельно.

Потребители Номинальная мощность кВт Расчетные коэффициенты Расчетная мощность Расчетный ток
Спроса Использования Мощности Активная кВт Полная кВА
Освещение 0,5 0,7 0,8 1 0,28 0,28 1,3
Розетки 1 0,3 0,8 0,8 0,24 0,3 1,4
Стиральная машина 2,2 1 0,6 0,75 1,32 1,76 8
Холодильник 0,7 0,8 0,65 0,56 0,9 4
Электрообогреватель 2 0,8 1 1 1,6 1,6 7,3
Компьютер 0,5 0,6 1 0,65 0,3 0,5 2,3
Вентилятор 0,3 1 0,75 0,3 0,4 1,9
7,2 4,6 5,74 26,2

Для определения расчетной активной мощности необходимо номинальную (установленную) мощность умножить на коэффициенты спроса и использования — Pр = Pу * Кс * Ки.

Полную мощность находим, разделив расчетную активную мощность на коэффициент мощности — S = Pp/cos φ.

Расчетный ток для однофазной сети определяется по формуле Ip = Pp/U*cos φ или Ip = S/U. Для трехфазной сети формула будет иметь такой вид Ip = Pp/1,73*U*cos φ или Ip = S/1,73*U.

Для того, чтобы примерно прикинуть какая мощность нужна для дома, можно и не делать таких подробных расчетов. Достаточно сложить установленную мощность потребителей, которые будут использоваться и умножить это значение на коэффициент спроса.

Номинальная мощность кВт до 14 20 30 40 50 60 70 и более
Коэффициент спроса 0,8 0,65 0,6 0,55 0,5 0,48 0,45

Правда надо учитывать, что это значение будет очень приблизительное и в дальнейшем его придется корректировать.

Поделиться в соц. сетях

расчет автомата с применением онлайн-калькулятора расчет сечения кабеля с применением онлайн-калькулятора

Пример расчета нагрузок жилого дома со встроенными помещениями различного типа по СП 31-110-2003

В свое время я искал примеры расчета нагрузок жилого дома с различными встроенными помещениями, но те добрые люди, которые не очень разбирались в расчетах с удовольствием делились соображениями, что, к сожалению, не помогало разобраться в проблеме, а те, кто разбирался – скромно помалкивали, т.к. кодекс проектировщиков гласит: «Кругом одни конкуренты».

В общем, примеров расчетов в Интернете нет. Пришлось разбираться самому. Итак, сегодня рассмотрим как составить сводную таблицу расчета нагрузок для жилого дома (с типовыми квартирами и с пятью типами квартир повышенной комфортности) со встроенными помещениями двух детских садов, кафе, общежития, офисов и автостоянки. Зачем столько «наворотов».

Я специально выбрал столько типов встроенных помещений, чтобы максимально охватить все частные случаи расчета нагрузок методики, изложенной в разделе 6 СП-31-110-2003. Итак, приступим. В качестве исходных данных служат сведения, собранные на этапе проектирования стадии «П» в таблице (Задание 1):

Таблица — Задание 1

Электроприемники жилого дома
1 Квартиры с электрическими плитами до 8,5 кВт (типовая) 121 квартира
2 Однокомнатные квартиры повышенной комфорности (Business) (2-х и 3-х комн. кв. массового жилья), заявленной мощностью 12 кВт 61 квартира
3 Двухкомнатные квартиры повышенной комфорности (Business), заявленной мощностью 14 кВт 73 квартиры
4 3-х, 4-х и 5-и комнатные квартиры повышенной комфорности (Business), заявленной мощностью 16 кВт 77 квартир
5 Двухкомнатные квартиры повышенной комфорности (Business) с сауной, заявленной мощностью 17 кВт 6 квартир
6 3-х и 4-х комнатные квартиры повышенной комфорности (Business) с сауной, заявленной мощностью 18,8 кВт 50 квартир
7 Освещение общедомовых помещений (лестничных клеток, подполий, технических этажей, чердаков 8.75кВт
8 Слаботочные устройства (щитки противопожарных устройств, автоматики, учета тепла) 11.35 кВт
9 Силовые электроприемники: Системы обеспечения водопотребления и канализации (25 электроприемников) 25 кВт
10 Силовые электроприемники: Вентиляция 185,8 кВт
11 Освещение входов в здания, мусоросборные камеры, а также номерные знаки и указатели пожарных гидрантов 4,5 кВт
12 Лифты (10 шт. по 7,5 кВт)
13 Силовые электроприемники (ИТП и ВУ) 26 кВт
14 Устройства ТВ, связи, оповещения и контроля доступа (1-я категория)
15 Аварийное освещение, в т.ч. путей эвакуации 3 кВт
16 Автоматическая установка пожаротушения (АУПТ) 4 кВт
17 Электроприемники дымоудаления, подпора воздуха-вентиляторы (первый противопожарный отсек) 30 кВт
18 Электроприемники дымоудаления, подпора воздуха-вентиляторы (второй противопожарный отсек) 22,6 кВт
19 Электроприемники дымоудаления, подпора воздуха-вентиляторы (третий противопожарный отсек) 47,25 кВт
Помещения, встроенные в жилой дом
20 Офисы с кондиционированием воздуха 2271,78 кв. м
21 Дошкольное образовательное учреждение 1 (известна технология):ОсвещениеТехнологическое (силовое) оборудованиеХолодильное оборудование (10 потребителей) 12 кВт

На стадии «П» иногда бывают уже известны арендаторы некоторых помещений, которые заблаговременно выполняют раздел технологии (ТХ) и детально представляют все сведения по нагрузкам. В нашем случае это:

  • общежитие;
  • дошкольное образовательное учреждение 1 (ДОУ) – он же дет. сад;
  • кафе.

По офисам и автостоянке известны только площади. По ДОУ2 известно, что сад на 50 мест.

Принципиально важно, при расчете нагрузок жилого дома всегда делить нагрузки на три категории:

  • жилая часть дома (квартиры);
  • силовые электроприемники дома;
  • нежилые помещения (в т.ч. общежития), встроенные в дом, либо запитаные от ГРЩ дома.

Примечание: Все ссылки на пункты, таблицы и формулы – это пункты, таблицы и формулы раздела 6 СП-31-110-2003.

1 этап. Расчет потребителей жилой части дома.

К статье прикладываю файл «Расчет нагрузки жилого дома (аварийный режим).xls» и далее по тексту я буду называть его «ТРН».

1.1 Нам даны типовые квартиры с электроплитами. Данный тип квартир указан в п.1 табл. 6.10. Т.е. нагрузку для этого типа квартир считаем по удельным мощностям. Зная количество и тип квартиры, находим удельную мощность Руд=1,47. (строка 10 «ТРН»).

Довольно часто в расчетах вы будете получать значения интерполяцией известных величин. На просторах Интернета нашел файл «СП31-110-2003 (Интерполяция).xlsx», в котором представлены таблицы раздела 6 СП-31-110-2003 с возможностью интерполяции (низкий поклон человеку, разработавшему этот документ).

1.2 Нам даны пять квартир повышенной комфортности с разными заявленными мощностями (12, 14, 16, 17 и 18,8 кВт). Для каждого типа квартир по табл. 6.2 находим свой Кс (D16-D20 «ТРН»). Далее находим рассчетную мощность каждой квартиры Ркв=Р(уст)*Кс. Затем находим расчетную суммарную мощность для каждого из пяти типа квартир Рр.кв=Ркв*n. Затем есть одна тонкость. Рассмотрим два варианта дальнейших расчетов:

1.2.1 В первом варианте мы находим по таблице 6.3 коэффициент одновременности Ко (столбец Н рисунка 1) для каждого типа квартир (0,18 для 61 кв, 0,17 для 73 и т.д.):

Затем по формуле (2) находим расчетную мощность для N квартир (отдельно для каждого типа) – столбец К рис.1. И в итоге получаем суммарную расчетную активную мощность для всех (всех пяти типов) квартир повышенной комфортности (ячейка К23 рис. 1) равная 565,76 кВт.

1.2.2 Во втором варианте коэффициент Ко мы находим для суммы всех квартир (61+73+77+6+50=267)


Рисунок 2

В этом варианте Ко=0,137. Перемножаем с общей расчетной мощностью всех типов квартир (ячейка G23 рис. 2) и получаем суммарную расчетную активную мощность для всех (всех пяти типов) квартир повышенной комфортности (ячейка К23 рис. 1) равная 415,46 кВт.

Разница в расчетах по варианту 1 и 2 равна 26%. Простая логика подсказывает, что вариант 2 правильный (готов обсудить с несогласными).

Теперь суммируя расчетную активную мощность типовых квартир (Ркв.т) и квартир повышенной комфортности (Ркв.п.к.), получаем расчетную мощность жилой части дома (Рж.ч.) – ячейка К35 «ТРН».

2 этап. Расчет силовых электроприемников дома.

Предварительно изучим требование примечаний 2, 6 и 10 к табл. 6.1, чтобы уяснить, что учитывается в удельных нагрузках квартир. В соответствии с примечанием 2 к табл. 6.1 нагрузки пунктов 7 и 8 задания 1 можно проигнорировать. Затем учитываем силовое оборудование п. 9 и 10 второй категории надежности (с первой категорией разберемся позже) и применим формулу (6) к расчету (строки 39-43 «ТРН»).

3 этап. Расчет встроенных в дом помещений.

3.1 Офисы.

В данном случае все очень просто, т.к. нам известна только площадь помещений, то расчетную нагрузку будем определять по укрупненным удельным электрическим нагрузкам (п.6.32 и табл. 6.14). В таблице 6.14 выбираем значение 0,054 кВт/м кв. и умножаем на площадь офисов (строка 48 «ТРН»). Затем применим к расчетным величинам коэффициент несовпадения максимумов из таблицы 6.13 (пересечение первой строки с седьмым столбцом). Результат смотрим в строке 49 «ТРН».

3.2 Кафе

Расчёт нагрузок кафе я свел в отдельную таблицу файла «ТРН кафе,общежитие и дет.сада.xls» (в дальнейшем файл будем называть «ТРН2»), а результаты вычислений занес в строку 51 «ТРН».

Расчет кафе произведем по методике, изложенной в п.6.20, 6.21 (для силового оборудования) и в п.6.28 для питающей линии кафе. Внимательно изучаем примечание 1 к таблице 6.8 и разбираемся, что относится к технологическому оборудованию. Затем разбиваем нагрузку на пять типов:

  • освещение (Кс по п.2 табл. 6.5);
  • технологическое оборудование (Кс по табл. 6.8);
  • холодильное оборудование (Кс по табл. 6.9);
  • посудомоечные машины (Кс по табл. 6.10);
  • рукосушители (Кс по п. 17 табл. 6.7).

Затем находим расчетное значение активной мощности силового оборудования кафе по формуле (10) (строка 6 «ТРН2»).

Забыл пояснить, откуда я взял установленную мощность освещения. Зная площадь помещения, высоту потолков и какие светильники будут применены (люминесцентные, светодиодные и т.д.) разбиваю помещения на несколько типов по нормам освещения (в соответствии с СанПиН 2.2.1_2.1.1.1278-03). Примерно так:

  • групповые, игровые, столовые, комнаты музыкальных и гимнастических занятий, раздевальные (норма 200 Лк);
  • спальни (норма 75 Лк);
  • коридоры, санузлы (норма 50 Лк).

В DIALux Light беру помещение (к примеру 5×3 м) и нахожу удельную установленную мощность на 1 кв. м для каждой нормы освещения (на расчеты уходит 5-10 мин.). Умножаем удельную установленную мощность на площадь каждого типа помещения и складываем полученные установленные мощности светильников. Это мой личный способ, но существуют и другие, авторитетные способы.

Для определения расчетной мощности всего кафе используем формулу (12) из п.6.28. Из опыта знаю, что проектировщики не «заморачиваются» с коэффициентами К и К1. На самом деле сложного в расчетах по п.6.28 ничего нет. Просто находим процентное отношение освещения к силовой нагрузки (коэффициент К) и процентное отношение расчетной нагрузки освещения к расчетной нагрузке холодильного оборудования (коэффициент К1). Результат вычислений — строка 10 «ТРН2».

Следующим этапом, переносим расчетные величины из «ТРН2» в «ТРН» (строка 51 «ТРН»).

Затем применим к расчетным величинам коэффициент несовпадения максимумов из таблицы 6.13 (пересечение первой строки с четвертым столбцом). Результат смотрим в строке 52 «ТРН».

3.3 Дошкольные образовательные учреждения (ДОУ).

Для ДОУ1 применяем методику расчета, по образцу расчетов кафе, но без использования формулы (10), т.к. по данная формула справедлива для предприятий общественного питания и пищеблоков.

Т.к. для ДОУ2 перечень оборудования неизвестен, то расчетную нагрузку будем определять по укрупненным удельным электрическим нагрузкам (п.6.32 и табл. 6.14). В таблице 6.14 (п.16) выбираем значение 0,46 кВт/место и умножаем на количество мест в ДОУ2 (строка 55 «ТРН»). Затем применим к расчетным величинам коэффициент несовпадения максимумов из таблицы 6.13 (пересечение первой строки с двенадцатым столбцом). Результат смотрим в строке 56 «ТРН».

3.4 Автостоянка.

Здесь по нагрузкам ничего неизвестно, поэтому я прикинул освещение (исходя из площади и нормы освещения), поговорил с проектировщиками смежных разделов и выяснил, что кроме освещения на автостоянке будет располагаться приточно-вытяжная установка (не общедомовая). В общем примерная суммарная нагрузка автостоянки Ру=12,096 кВт (здесь типовой расчет, без всяких методик).

Затем применим к расчетным величинам коэффициент несовпадения максимумов из примечания 2 таблицы 6.13. Результат смотрим в строке 59 «ТРН».

3.5 Общежитие.

Кс освещения общежития определяем по п.6.3.

Кс розеток общежития определяем по п.6.4.

Кс плит определяем по п.6.5 (не забываем применять дополнительный коэффициент 0,5 для двухкомфорочных плит).

Суммарную расчетную активную мощность определяем по п.6.6, с учетом дополнительного понижающего коэффициента 0,75. Расчет нагрузок общежития приведен в строках 29-33 «ТРН2». Переносим расчетные величины в строку 61 «ТРН» и применим к расчетным величинам коэффициент несовпадения максимумов из таблицы 6.13 (пересечение первой строки с десятым столбцом). Результат смотрим в строке 62 «ТРН».

4 этап. Расчет потребителей за все здание

Применим формулу (13) для определения расчетного значения активной мощности по второй категории надежности (строка 63 «ТРН»).

Выделим отдельно потребители первой категории надежности (п. 11-14 задания 1) – строки 69-72 «ТРН». В соответствии с примечанием 2 табл. 6.1 устройства ТВ, связи, оповещения и контроля доступа уже учтены в удельной мощности квартир. Но на это оборудование было отдельное задание на проектирование от «слаботочников» и этот вопрос контролировал эксперт из государственной экспертизы, поэтому пришлось вписать отдельной строкой.

С аварийным освещение есть нюанс. В соответствии с п. 7.104 СП52.13330.2011 аварийное освещение подразделяется на эвакуационное и резервное. И далее, в п. 7.105 — 7.108 эвакуационное освещение разделяется:

  • освещение путей эвакуации;
  • освещение зон повышенной опасности;
  • освещение больших площадей (антипаническое).

И таким образом по уму надо разделить аварийное освещение в ТРН:

  • первой строкой прописать освещение зон повышенной опасности и освещение больших площадей (антипаническое) в электроприемниках первой категории надежности;
  • второй строкой прописать освещение путей эвакуации в электроприемниках противопожарной защиты (в соответствии с п.4.8 СП 6.13130.2013).

Но я не стал заморачиваться и все аварийное освещение прописал в электроприемниках противопожарной защиты, хотя еще раз повторюсь – это не совсем корректно. Вообще лично я частенько позволяю себе «мухлевать» с расчетами, т.к. многолетний опыт показывает, что многие эксперты (должностные лица к которым попадает проект на проверку) просто не знают в полном объеме требования раздела 6 СП-31-110-2003.

В «ТРН» отдельно выделена нагрузка потребителей противопожарной защиты (ППЗ). В соответствии с п.6.9 данная нагрузка не учитывается. Но т.к. в соответствии с СП 6.13130.2013 потребители ППЗ в ГРЩ выделяют в отдельную секцию ГРЩ и расчет ведется для максимальной секции противопожарного отсека. По п.17-19 задания 1 выбираем самые энергоемкие потребители. Расчет потребителей ППЗ приведен в строках 79-82 «ТРН».

Т.к. у меня в ГРЩ один АВР установлен на две секции (потребители 1-й категории и ППЗ), то в строке 84 произведем расчет максимальной нагрузки АВР.

Ну вот, в принципе и весь расчет. Не были освещены разные тонкости, но это можно компенсировать самостоятельным и скрупулезным изучением раздела 6 СП31-110-2003 (например, интересные п.6.25-6.26 про конференц-залы и актовые залы, п.6.29 – про понижающий коэффициент 0,2, который никто не использует и т.д.).

На последок напомню, что мы составили ТРН для всех секций ГРЩ. Когда вы разделите нагрузку 2-й категории на две секции шин, то сумма расчетных мощностей двух секций у вас будет БОЛЬШЕ, чем расчетная мощность в нашей ТРН. Это произойдет за счет того, что количество потребителей разделится на два и Кс увеличиться (пример, п.6.5, для 100 плит Кс=0,2, а для 200 плит Кс=0,15). Хотя это происходит не во всех случаях.

Готов обсудить вышеприведенный расчет.

Автор: Лесников Андрей (г. Санкт-Петербург).

Советую почитать:

Расчет потери напряжения в сети наружного освещения

Минимальные размеры здания, при котором не требуется УЗП

Определение условной трехфазной мощности, создаваемой в трехфазной сети однофазными ЭП

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *