Сопротивление толстого провода меньше чем тонкого
Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.
Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.
Сопротивление различных проводников зависит от материала, из которого они изготовлены. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.
Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Удельное сопротивление обозначается буквой греческого алфавита р (ро). Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.
Например, удельное сопротивление меди равно 0,0175, т. е. медный проводник длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,0175 ом. Удельное сопротивление алюминия равно 0,029, удельное сопротивление железа — 0,135, удельное сопротивление константана — 0,48, удельное сопротивление нихрома — 1-1,1.
Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.
Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.
Сопротивление проводника можно определить по формуле:
где r — сопротивление проводника в (Ом); ρ — удельное сопротивление проводника (Ом*м); l — длина проводника в (м); S — сечение проводника в (мм2).
Пример: Определить сопротивление 200 м медной проволоки сечением 1,5 мм2.
Пример: Определить сопротивление 200 м медной проволоки сечением 2,5 мм2.
Изоляция
Изоля́ция в электротехнике — элемент конструкции оборудования, препятствующий прохождению через него электрического тока, например, для защиты человека.
Для изоляции используются материалы с диэлектрическими свойствами: стекло, керамика, многочисленные полимеры, слюда. Также существует воздушная изоляция, в которой роль изолятора выполняет воздух, а конструктивные элементы фиксируют пространственную конфигурацию изолируемых проводников так, чтобы обеспечивать необходимые воздушные промежутки.
Изоляционные покровы могут изготавливаться:
- из электроизоляционной резины;
- из полиэтилена;
- из сшитого и вспененного полиэтилена;
- из кремнийорганической резины;
- из поливинилхлоридного пластиката(ПВХ);
- из пропитанной кабельной бумаги;
- из политетрафторэтилена.
Резиновая изоляция
Резиновая изоляция может применяться только с шланговой резиновой оболочкой (если такая имеется). Так как резина из натурального каучука достаточно дорогостоящая, то практически вся применяемая резина в кабельной промышленности является искусственной. К каучуку добавляют:
- вулканизирующие вещества (элементы позволяющие преобразовать линейные связи в каучуке в пространственные связи в изоляции, например, сера);
- ускорители вулканизации (снижают расход времени);
- наполнители (снижают цену материала без существенного снижения технических характеристик);
- смягчители (повышают пластические свойства);
- противостарители (добавляются для оболочек с целью стойкости к солнечной радиации);
- красители (для придания нужного цвета).
Резина позволяет назначать большие радиусы изгиба кабельных изделий, поэтому совместно с многопроволочной жилой применяется в проводниках для подвижного присоединения (кабели марки КГ, КГЭШ, провод РПШ). Специализация: применяется в общепромышленных кабелях для подвижного подсоединения потребителей.
Положительный свойства:
- дешевизна искусственного каучука;
- хорошая гибкость;
- высокие электроизоляционные характеристики (в 6 раз превышают значение для ПВХ пластиката);
- практически не впитывает водяные пары из воздуха.
Отрицательные качества:
- снижение электрического сопротивления при повышении температуры до +80°С;
- подверженность солнечной радиации (светоокисление) с последующим характерным растрескиванием поверхностного слоя (при отсутствии оболочки);
- требуется ввод в состав специальных веществ для получения определённой химической стойкости;
- распространяет горение.
Влияние длины и сечения кабеля на потери по напряжению
Потери электроэнергии – неизбежная плата за ее транспортировку по проводам, вне зависимости от длины передающей линии. Существуют они и на воздушных линиях электропередач длиною в сотни километров и на отрезках электропроводки в несколько десятков метров домашней электрической сети. Происходят они, прежде всего потому, что любые провода имеют конечное сопротивление электрическому току. Закон Ома, с которым каждый из нас имел возможность познакомиться на школьных уроках физики, гласит, что напряжение (U) связано с током (I) и сопротивлением (R) следующим выражением:
из него следует что чем выше сопротивление проводника, тем больше на нем падение (потери) напряжения при постоянных значениях тока. Это напряжение приводит к нагреву проводников, который может грозить плавлением изоляции, коротким замыканием и возгоранием электропроводки.
При передаче электроэнергии на большие расстояния потерь удается избегать за счет снижения силы передаваемого тока, достигается это многократным повышением напряжения до сотен киловольт. В случае низковольтных сетей, напряжением 220 (380) В, потери можно минимизировать только выбором правильного сечения кабеля.
Почему падает напряжение и как это зависит от длины и сечения проводников
Для начала остановимся на простом житейском примере частного сектора в черте города или большого поселка, в центре которого находится трансформаторная подстанция. Жильцы домов, расположенных в непосредственной близости к ней жалуются на постоянную замену быстро перегорающих лампочек, что вполне закономерно, ведь напряжение в их сети достигает 250 В и выше. В то время как на окраине села при максимальных нагрузках на сеть оно может опускаться до 150 вольт. Вывод в таком случае напрашивается один, падение напряжение зависит от длины проводников, представленных линейными проводами.
Конкретизируем, от чего зависит величина сопротивления проводника на примере медных проводов, которым сегодня отдается предпочтение. Для этого опять вернемся к школьному курсу физики, из которого известно, что сопротивление проводника зависит от трех величин:
- удельного сопротивления материала – ρ;
- длины отрезка проводника – l;
- площади поперечного сечения (при условии, что по всей длине оно одинаковое) – S.
Все четыре параметра связывает следующее соотношение:
очевидно, что сопротивление растет по мере увеличения длины проводника и падает по мере увеличения сечения жилы.
Для медных проводников удельное сопротивление составляет 0.0175 Ом·мм²/м, это значит, что километр медного провода сечением 1 мм² будет иметь сопротивление 17.5 Ом, в реальной ситуации оно может отличаться, например, из-за чистоты металла (наличия в сплаве примесей).
Для алюминиевых проводников величина сопротивления еще выше, поскольку удельное сопротивление алюминиевых проводов составляет 0.028 Ом·мм²/м.
Теперь вернемся к нашему примеру. Пусть от подстанции до самого крайнего дома расстояние составляет 1 км и электропитание напряжения 220 вольт до него проложено алюминиевым проводом марки А, с минимальным сечением 10 мм². Расстояние, которое необходимо пройти электрическому току складывается из длины нулевых и фазных проводов, то есть в нашем примере необходимо применить коэффициент 2, таким образом максимальная длина составит 2000 м. Подставляя наши значения в последнюю формулу, получим величину сопротивления равную 5.6 Ом.
Электрическое сопротивление и проводимость
РАСЧЁТ ПЛОЩАДИ СЕЧЕНИЯ ПРОВОДОВ В ЗАВИСИМОСТИ ОТ МОЩНОСТИ НАГРУЗКИ
Потери в проводниках возникают из-за ненулевого значения их сопротивления, зависящего от длины провода. Значения мощности этих потерь, выделяемых в виде тепла в окружающее пространство, приведены в таблице. В итоге к потребителю энергии на другом конце провода напряжение доходит в несколько урезанном виде — меньшим, чем оно было у источника. Из таблицы видно, что к примеру, при напряжении в сети 220 В и 100 метровой длине провода, сечением 1,5мм2, напряжение на нагрузке, потребляющей 4 кВт, окажется не 220, а 199 В. Хорошо, это или плохо? Для каких-то приборов — безразлично, какие-то работать будут, но при пониженной мощности, а какие-то взбрыкнут и пошлют Вас к едрене фене вместе с вашими длинными проводами и умными таблицами. Поэтому Минэнерго — минэнергой, а собственная голова не повредит ни при каких обстоятельствах. Если ситуация складывается подобным примеру образом — прямая дорога к выбору проводов, большего сечения.
Сила тока в проводнике прямо пропорциональна напряжению на нем.
Сопротивление провода.
Это значит, что с увеличением напряжения увеличивается и сила тока. Однако при одинаковом напряжении, но использовании разных проводников сила тока различна. Можно сказать по-другому. Если увеличивать напряжение, то хотя сила тока и будет увеличиваться, но везде по-разному, в зависимости от свойств проводника.
Зависимость силы тока от напряжения для данного конкретного проводника представляет собой сопротивление этого проводника. Оно обозначается R и находится по формуле R = U/I. То есть сопротивление определяется как отношение напряжения к силе тока. Чем больше сила тока в проводнике при данном напряжении, тем меньше его сопротивление. Чем больше напряжение при данной силе тока, тем больше сопротивление проводника.
Формулу можно переписать по отношению к силе тока: I = U/R (закон Ома). В таком случае нагляднее, что чем больше сопротивление, тем меньше сила тока.
Можно сказать, что сопротивление как бы мешает напряжению создавать большую силу тока.
Само сопротивление является характеристикой проводника. Оно не зависит от поданного на него напряжения. Если будет подано большое напряжение, то изменится сила тока, но не изменится отношение U/I, т. е. не изменится сопротивление.
От чего же зависит сопротивление проводника? Оно зависти от
- длины проводника,
- площади его поперечного сечения,
- вещества, из которого изготовлен проводник,
- температуры.
Чтобы связать вещество и его сопротивление, вводится такое понятие как удельное сопротивление вещества. Оно показывает, какое будет сопротивление в данном веществе, если проводник из него будет иметь длину 1 м и площадь поперечного сечения 1 м2. Проводники такой длины и толщины, изготовленные из разных веществ, будут иметь разные сопротивления. Это связано с тем, что у каждого металла (чаще всего именно они являются проводниками) своя кристаллическая решетка, свое количество свободных электронов.
Разъясняем закон Ома буквально на пальцах и картинках (5 фото)
Вспоминаем формулировку закона Ома: сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку, и обратно пропорциональна сопротивлению. Теперь разберем эту, не самую, на первый взгляд простую, формулировку.
Первое понятие: сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку. Это понять довольно несложно: прямая зависимость: чем выше прикладываем напряжение, тем большую получаем величину тока! Выше напряжение — сильнее ток!
Второе понятие: и обратно пропорциональна сопротивлению. Тут тоже довольно понятно: чем выше сопротивление, тем ниже сила тока.
Формула закона Ома
Легко и быстро находить нужные вам значения по этой формуле помогают такие вот подсказки, основанные на «магическом треугольнике».
А теперь — веселые картинки
Чтобы еще легче было понять, давайте рассмотрим его на знакомом примере из жизни — с водопроводной водой. «Сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку». Вода — это ток. Течение — сила тока, давление воды — это напряжение, а труба — это проводник. Ясно, что чем выше мы поднимем бачок, тем выше станет давление воды (напряжение) и тем сильнее станет течение воды (сила тока). Опусти мы бачок — уменьшится давление (напряжение) и соответственно, ниже станет течение (сила тока). Прямая зависимость. Чем выше напряжение, тем сильнее сила тока, очень наглядно.
Теперь проверим на жизненных реалиях вторую часть формулировки закона Ома, добавим в нашу водопроводную схему понятие сопротивления. То есть нарисуем в трубе с водой заслонку. «Сила тока на участке цепи обратно пропорциональна сопротивлению.» Если опускать в трубе заслонку (повышая сопротивление), она будет мешать току воды, соответственно, сила течения (сила тока) снижается. И наоборот, при поднятии заслонки (снижая сопротивление) мы видим увеличение силы тока. Чем выше сопротивление — тем меньше сила тока, чем ниже сопротивление, тем выше сила тока. Логично.
S=(π?d^2)/4=0.78?d^2≈0.8?d^2
- где d — это диаметр провода.
Измерить диаметр провода можно микрометром либо штангенциркулем,но если их нету под рукой,то можно плотно намотать на ручку (карандаш) около 20 витков провода, затем измерить длину намотанного провода и разделить на количество витков.
Для определения длинны провода,которая нужна для достижения необходимого сопротивления,можно использовать формулу:
1.Если данные для провода отсутствуют в таблице,то берется некоторое среднее значение.Как пример ,провод из никелина который имеет диаметр 0,18 мм площадь сечения равна приблизительно 0,025 мм2, сопротивление одного метра 18 Ом, а допустимый ток 0,075 А.
2.Данные последнего столбца,для другой плотности тока, необходимо изменить. Например при плотности тока 6 А/мм2, значение необходимо увеличить вдвое.
Пример 1. Давайте найдем сопротивление 30 м медного провода диаметром 0,1 мм.
Решение. С помощью таблицы берем сопротивление 1 м медного провода, которое равно 2,2 Ом. Значит, сопротивление 30 м провода будет R = 30•2,2 = 66 Ом.
Расчет по формулам будет выглядеть так: площадь сечения : s= 0,78•0,12 = 0,0078 мм2. Поскольку удельное сопротивление меди ρ = 0,017 (Ом•мм2)/м, то получим R = 0,017•30/0,0078 = 65,50м.
Пример 2. Сколько провода из манганина у которого диаметр 0,5 мм нужно чтобы изготовить реостат, сопротивлением 40 Ом?
Решение. По таблице выбираем сопротивление 1 м этого провода: R= 2,12 Ом: Чтобы изготовить реостат сопротивлением 40 Ом, нужен провод, длина которого l= 40/2,12=18,9 м.
Расчет по формулам будет выглядеть так. Площадь сечения провода s= 0,78•0,52 = 0,195 мм 2 . Длина провода l = 0,195•40/0,42 = 18,6 м.
Зависимость электрического сопротивления от сечения, длины и материала проводника
Сопротивление различных проводников зависит от материала, из которого они изготовлены.
Можно проверить это практически на следующем опыте.
Рисунок 1. Опыт, показывающий зависимость электрического сопротивления от материала проводника
Подберем два или три проводника из различных материалов, возможно меньшего, но одинакового поперечного сечения, например, один медный, другой стальной, третий никелиновый. Укрепим на планке два зажима а и б на расстоянии 1 —1,5 м один от другого (рис. 1) и подключим к ним аккумулятор через амперметр. Теперь поочередно между зажимами а и б будем на 1—2 сек включать сначала медный, потом стальной и, наконец, никелиновый проводник, наблюдая в каждом случае за отклонением стрелки амперметра. Нетрудно будет заметить, что наибольший по величине ток пройдет по медному проводнику, а наименьший — по никелиновому.
Из этого следует, что сопротивление медного проводника меньше , чем стального, а сопротивление стального проводника меньше , чем никелинового.
Таким образом, электрическое сопротивление проводника зависит от материала, из которою он изготовлен.
Для характеристики электрического сопротивления различных материалов введено понятие о так называемом удельном сопротивлении.
Определение: Удельным сопротивлением называется сопротивление проводника длиной в 1 м и сечением в 1 мм 2 при температуре +20 С°.
Удельное сопротивление обозначается буквой ρ («ро») греческого алфавита.
Каждый материал, из которого изготовляется проводник, обладает определенным удельным сопротивлением. Например, удельное сопротивление меди равно 0,0175 Ом*мм 2 /м, т. е. медный проводник длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,0175 Ом.
Ниже приводится таблица удельных сопротивлений материалов, наиболее часто применяемых в электротехнике.
Удельные сопротивления материалов, наиболее часто применяемых в электротехнике
Материал | Удельное сопротивление, Ом*мм 2 /м |
Серебро | 0,016 |
Медь | 0,0175 |
Алюминий | 0,0295 |
Железо | 0,09-0,11 |
Сталь | 0,125-0,146 |
Свинец | 0,218-0,222 |
Константан | 0,4-0,51 |
Манганин | 0,4-0,52 |
Никелин | 0,43 |
Вольфрам | 0,503 |
Нихром | 1,02-1,12 |
Фехраль | 1,2 |
Уголь | 10-60 |
Любопытно отметить, что например, нихромовый провод длиною 1 м обладает примерно таким же сопротивлением, как медный провод длиною около 63 м (при одинаковом сечении).
Разберем теперь, как влияют размеры проводника , т. е. длина и поперечное сечение, на величину его сопротивления.
Воспользуемся для этого схемой, изображенной на рис. 1. Включим между зажимами а и б для большей наглядности опыта проволоку из никелина. Заметив показание амперметра, отключим от зажима б проводник, которой соединяет прибор с минусом аккумулятора, и освободившимся концом проводника прикоснемся к никелиновой проволоке на некотором удалении от зажима а (рис. 2). Уменьшив таким образом длину проводника, включенного в цепь, нетрудно заметить по показанию амперметра, что ток в цепи увеличился.
Рисунок 2. Опыт, показывающий зависимость электрического сопротивления от длины проводника
Это говорит о том, что с уменьшением длины проводника сопротивление его уменьшается. Если же перемещать конец проводника по никелиновой проволоке вправо, т. е. к зажиму б, то, наблюдая за показаниями амперметра, можно сделать вывод, что с увеличением длины проводника сопротивление его увеличивается.
Таким образом, сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление..
Выясним теперь, как зависит сопротивление проводника от его поперечного сечения, т. е. от толщины.
Подберем для этого два или три проводника из одного и того же материала (медь, железо или никелин), но различного поперечного сечения и включим их поочередно между зажимами а и б, как указано на рис. 1.
Наблюдая каждый раз за показаниями амперметра, можно убедиться, что чем тоньше проводник, тем меньше ток в цепи, а следовательно, тем больше сопротивление проводника. И, наоборот, чем толще проводник, тем больше ток в цепи, а следовательно, тем меньше сопротивление проводника.
Значит, сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.
Чтобы лучше уяснить эту зависимость, представьте себе две пары сообщающихся сосудов (рис. 3), причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая.
Рисунок 3. Вода по толстой трубке перейдет быстрее, чем по тонкой
Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой. Это значит, что толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.
Обобщая результаты произведенных нами опытов, можно сделать следующий общий вывод:
электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь его поперечного сечения..
Математически эта зависимость выражается следующей формулой:
где R—сопротивление проводника в Ом;
ρ — удельное сопротивление материала в Ом*мм 2 /м;
l — длина проводника в м;
S—площадь поперечного сечения проводника в мм 2 .
Примечание. Площадь поперечного сечения круглого проводника вычисляется по формуле
где π —постоянная величина, равная 3,14;
Указанная выше зависимость дает возможность определить длину проводника или его сечение, если известны одна из этих величин и сопротивление проводника.
Так, например, длина проводника определяется по формуле:
Если же необходимо определить площадь поперечного сечения проводника, то формула принимает следующий вид:
Решив это равенство относительно ρ, получим выражение для определения удельного сопротивления проводника:
Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Определив по формуле удельное сопротивление проводника, можно найти материал, обладающий таким удельным сопротивлением.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Основные сведения о электрическом сопротивлении проводника
Электрическое сопротивление проводника: что это такое
Электрическое сопротивление — это физическая величина, которая характеризует свойство проводника препятствовать прохождению электрического тока.
Обозначение: R или r.
Единица измерения — Ом. 1 Ом — это сопротивление проводника, в котором при напряжении 1 Вольт проходит ток силой 1 Ампер.
Резистор — это прибор с постоянным сопротивлением.
Реостат — прибор с переменным сопротивлением.
Сущность электрического сопротивления металлических проводников: свободные электроны при движении по проводнику встречают атомы и другие электроны и, взаимодействуя с ними, теряют часть своей энергии.
Различные металлические проводники, имеющие различное строение, оказывают различное сопротивление.
Суть сопротивления жидких проводников и газов: заряженные частицы молекул встречают сопротивление при своем движении.
От чего зависит электрическое сопротивление
Сопротивление зависит от:
- Материала проводника. Каждый материал имеет свое удельное сопротивление. Поэтому разные материалы по-разному оказывают влияние на сопротивление: рост или понижение величины.
- Длины проводника. Чем больше длина, тем больше сопротивление. Величины находятся в прямой пропорциональной зависимости.
- Площади поперечного сечения. Чем меньше площадь сечения, тем больше сопротивление. Причина: величины обратно пропорциональные.
- Температура. Когда температура понижается, сопротивление металлических проводников уменьшается. В среднем увеличение или уменьшение сопротивления равно 0,4 % на 1°. Сопротивление жидких проводников и угля с повышением температуры уменьшается.
Формулы нахождения сопротивления
Сопротивление однородного проводника постоянного сечения:
- R — сопротивление (Ом);
- ρ — удельное сопротивление проводника (Ом*м);
- l — длина проводника (м);
- S — площадь поперечного сечения проводника (м², но чаще в мм²).
Удельное сопротивление — это физическая величина, показывающая, каким сопротивлением обладает изготовленный из этого вещества проводник длиной 1 м и площадью поперечного сечения 1 мм².
Таблица удельных сопротивлений для некоторых материалов (каждому материалу соответствует свое значение):
Сопротивление проводника по закону Ома (для участка цепи):
- R — сопротивление(Ом);
- U — напряжение (В);
- I — сила тока (А).
Сопротивление проводника по закону Ома (для полной цепи):
- R — внешнее сопротивление (Ом);
- r — внутреннее сопротивление (Ом);
- ε — ЭДС (В);
- I — сила тока (А).
Кроме сопротивления, для характеристики проводника рассматривают величину, которая называется электрической проводимостью.
Электрическая проводимость — это физическая величина, обратная сопротивлению. Обозначается G, измеряется в сименсах — См.
Удельная проводимость — это физическая величина, обратная удельному сопротивлению.
Формула площади поперечного сечения: S=πD²/4, где D — диаметр проводника.
Примеры решения задач
Рассчитать сопротивление проводника, если известно, что на него подают напряжение 5 В и сила тока, проходящая через него 0,1 А.
По закону Ома для участка цепи можно записать: R = U / I = 5 / 0 , 1 = 50 О м .
Какое сопротивление имеет медный провод длиной 10 м и площадью поперечного сечения 0,17 мм²?
Так как провод медный, то ρ=0,017 Ом*мм²/м.
Воспользуемся формулой изменения сопротивления: R = ρ l / S = 0 , 017 * 10 / 0 , 17 = 1 О м .
Зависимость электрического сопротивления проводника от длины
Одним из физических свойств вещества является способность проводить электрический ток. Электропроводимость (сопротивление проводника) зависит от некоторых факторов: длины электрической цепи, особенностей строения, наличия свободных электронов, температуры, тока, напряжения, материала и площади поперечного сечения.
Физический смысл сопротивления
Протекание электрического тока через проводник приводит к направленному движению свободных электронов. Наличие свободных электронов зависит от самого вещества и берется из таблицы Д. И. Менделеева , а именно из электронной конфигурации элемента. Электроны начинают ударяться о кристаллическую решетку элемента и передают энергию последней. В этом случае возникает тепловой эффект при действии тока на проводник.
При этом взаимодействии они замедляются, но затем под действием электрического поля, которое их ускоряет, начинают двигаться с той же скоростью. Электроны сталкиваются огромное количество раз. Этот процесс и называется сопротивлением проводника.
Следовательно, электрическим сопротивлением проводника считается физическая величина, характеризующая отношение напряжения к силе тока.
Что такое электрическое сопротивление: величина, указывающая на свойство физического тела преобразовывать энергию электрическую в тепловую, благодаря взаимодействию энергии электронов с кристаллической решеткой вещества. По характеру проводимости различаются:
- Проводники (способны проводить электрический ток, так как присутствуют свободные электроны).
- Полупроводники (могут проводить электрический ток, но при определенных условиях).
- Диэлектрики или изоляторы (обладают огромным сопротивлением, отсутствуют свободные электроны, что делает их неспособными проводить ток).
Обозначается эта характеристика буквой R и измеряется в Омах (Ом). Применение этих групп веществ является очень значимым для разработки электрических принципиальных схем приборов.
Для полного понимания зависимости R от чего-либо нужно обратить особое внимание на расчет этой величины.
Расчет электрической проводимости
Для расчета R проводника применяется закон Ома, который гласит: сила тока (I) прямо пропорциональна напряжению (U) и обратно пропорциональна сопротивлению.
Формула нахождения характеристики проводимости материала R (следствие из закона Ома для участка цепи): R = U / I.
Для полного участка цепи эта формула принимает следующий вид: R = (U / I) — Rвн, где Rвн — внутреннее R источника питания.
Зависимость проводимости материала
Способность проводника к пропусканию электрического тока зависит от многих факторов: напряжения, тока, длины, площади поперечного сечения и материала проводника, а также от температуры окружающей среды.
В электротехнике для произведения расчетов и изготовления резисторов учитывается и геометрическая составляющая проводника.
От чего зависит сопротивление: от длины проводника — l, удельного сопротивления — p и от площади сечения (с радиусом r) — S = Пи * r * r.
Формула R проводника: R = p * l / S.
Из формулы видно, от чего зависит удельное сопротивление проводника: R, l, S. Нет необходимости его таким способом рассчитывать, потому что есть способ намного лучше. Удельное сопротивление можно найти в соответствующих справочниках для каждого типа проводника (p — это физическая величина равная R материала длиною в 1 метр и площадью сечения равной 1 м².
Однако этой формулы мало для точного расчета резистора, поэтому используют зависимость от температуры.
Влияние температуры окружающей среды
Доказано, что каждое вещество обладает удельным сопротивлением, зависящим от температуры.
Для демонстрации это можно произвести следующий опыт. Возьмите спираль из нихрома или любого проводника (обозначена на схеме в виде резистора), источник питания и обычный амперметр (его можно заменить на лампу накаливания). Соберите цепь согласно схеме 1.
Схема 1 — Электрическая цепь для проведения опыта
Необходимо запитать потребитель и внимательно следить за показаниями амперметра. Далее следует нагревать R, не отключая, и показания амперметра начнут падать при росте температуры. Прослеживается зависимость по закону Ома для участка цепи: I = U / R. В данном случае внутренним сопротивлением источника питания можно пренебречь: это не отразится на демонстрации зависимости R от температуры. Отсюда следует, что зависимость R от температуры присутствует.
Физический смысл роста значения R обусловлен влиянием температуры на амплитуду колебаний (увеличение) ионов в кристаллической решетке. В результате этого электроны чаще сталкиваются и это вызывает рост R.
Согласно формуле: R = p * l / S, находим показатель, который зависит от температуры (S и l — не зависят от температуры). Остается p проводника. Исходя из это получается формула зависимости от температуры: (R — Ro) / R = a * t, где Ro при температуре 0 градусов по Цельсию, t — температура окружающей среды и a — коэффициент пропорциональности (температурный коэффициент).
Для металлов «a» всегда больше нуля, а для растворов электролитов температурный коэффициент меньше 0.
Формула нахождения p, применяемая при расчетах: p = (1 + a * t) * po, где ро — удельное значение сопротивления, взятое из справочника для конкретного проводника. В этом случае температурный коэффициент можно считать постоянным. Зависимость мощности (P) от R вытекает из формулы мощности: P = U * I = U * U / R = I * I * R. Удельное значение сопротивления еще зависит и от деформаций материала, при котором нарушается кристаллическая решетка.
Деформация и удельное сопротивление
При обработке металла в холодной среде при некотором давлении происходит пластическая деформация. При этом кристаллическая решетка искажается и растет R течения электронов. В этом случае удельное сопротивление также увеличивается. Этот процесс является обратимым и называется рекристаллическим отжигом, благодаря которому часть дефектов уменьшается.
При действии на металл сил растяжения и сжатия последний подвергается деформациям, которые называются упругими. Удельное сопротивление уменьшается при сжатии, так как происходит уменьшение амплитуды тепловых колебаний. Направленным заряженным частицам становится легче двигаться. При растяжении удельное сопротивление увеличивается из-за роста амплитуды тепловых колебаний.
Еще одним фактором, влияющим на проводимость, является вид тока, проходящего по проводнику.
Цепи переменного тока
Сопротивление в сетях с переменным током ведет себя несколько иначе, ведь закон Ома применим только для схем с постоянным напряжением. Следовательно, расчеты следует производить иначе.
Полное сопротивление обозначается буквой Z и состоит из алгебраической суммы активного, емкостного и индуктивного сопротивлений.
При подключении активного R в цепь переменного тока под воздействием разницы потенциалов начинает течь ток синусоидального вида. В этом случае формула выглядит: Iм = Uм / R, где Iм и Uм — амплитудные значения силы тока и напряжения. Формула сопротивления принимает следующий вид: Iм = Uм / ((1 + a * t) * po * l / 2 * Пи * r * r).
Емкостное сопротивление (Xc) обусловлено наличием в схемах конденсаторов. Необходимо отметить, что через конденсаторы проходит переменный ток и, следовательно, он выступает в роли проводника с емкостью.
Вычисляется Xc следующим образом: Xc = 1 / (w * C), где w — угловая частота и C — емкость конденсатора или группы конденсаторов. Угловая частота определяется следующим образом:
- Измеряется частота переменного тока (как правило, 50 Гц).
- Умножается на 6,283.
Индуктивное сопротивление (Xl) — подразумевает наличие индуктивности в схеме (дроссель, реле, контур, трансформатор и так далее). Рассчитывается следующим образом: Xl = wL, где L — индуктивность и w — угловая частота. Для расчета индуктивности необходимо воспользоваться специализированными онлайн-калькуляторами или справочником по физике. Итак, все величины рассчитаны по формулам и остается всего лишь записать Z: Z * Z = R * R + (Xc — Xl) * (Xc — Xl).
Для определения окончательного значения необходимо извлечь квадратный корень из выражения: R * R + (Xc — Xl) * (Xc — Xl). Из формул следует, что частота переменного тока играет большую роль, например, в схеме одного и того же исполнения при повышении частоты увеличивается и ее Z. Необходимо добавить, что в цепях с переменным напряжением Z зависит от таких показателей:
- Длины проводника.
- Площади сечения — S.
- Температуры.
- Типа материала.
- Емкости.
- Индуктивности.
- Частоты.
Следовательно и закон Ома для участка цепи имеет совершенно другой вид: I = U / Z. Меняется и закон для полной цепи.
Измерение электрической проводимости
Расчеты сопротивлений требуют определенного количества времени, поэтому для измерений их величин применяются специальные электроизмерительные приборы, которые называются омметрами. Измерительный прибор состоит из стрелочного индикатора, к которому последовательно включен источник питания.
Измеряют R все комбинированные приборы, такие как тестеры и мультиметры. Обособленные приборы для измерения только этой характеристики применяются крайне редко (мегаомметр для проверки изоляции силового кабеля).
Прибор применяется для прозвонки электрических цепей на предмет повреждения и исправности радиодеталей, а также для прозвонки изоляции кабелей.
При измерении R необходимо полностью обесточить участок цепи во избежание выхода прибора из строя. Для это необходимо предпринять следующие меры предосторожности:
- Вытянуть вилку из сети.
- Включить прибор, при этом произойдет разрядка конденсаторов.
- Приступить к измерению или прозвонке.
- Установить переключатель в режим измерения сопротивления.
- Закоротить щупы прибора, чтобы удостовериться в его работоспособности (покажет очень малое сопротивление).
- Измерить необходимый участок.
В дорогих мультиметрах есть функция прозвонки цепи, дублируемая звуковым сигналом, благодаря чему нет необходимости смотреть на табло прибора.
Таким образом, электрическое сопротивление играет важную роль в электротехнике. Оно зависит в постоянных цепях от температуры, силы тока, длины, типа материала и площади поперечного сечения проводника. В цепях переменного тока эта зависимость дополняется такими величинами, как частота, емкость и индуктивность. Благодаря этой зависимости существует возможность изменять характеристики электричества: напряжение и силу тока. Для измерений величины сопротивления применяются омметры, которые используются также и при выявлении неполадок проводки, прозвонки различных цепей и радиодеталей.