Омметр
Омме́тр (Ом + др.-греч. μετρεω «измеряю») — измерительный прибор непосредственного отсчёта для определения электрических активных (омических) сопротивлений. Обычно измерение производится по постоянному току, однако, в некоторых электронных омметрах возможно использование переменного тока. Разновидности омметров: мегаомметры, гигаомметры, тераомметры, миллиомметры, микроомметры, различающиеся диапазонами измеряемых сопротивлений.
Содержание
Классификация и принцип действия
Классификация
- По исполнению омметры подразделяются на щитовые, лабораторные и переносные
- По принципу действия омметры бывают магнитоэлектрические — с магнитоэлектрическим измерителем или магнитоэлектрическим логометром (мегаомметры) и электронные — аналоговые или цифровые
Магнитоэлектрические омметры
Действие магнитоэлектрического омметра основано на измерении силы тока, протекающего через измеряемое сопротивление при постоянном напряжении источника питания. Для измерения сопротивлений от сотен ом до нескольких мегаом измеритель и измеряемое сопротивление rx включают последовательно. В этом случае сила тока I в измерителе и отклонение подвижной части прибора a пропорциональны: I = U/(r0 + rx), где U — напряжение источника питания; r0 — сопротивление измерителя. При малых значениях rx (до нескольких ом) измеритель и rx включают параллельно.
- ПРИМЕРЫ: М419, М372, М41070/1
Логометрические мегаомметры
Основой логометрических мегаометров является логометр, к плечам которого подключаются в разных комбинациях (в зависимости от предела измерения) образцовые внутренние резисторы и измеряемое сопротивление, показание логометра зависит от соотношения этих сопротивлений. В качестве источника высокого напряжения, необходимого для проведения измерений, в таких приборах обычно используется механический индуктор — электрогенератор с ручным приводом, в некоторых мегаомметрах вместо индуктора применяется полупроводниковый преобразователь напряжения.
- ПРИМЕРЫ: ЭС0202, М4100
Аналоговые электронные омметры
Принцип действия электронных омметров основан на преобразовании измеряемого сопротивления в пропорциональное ему напряжение с помощью операционного усилителя. Измеряемый объект включается в цепь обратной связи (линейная шкала) или на вход усилителя.
- ПРИМЕРЫ: Е6-13А, Ф4104-М1
Цифровые электронные омметры
Цифровой омметр представляет собой измерительный мост с автоматическим уравновешиванием. Уравновешивание производится цифровым управляющим устройством методом подбора прецизионных резисторов в плечах моста, после чего измерительная информация с управляющего устройства подаётся на блок индикации.
- ПРИМЕРЫ: ОА3201-1, Е6-23, Щ34
Измерения малых сопротивлений. Четырехпроводное подключение
При измерении малых сопротивлений может возникать дополнительная погрешность из-за влияния переходного сопротивления в точках подключения. Чтобы избежать этого применяют т. н. метод четырёхпроводного подключения. Сущность метода состоит в том, что используются две пары проводов: по одной паре на измеряемый объект подаётся заданный ток, с помощью другой пары производится измерение напряжения на объекте, пропорционального силе тока и обратно пропорционального сопротивлению объекта. Провода подсоединяются к выводам измеряемого двухполюсника таким образом, чтобы каждый из токовых проводов не касался непосредственно соответствующего ему провода напряжения, при этом получается, что переходные сопротивления в местах контактов не включаются в измерительную цепь.
Наименования и обозначения
Видовые наименования
- Микроомметр — омметр с возможностью измерения очень малых сопротивлений (менее 1мОм)
- Миллиомметр — омметр для измерения малых сопротивлений (единицы — сотни миллиом)
- Мегаомметр (устар. мегомметр) — омметр для измерения больших сопротивлений (единицы — сотни мегаом)
- Гигаомметр— омметр, позволяющий измерять сопротивления более 1 ГОм
- Тераомметр — омметр для измерения очень больших сопротивлений (единицы — сотни тераом)
- Измеритель сопротивления заземления — специальный омметр для измерения переходных сопротивлений в устройствах заземления
Обозначения
Омметры обозначаются либо в зависимости от системы (основного принципа действия), либо по ГОСТ 15094
- Мхх — приборы магнитоэлектрической системы
- Фхх, Щхх — приборы электронной системы
- Е6-хх — измерители сопротивлений, маркировка по ГОСТ 15094
Основные нормируемые характеристики
- Диапазон измерения сопротивлений
- Допустимая погрешность или класс точности на клеммах прибора
Другие средства измерения сопротивлений
Измерение сопротивления по постоянному току
- Измерительный мост — обеспечивает весьма высокую точность, но неудобен из-за необходимости ручного уравновешивания
- Магазин сопротивлений, катушки электрического сопротивления — измерение производится методом сравнения, с помощью замещения измеряемого объекта
- Мультиметр (тестер) — комбинированный прибор для измерения напряжения, силы тока и сопротивления
Измерение сопротивления по переменному току
- Измеритель иммитанса — измерения сопротивления на частотах от десятков герц до нескольких мегагерц
- Высокочастотный (векторный) измеритель импеданса — измерения сопротивления на частотах сотни килогерц — сотни мегагерц
- Измеритель добротности — измерения сопротивления косвенным методом на частотах от 1 кГц до нескольких сотен мегагерц
- Измеритель полных сопротивлений — измерения сопротивления нагрузки линии на частотах в десятки — сотни мегагерц
- Измерительная линия — измерения сопротивления нагрузки линии на частотах в сотни — тысячи мегагерц
Литература и документация
Литература
- Справочник по электроизмерительным приборам; Под ред. К. К. Илюнина — Л.:Энергоатомиздат, 1983
- Справочник по радиоизмерительным приборам: В 3-х т.; Под ред. В. С. Насонова — М.:Сов. радио, 1979
- Справочник по электроизмерительным приборам; Под ред. К. К. Илюнина — Л., 1973
Нормативно-техническая документация
-
«Средства измерений электрических и магнитных величин. Общие технические условия» «Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 6. Особые требования к омметрам (приборам для измерения полного сопротивления) и приборам для измерения активной проводимости» «Государственная система обеспечения единства измерений. Омметры цифровые. Методы и средства поверки» «Государственная система обеспечения единства измерений. Омметры. Методы и средства поверки»
Ссылки
См. также
- Электроизмерительные приборы
- Измерительные приборы
Wikimedia Foundation . 2010 .
Полезное
Смотреть что такое «Омметр» в других словарях:
ОММЕТР — ОММЕТР, прибор для непосредственного измерения электрических активных сопротивлений в омах (от мкОм до МОм). Для измерения больших сопротивлений обычно применяют мегомметры и тераомметры … Современная энциклопедия
ОММЕТР — (от ом и . метр) прибор для непосредственного измерения электрических активных (омических) сопротивлений; разновидности омметра мегомметры, тераомметры и т. д … Большой Энциклопедический словарь
ОММЕТР — ОММЕТР, омметра, муж. (от слова ом и греч. metron мера) (физ.). Электрический прибор для непосредственного измерения сопротивления. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
ОММЕТР — прибор для измерения электрического (омического) сопротивления. В зависимости от диапазона измерений различают микроомметры, мегомметры, тераомметры. В простейших О. с магнитоэлектрическим измерительным механизмом реализуется метод вольтметра… … Физическая энциклопедия
ОММЕТР — (Ohmmeter) прибор для измерения электрического сопротивления. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь
ОММЕТР — прибор для измерения электр. сопротивления (в омах). О. бывают типа вольтметра, мостика Уитстона и с двумя катушками. О. первого типа представляет собой вольтметр с большим внутренним сопротивлением и шкалой, проградуированной в омах. Показания О … Технический железнодорожный словарь
омметр — сущ., кол во синонимов: 10 • вольтомметр (3) • мегаомметр (3) • мегометр (3) • … Словарь синонимов
омметр — (прибор) … Орфографический словарь-справочник
омметр — измеритель сопротивления [IEV number 313 01 09] EN ohmmeter resistance meter instrument intended to measure electrical resistance [IEV number 313 01 09] FR ohmmètre appareil destiné à mesurer une résistance… … Справочник технического переводчика
Омметр — ОММЕТР, прибор для непосредственного измерения электрических активных сопротивлений в омах (от мкОм до МОм). Для измерения больших сопротивлений обычно применяют мегомметры и тераомметры. … Иллюстрированный энциклопедический словарь
Разбираемся с электроизмерительными приборами
Коробки выравнивания потенциалов, несмотря на их выполнение важной задачи, нельзя расставлять повсюду. Например, в старых домах, где нулевые проводники объединены, установка такого устройства небезопасна
В случае обрыва общего заземлителя квартиры, не имеющие коробок в своих сетях, получат повышенные потенциалы от такой коробки.
Для уравнивания применяются специальные проводники жёлто-зелёной расцветки, медные, многожильные. При присоединении к шине проводник зачищают от изоляции, при подключении к объекту обжимают специальным наконечником с помощью обжимных клещей.
Присоединение уравнивающих проводников к шине
Затраты по организации и монтажу ОСУП и ДСУП окупаются безопасным проживанием и правильной работой оборудования защитной автоматики при замыканиях, утечках токов и возникновении посторонних высоких потенциалов.
Устройство амперметра
В основе устройства амперметра – взаимодействие между двумя элементами при прохождении электрического тока. В зависимости от того, что измеряет амперметр, используются свои варианты устройств. Замер сил разного типа тока предполагает особое строение и чувствительность. Существует несколько категорий:
- Магнитоэлектрические. В основе лежит подвижная катушка, закрепленная на оси между двумя магнитными полюсами.
- В электромагнитных амперметрах используется сердечник, отодвигаемый на пропорциональное силе тока расстояние.
- Термоэлектрические. Ключевой элемент – термопара, припаянная к проводке. Величина нагрева по мере подачи тока разной величины трансформируется в показатель его силы, после чего выводится на дисплей.
- Электродинамические. Подвижная и неподвижная катушки. В быту малоприменимы из-за высокой чувствительности к магнитным полям. Применяются для точных измерений либо в демонстрационных целях.
- Ферродинамические. Самые точные и дорогие из механических приборов. Благодаря замкнутому проводу, не реагируют на внешние магнитные поля.
- Цифровой. Используется интегратор, преобразующий величину тока в цифровой эквивалент. От его типа и настройки зависит то, как работают амперметры. Различают несколько классов точности по погрешности измерений.
Несмотря на разницу в конструкции, в основе всех механических приборов лежит общий принцип действия.
Подключение вольтметра
Напряжение на источнике питания или элементе цепи измеряется аппаратом, который подключается параллельно устройству.
Схема подключения вольтметра
Катушка прибора имеет низкое сопротивление, и при непосредственном включении в сеть ток будет большим. Для уменьшения потребляемого тока и влияния на электрическую сеть в цепь последовательно с аппаратом включаются добавочные сопротивления.
Важно! При включении вольтметра последовательно с нагрузкой он покажет напряжение источника питания с погрешностью из-за сопротивления нагрузки. Последовательно подсоединяют амперметр
Постоянное напряжение
Способы измерения постоянного напряжения зависят от его величины:
- до 1 милливольта – цифровыми и аналоговыми аппаратами со встроенным усилителем;
- до 1000 вольт используют обычные аппараты различных систем;
- свыше 1 кВ измерения производятся электростатическими приборами, предназначенными для работы в высоковольтных сетях или обычными, включёнными через делитель.
Схема включения вольтметра с добавочными сопротивлениями
Увеличение предела измерения производится включёнием последовательно с прибором добавочного сопротивления Rдоб. Для увеличения предела в n раз общее сопротивление также необходимо увеличить в n раз и, учитывая сопротивление прибора Rпр, Rдоб=Rпр*(n-1). Показания шкалы также умножаются на n.
Переменное напряжение
Методы и типы устройств для измерения в сетях переменного тока зависят от величины напряжения и частоты сети:
- до 1 вольта – цифровые и аналоговые устройства с усилителями;
- до 1кВ и частотой до десятков кГц – выпрямительные системы, электромагнитные, электродинамические приборы;
- при частоте до десятков мегагерц – термоэлектрические и электростатические аппараты.
Важно! Вольтметр переменного тока показывает действующее значение напряжения. При синусоидальной форме его величина в √3 (1,7) меньше амплитудного
Расширение пределов измерения производится включением через разделительный или автотрансформатор, а также использованием добавочного сопротивления. Его величина рассчитывается аналогично измерениям в сети постоянного тока.
При использовании разделительного трансформатора показания прибора умножаются на коэффициент трансформации n=U1/U2.
Схема включения вольтметра и амперметра через трансформаторы
Подключение вольтметра необходимо производить по определённым схемам. Это делается для того, чтобы показания прибора соответствовали параметрам сети.
Мостовой удвоитель напряжения
Схема сходна по структуре с мостом Гретца, однако дополнительно устанавливаются накопительные элементы. Это позволяет суммировать напряжение на выходе из мощности, накопленной конденсаторами за время прохождения тока. Удвоение представляет собой преобразование низкочастотного переменного напряжения в высокочастотное постоянное.
Удвоитель напряжения
Выпрямитель – это устройство, которое превращают переменный ток, полученный из сети, в нужный постоянный. При этом электрический ток на выходе может обладать сниженной амплитудой колебаний либо быть полностью сглаженным. Таким образом, устройства, требующие для работы постоянного напряжения, получают питание. Используется для зарядки большинства аккумуляторов, например, в зарядном устройстве Рассвет, сварочных аппаратах и электросиловых установках. Класс устройства определяется количеством диодов.
Технические данные аккумуляторов
Основные применяемые типы аккумуляторов:
- Щелочные – Ni-Cd,
- Ni-MH – никель-металлогидридные,
- кислотные – аккумуляторы для автомобилей,
- Li-ion – литий-ионные,
- Li-po – литий-полимерные.
При эксплуатации аккумулятора необходимо учитывать его функциональные характеристики, такие как:
- значение ёмкости,
- выходное напряжение,
- размеры,
- сколько весит,
- допустимое минимальное напряжение,
- срок эксплуатации,
- коэффициент полезного действия,
- диапазон рабочей температуры,
- рабочий ток заряда и разряда.
Аккумулятор для автомобиля (АКБ) состоит из 6 последовательно соединённых аккумуляторных секций с напряжением питания каждой 2,1-2,16 В, на хорошей батарее напряжение 13-13,5 В.
Важно! Не допускается снижение напряжения ниже 9 вольт, поскольку из-за особенностей процессов, происходящих в батареях, садится плотность, что повышает температуру промерзания электролита и ускоряет разрушение электродов. В свою очередь, уменьшается и срок службы аккумулятора
Классификация
Учитывая метод производства замеров, приборы можно разделить на те, которые сравнивают входные значения с какой-то величиной и те которые производят непосредственные замеры.
По механизму реализации они бывают:
- Электромеханическими;
- Электронно-аналоговыми;
- Электронно-цифровыми.
Еще одно деление происходит по характеристикам замеряемого напряжения. По такой классификации приборы делят на:
- Универсальные,
- Селективные,
- Импульсные,
- Фазовые.
Аналоговые электромеханические
Это простые стрелочные устройства, в которых, чтобы увеличить пределы замеров, в схему встроены дополнительные сопротивления.
Несмотря на достаточно большое внутреннее сопротивление, погрешность у этого типа устройств высокая. Именно поэтому невозможно их использование в замерах, где нужна высокая точность, например, в лабораториях.
Важно! Как, используя вольтметр, определить его показания? Смотря на стрелку и помня о цене деления
Аналоговые электронные вольтметры общего назначения
Схожи с электромеханическими аппаратами – такая же стрелочная методика индикации, однако имеют внутри себя измерительный усилитель. Его основной задачей является повышение внутреннего сопротивления, что, в свою очередь, позитивно сказывается на лимитах замеров. Для данных приборов эти пределы намного ниже.
Цифровые электронные вольтметры общего назначения
Принцип работы цифрового прибора реализован на АЦП. Он видоизменяет замеряемое напряжение в электронный сигнал, который затем показывается на дисплее в виде цифры. Качество и точность зависят от АЦП, установленного в нем.
Цифровой вольтметр
Диодно-компенсационные вольтметры переменного тока
При помощи вакуумного диода происходит сверка напряжения, которое соизмеряется с образцовым величиной разности потенциалов, снимающейся с генератора внутри аппарата. Данный способ проведения замеров позволяет охватить очень большой диапазон частот: от низких до очень высоких. Этот способ гарантирует очень высокую точность замеров.
Импульсные
Импульсный вольтметр – это такой вид измерительных аппаратов, который применяют, чтобы измерить отклонения периодических и одиночных сигналов.
Фазочувствительные
Эти приборы необходимы для сбора информации о комплексном напряжении. На них устанавливают два дисплея. Они отображают две составные части комплексного напряжения.
Селективные
Они применяются, чтобы померить разности потенциалов основной частоты. Также с их помощью можно определить составляющие амплитуды сложной формы.
Причины возникновения потенциалов
Существуют различные условия возникновения электрических потенциалов на токопроводящих частях и металлических объектах. Основные причины возникновения этого явления следующие.
Разность электрических потенциалов в быту возникает при условиях:
- занижение или пробой изоляции токоведущих конструкций и возникающие в результате этого утечки тока;
- образование статического электричества;
- неисправность бытового оборудования;
- неверное включение в схему питания электрооборудования;
- появление в заземляющих устройствах токов блуждающей природы.
Особую опасность представляет возникновение высокого потенциала из-за неисправности электропроводки или пробоя изоляции электроприборов при касании токопроводящей жилы металлических частей бытового или производственного оборудования.
Внимание! Пробой изоляции может произойти в одном месте, а потенциалы возникнуть совершенно в другом помещении. Например, в результате того, что квартиры соединяет одна и та же сеть отопления, пробой изоляции электроприбора на одном этаже может вызвать разность потенциалов на другом уровне и ударить человека электроразрядом
Блуждающие токи появляются при использовании земли в качестве проводника для организации рабочего процесса электрических установок. Они тоже часто становятся причиной возникновения высоких потенциалов на батареях системы отопления или водопроводах.
Механизм образования блуждающих токов
Виды амперметров
Классифицировать устройства можно по способу индикации. Наиболее широко распространены аналоговые амперметры – с градуированной шкалой, по которой движется стрелка. Современные приборы имеют цифровой дисплей, на котором отображается значение величины тока.
Приборы со стрелочной головкой
Стрелочные амперметры постепенно исчезают. Они отличаются более сложным устройством, чем современные модели, и обладают ограниченной областью применения. Еще один недостаток – меньший срок работы из-за наличия большего количества механических деталей. При этом современные условия иногда требуют измерения меньших величин, чем требуется для отклонения стрелки даже на одно деление. Из-за этого стрелочные приборы приходится модифицировать усилителями сигнала.
Интересно. Долгое время эти приборы не имели аналогов – точность измерений была достаточно высокой. Однако развитие электротехнической промышленности позволило разработать более дешевые в изготовлении приборы.
Принцип действия стрелочной головки
Еще одна сложность при использовании стрелочного амперметра – принцип работы стрелки, отличающийся в разных системах измерения:
- Магнитоэлектрическая. Стрелка поворачивается по линейной шкале, пропорциональной силе тока. Вращающий момент задается током, проходящим через обмотку рамки.
- Электромагнитная. Стрелка закреплена на сердечнике из ферромагнита, который двигается внутри катушки.
- Электродинамическая. Используются две катушки с последовательным либо параллельным соединением. На подвижной – закреплена стрелка, поворачивающаяся от взаимодействия между токами катушек.
Во всех типах прибора используется корректор – специальный винт, соединенный с пружиной. Он необходим для установки стрелки в нулевое положение.
Игнорирование начальной регулировки может привести к неправильному отображению величины измеряемого тока, так как стартовое положение стрелки будет находиться левее нуля.
Приборы с цифровым индикатором
Цифровые устройства вытесняют аналоговые, благодаря ряду отличий:
- простота изготовления – дешевле производить, легче собрать самостоятельно;
- возможность измерения меньших величин;
- отсутствие износа подвижных частей – дольше служат, не требуют замены элементов;
- наглядная и удобная индикация;
- меньший вес.
Цифровой амперметр
Переход к цифровому исполнению позволил шире применять приборы в быту. Они проще в использовании – вертикальное и горизонтальное расположение не влияет на работу. Также они лучше защищены от внешних воздействий, например, механических ударов по корпусу.
Разбираемся с электроизмерительными приборами
Оценивая величину этого тока, мультиметр определяет сопротивление компонента по закону Ома и отображает его на дисплее. Если в цепи мультиметр – тестовый провод – компонент – тестовый провод – мультиметр существует дополнительный источник напряжения, то результат измерения как минимум будет ошибочным, а как максимум – прибор выйдет из строя. Режим измерения сопротивления в мультиметре может использоваться для “прозвонки” проводов определения их целостности. Если провод не имеет обрывов, то при прикосновении щупов к его концам прибор покажет почти нулевое сопротивление.
Эксплуатация электроизмерительных приборов
Сымитировать неповрежденный провод можно соединив наконечники щупов друг с другом:. Если щупы не соприкасаются друг с другом, что равнозначно их прикосновению к концам оборванного провода, то прибор покажет бесконечное сопротивление как правило путем отображения пунктирной линии или аббревиатуры “O. Самым опасным применением мультиметра является измерение силы тока. Объясняется такая опасность просто: измеряемый ток должен пройти непосредственно через мультиметр.
Это означает, что прибор должен стать частью схемы, а не просто быть подключенным к ней как в случае измерения напряжения. Для того, чтобы мультиметр стал частью схемы, эта схема должна быть разорвана, а прибор подключен к двум точкам разрыва. Настраивается мультиметр на измерение силы тока следующим образом: переключатель режимов выставляется в положение измерения постоянного или переменного тока, а красный тестовый провод подключается к красному разъему с маркировкой “A”.
На рисунке ниже показана подготовленная к тестированию схема и настроенный мультиметр:. Перед подключением мультиметра нам нужно разорвать схему:. Теперь можно подключить прибор к схеме. Для этого нужно соединить тестовые провода с разорванными концами цепи: черный щуп – с минусовой клеммой 9-и вольтовой батареи, а красный – со свободным концом провода, ведущего к лампочке:.
В этом примере показана безопасная схема, девять вольт которой вряд-ли могут представлять опасность поражения электрическим током при разрыве цепи даже голыми руками и подключении к ней измерительного прибора.
Однако, при более высоком напряжении такая процедура становится опасной.
Не стоит забывать и то обстоятельство, что даже при низком напряжении может возникнуть такой ток, который приведет к образованию искры в момент подключения последнего щупа мультиметра к цепи. Еще одна потенциальная опасность мультиметра таится в его конструктивной особенности.
Отличие уравнивания от выравнивания
В правилах устройства электроустановок (ПУЭ), разделе 1.7 рассматриваются методы обустройства ОСУП. Рассказывается, как правильно присоединять и соединять между собой проводники защитных заземлений и систем выравнивания.
Разница между понятиями следующая:
- Выравнивание – способ соединения, который делает приблизительно равными потенциалы, возникающие на всех доступных металлических частях конструкций, для снижения напряжения, и делающее его безопасным;
- Уравнивание – устранение напряжения, возникающего между всеми легкодоступными к прикасанию металлическими поверхностями путём соединения их вместе проводами и заземлением полученного контура.
Если всё соединить между собой и подключить к защитному заземлению, это есть уравнивание.
Наименования и обозначения
Все отечественные вольтметры маркируются соответствующим его характеристикам шифром. Поэтому, чтобы определить его устройство и вид, не понадобятся сопроводительные документы. Первая буква может поведать о его модификации и устройстве.
Видовые наименования
Делятся в зависимости от пределов напряжения, которое может
измеряться: от самых малых значений до тысяч Вольт. Также существует векторметр для замеров фазовых изменений.
Обозначения
Существует две системы маркировки
Одна обращает внимание на тип устройства, другая – на токовые характеристики. Если в руках находится электродинамический агрегат, то он будет промаркирован буквой “Д”
Буква “М” в начале названия укажет на магнитоэлектрический аппарат. “С” ставят на электростатические. Устройство с буквой “Ф, Щ” является отличием электронных аппаратов, “Ц” применяют для выпрямительного типа. Букву “Т” можно найти, если вольтметр термоэлектрический, а “Э” – электромагнитный.
В зависимости от измеряемого напряжения, прибору присваивается свой шифр. Начинается он с буквы “В” – вольтметр. После чего идёт цифра. Например, 2 – это устройства для постоянного тока, цифрой 3 отмечают специализирующиеся на переменном токе, 4 – импульсные. Шифр В7 определяет универсальное устройство. В5 и В6, соответственно, для фазочувствительного и селективного устройства.
Универсальный вольтметр В7-27
Молниезащитная конструкция
Повышение разности потенциалов в результате наведения статического электричества от разряда молнии или прямого попадания может снизить эффективность работы системы уравнивания. Молниеотвод и токоотводящий проводник тоже присоединены к контуру заземления. Поэтому нужно все металлические конструкции, электроустройства и защитное оборудование соединить в одну систему, проводники присоединять к шине, которая сообщается с заземляющим контуром. Подобную молниезащитную систему выполняют на входе в здания и там, где не может быть выполнен безопасный промежуток. Это может быть нулевой этаж или поверхность земли.
Важно! При наличии бетонных полов и вблизи мест оборудования молниеотводов выравнивание следует осуществлять возле самой поверхности земли
Советы по выбору
Выбирать миллиамперметр нужно, исходя из задач, которые должен решать прибор:
- диагностика электротехники на предмет выявления неисправностей и ремонта;
- использование в лабораторных условиях, при обучении в школах, учебных заведениях различного профиля;
- контроль и управление сложных систем на производстве;
- контроль работы сложных приборов в медицинских учреждениях;
- занятия радиолюбительством.
На выбор модели МА существенно влияет его цена. В средствах массовой информации, в том числе в интернете, публикуются предложения по продаже цифровых, щитовых, лабораторных миллиамперметров и универсальных мультиметров.
Примерный ценовой уровень на некоторые виды МА
Марка модели | Цена, руб. |
---|---|
Стрелочный МА ЕС96 – 150 мА | 2300 |
– « – ЕС 144 – 300 мА | 3360 |
Цифровой МА Universal V8308 | 322 |
– « – Master MAS 838L | 760 |
– « – Professional MY 63 | 1380 |
Для точных измерений нужно приобретать МА с сопротивлением не выше 0,5 Ом. Корпус прибора должен быть абсолютно герметичен, выполнен из прочного химически стойкого пластика.
Если миллиамперметр нужен в мобильном исполнении, то лучше пользоваться универсальным измерительным устройством – цифровым мультметром.
Какова специфика производства этих изделий?
Ошибочно считается, что стрелочные приборы просты в изготовлении, но на самом деле с точки зрения производства, эти приборы на порядок более сложные, чем цифровые. Каждый стрелочный прибор состоит из большого количества миниатюрных деталей, отклонение которых на сотую долю элементов является критичным.
Стрелочное сборочное производство преимущественно состоит из ручной сборки и организовано конвейерным типом, где каждый рабочий выполняет свою операцию. Для сборки одного простого стрелочного прибора необходимо совершить около 50 сложных, механических и миниатюрных операций.
Есть ряд уникальных операций и приспособлений, которыми обладает только ОАО «Электроприбор», например, только на нашем предприятии, одной из изюминок технологии производства стрелочных щитовых приборов является использование вибрационной приработки на резонансных частотах конструктивных элементов малой жесткости (таких, как пружинки, стрелки подвижные части и т.д.), взамен традиционной их температурной стабилизации. Такая технология обеспечивает более эффективное снятие релаксационных остаточных напряжений, образовавшихся во время производства деталей и узлов, и значительное сокращение цикла производства.
Подобные решения позволяют снижать себестоимость изделий без ущерба для метрологических характеристик и поддерживать самую широкую номенклатуру приборов. В номенклатуре есть уникальные чувствительные приборы с диапазоном измерения до 5 мкА, которые не выпускает никто в мире.
Меры предосторожности
В работе радио,- и телемастера нужно избегать рисков воздействия опасного для жизни и здоровья человека напряжения. Нельзя оставлять включёнными приборы и инструменты, покидая рабочее место. Надо пользоваться единым выключателем, который прерывает электропитание всей системы энергообеспечения рабочего стола радиомастера.
Для новичка есть все возможности овладеть радиоделом. В средствах массовой информации всегда можно найти нужный справочный материал. Рынок радиотехники предоставляет широкий выбор электронных устройств, инструментов, материалов и измерительных приборов.
Принцип действия
Способ измерения основывается на работе нескольких элементов:
- На оси между постоянными магнитами располагается якорь со стрелкой.
- Благодаря воздействию магнитов, стальной якорь находится вдоль силовых линий, в нулевой позиции.
- При подаче тока появляется магнитный поток с силовыми линиями, перпендикулярными магнитам.
- Вследствие этого воздействия якорь стремится повернуться под прямым углом, чему мешает основное магнитное поле.
- Итоговое отклонение стрелки – результат взаимодействия двух потоков.
Принцип работы амперметра
Благодаря простому принципу работы амперметра, механические устройства долгое время отличались лишь материалом изготовления элементов.
Принцип работы выпрямителей сигналов
Что такое выпрямитель? Устройство работает за счет свойств полупроводниковых радиоэлементов по пропусканию тока исключительно от анода к катоду. Поэтому при прохождении через устройство синусоиды переменного тока происходит обрезка отрицательной части волны. Таким образом на выходе радиоэлемента остается только положительная полуволна. Электрический ток подобного типа называется однополупериодным с пульсациями. От анода к катоду проходит сигнал только ½ всего времени. Колебания происходят от нуля до максимального значения.
Строение двухполупериодных устройств базируется на мосту из четырех вентилей, которые приводят к попаданию всех полуволн. При этом отрицательная полуволна инвертируется. Фактически строение двухполупериодных выпрямителей аналогично двум или более однополупериодным с катодами, направленными один на другой.
Виды уравнивания
Различают два вида систем уравнивания: основную (ОСУП) и дополнительную (ДСУП). Для более безопасного проживания и работы лучше всего использовать обе.
Уравнивание основное
При возведении жилых домов и служебных объектов монтируется система ОСУП. Её схема разрабатывается ещё при проектировании.
В ОСУП входят следующие составляющие:
- заземляющая конструкция – контур;
- уравнивающие провода;
- заземляющие провода;
- шина.
Основная система должна обеспечить защиту зданий и сооружений от возникновения постороннего электричества в любых токопроводящих элементах конструкции. Это защита таких объектов, как трубопроводы, металлические компоненты постройки, электрические коммуникации и т.д. Возникший по любым причинам высокий потенциал с помощью ОСУП перенаправляется в землю.
Внимание! При производстве монтажа нельзя соединять между собой защитные PE проводники с рабочим нулём N. Только тогда ОСУП правильно действует с заземлениями типа: TN-S, TN-C-S и TT
Использовать соединения в виде шлейфов и размещать в цепи коммутационные аппараты категорически запрещено.
Дополнительное уравнивание
Этот вид уравнивания носит частный характер. Применяется в случае изменений в конструкции коммуникаций помещения, таких как:
- замена металлических участков водопроводных труб на пластиковые вставки;
- установка дополнительного электрооборудования: бойлеров, газовых колонок и прочего.
Здесь понадобится монтаж ДСУП в виде установки коробки уравнивания потенциалов (КУП) и соединительных проводников.
Схема выравнивания потенциалов в квартире
Чем отличаются разные аналоговые средства измерений?
Щитовые электроизмерительные приборы служат для измерения электрических параметров цепи в сетях постоянного и переменного тока. Основная масса стрелочных щитовых приборов имеет класс точности 1,5. Конструктивно стрелочные приборы бывают различных систем: магнитоэлектрической, электромагнитной, электродинамической, ферродинамической, индукционной и тепловой. Наиболее массово производятся в нашей стране приборы магнитоэлектрической и электромагнитной систем.
Приборы магнитоэлектрической системы более чувствительные и более точные, не чувствительны к изменению магнитных полей и температуры, имеют малую потребляемую мощность, но, с другой стороны, плохо переносят токовые перегрузки. Благодаря всем своим достоинствам приборы именно этой системы получили самое широкое распространение. В общем объеме выпуска приборы этой системы занимают более 60%.
Сравнительная простота устройства электромагнитной системы и отсутствие в них токоведущих подвижных частей дают возможность изготавливать приборы стойкие к перегрузкам. К недостаткам этих приборов относят зависимость показаний от внешних магнитных полей.
Электроизмерительные приборы какой системы используются в качестве омметров
Омметр представляет собой электрический прибор, используемый для измерения сопротивления в цепи или компоненте. Противодействие потоку электрического тока является мерой сопротивления в электрической цепи. Единицей измерения электрического сопротивления является ом (Ω).
Омметр работает на основе того, что когда омметр подает ток на цепь или компонент, он измеряет результирующее напряжение и вычисляет значение сопротивления, используя формулу закона Ома V = IR. Для измерения сопротивления мы также можем использовать аналоговый и цифровой мультиметр.
Мы не можем определить сопротивление омметром в исправной или тестовой цепи. Чтобы проверить сопротивление, нам нужно отключить питание и измерить сопротивление.
Конструкция омметра
Конструкция схемы омметра представляет собой смесь миллиамперметра (микроамперметра) с последовательным набором сопротивлений и постоянного батарейного источника питания. Аналоговый мультиметр состоит из следующих частей:
- Дисплей: для измерения различных электрических величин отображаются разные шкалы. Сверху — нелинейная шкала омметра.
- Указатель: указывает значение измерения на шкале. Он отклоняется или перемещается в зависимости от значения сопротивления.
- Ручка переключателя диапазонов: в центре есть ручка для выбора различных функций.
- Миллиамметр или микроамперметр: при заданном постоянном напряжении ток через амперметр изменится при изменении сопротивления. Это даст выходное сопротивление в Омах (Ом).
- Циферблат мультиметра: поворотный диск окружает ручку с различными переключателями диапазонов.
- Разъемы / порты: есть два входных разъема для подключения щупов.
- Датчики / выводы: поставляется с двумя щупами — черным и красным.
Как работает омметр?
Принцип работы омметра заключается в том, что при протекании тока через цепь или компонент, стрелка в измерителе отклоняется. Когда стрелка перемещается влево от измерителя, это означает высокое сопротивление и реакцию на низкий ток.
Когда стрелка отклоняется в правую сторону измерителя, это означает низкое сопротивление и реакцию на высокий ток. Вы можете посмотреть на изображении ниже:
Резистивная измерительная шкала нелинейна в омметре и аналоговом мультиметре. Указатель измерителя сопротивления показывает ноль на полной шкале (правая сторона) и максимум на остальной. Нам нужно сделать положение указателя равным нулю, прежде чем использовать его.
После того, как он упадет до нуля, мы можем протестировать компонент. Измеритель сопротивления обычно находится в диапазоне от 1 Ом до 1 МОм. Когда два щупа подключены с каждой стороны резистора, указатель начинает отклоняться.
Чтобы считывать показания омметра, поверните ручку переключателя на расчетный диапазон в омах или установите его на максимальный диапазон, чтобы увидеть, расчетное показание. Если значение слишком велико, указатель останется на нуле. Мы можем попробовать настроить шкалу диапазона сопротивления на меньший диапазон множителя или продолжать регулировать ручку, пока не получим точные результаты.
После завершения регулировки ручки нам нужно произвести расчеты с результатами, которые мы читаем на шкале. Если диапазон множителя отмечен как «x10», нам нужно умножить показание на 10 Ом. Если в маркировке диапазона множителя написано «x1K», нам нужно умножить показание на 1000 Ом.
Типы омметров
Существуют разные типы омметров в зависимости от конструкции. Это Micro, Milli, Mega, цифровой мультиметр, последовательный, шунтирующий и многодиапазонный омметр.
Микроомметр
Этот омметр измеряет относительно низкое сопротивление в диапазоне от 1 мкОм до 2500 Ом. Счетчик состоит из набора сопротивлений с разными диапазонами тока.
Он использует 4-проводной метод Кельвина для измерения сопротивления индуктивных нагрузок. Он также использует фильтры для устранения пульсаций переменного тока. Некоторые из них: 10A-5 мОм, 10A-25 мОм, 10A-250 мОм, 1A-2500 мОм, 100 мА-25 Ом, 10 мА-250 Ом, 1 мА-2500 Ом.
Миллиомметр
Цифровой миллиомметр с высокой точностью рассчитывает сопротивление в диапазоне от 100 мкОм до 2000 Ом. Для измерения сопротивления используется 4-проводная технология измерения сопротивления.
Применяется для измерения сопротивления обмоток электродвигателей, генераторов, испытаний на сцепление для железных дорог, судов и т. д.
Мегаомметр
Прибор измеряет сопротивление в цепи в мегаомах и гигагемах. Подходит для измерения сопротивления изоляции. Диапазон измерения составляет от 0,5 Ом до 2 000 000 МОм.
Цифровой омметр
Он также известен как цифровой мультиметр для измерения сопротивления. Он также измеряет ток и напряжение в электронной схеме. Этот счетчик легко читается по сравнению с аналоговым. Вы можете измерить сопротивление в омах, килоомах и мегаомах на цифровом дисплее.
Тераомметр
Этот прибор измеряет высокие значения сопротивления тестируемого устройства. Для этого он использует два резистора (последовательный и нулевой), чтобы определить неизвестное сопротивление на резисторе.
Резистор регулировки нуля включен параллельно с движением счетчика. Устройство имеет внутренний источник напряжения для выработки тока и показывает сопротивление через отклонение измерителя.
Шунтирующий омметр
Шунтирующий измеритель измеряет низкие значения сопротивления в цепи. Показание бесконечности настраивается вместо нулевого резистора. Этот тип омметров редко используется, так как их диапазон измерения невелик (от 5 до 400 Ом).
В отличие от Тераомметра, движение счетчика идет параллельно с обнаруживаемым сопротивлением.
Многодиапазонный омметр
Этот измеритель оснащен переключателем для измерения широкого диапазона значений сопротивления. Начальное показание устанавливается на ноль с помощью регулятора. Чтобы узнать неизвестное сопротивление, подключите его параллельно к прибору. Регулировка выполняется таким образом, чтобы измеритель показывал значение полной шкалы.
Более подробно о разных типах омметров можете узнать на сайте Top 5 Best Ohm Meters [2021 Review] — Solderingironguide, на нем представлены 5 самых популярных типов омметров доступных на рынке.
Сравнение
Вот некоторые примеры для использования и применения различных типов омметров:
Измерения сопротивления двигателей, трансформаторов, компонентов, автоматических выключателей и переключателей
Измерения напряжения, сопротивления (Ом, кОм, МОм) и тока
Итог
Как измерить сопротивление с помощью омметра и какой тип прибора выбрать? Это зависит от схемы измерения и области применения. Омметр измеряет сопротивление между двумя выводами.
Электроизмерительные приборы
В современных условиях контроль за потреблением электрической энергии, режимом работы электрооборудования, измерением неэлектрических величин осуществляется с помощью электроизмерительных приборов.
Электроизмерительные приборы подразделяются:
- 1) по назначению: приборы для измерения тока — амперметры, миллиамперметры, гальванометры; для измерения напряжения — вольтметры, милливольтметры, гальванометры; для измерения мощности — ваттметры, киловаттметры; для измерения электрической энергии — счетчики; для измерения сдвига фаз и коэффициента мощности — фазометры; для измерения частоты — частотометры; для измерения сопротивлений — омметры и мегомметры;
- 2) по роду измеряемого тока — приборы постоянного тока, переменного тока, постоянного и переменного тока;
- 3) по принципу действия — приборы магнитоэлектрической, электромагнитной, электродинамической, индукционной, тепловой, термоэлектрической, электростатической систем, электронные и другие;
- 4) по классу точности — приборы подразделяются на восемь классов точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4;
- 5) по степени защищенности от внешних полей — приборы категории I и II, характеризующие допускаемое изменение показателей прибора (в %) из-за влияния внешнего магнитного или электрического поля;
- 6) по условиям механических воздействий при эксплуатации — приборы обыкновенные, повышенной прочности и устойчивые к механическим воздействиям (вибропрочные, ударопрочные, вибростойкие);
- 7) по устойчивости к климатическим воздействиям — приборы группы А, Б и В для работы в закрытых сухих отапливаемых помещениях, в закрытых не отапливаемых помещениях и в полевых условиях;
- 8) по способу установки — щитовые и переносные приборы;
- 9) по форме представления показаний — аналоговый измерительный прибор (измерительный прибор, показания которого или выходной сигнал являются непрерывной функцией изменений измеряемой величины), цифровой измерительный прибор (измерительный прибор, показания которого представлены в цифровой форме).
Электроизмерительные приборы должны отвечать следующим основным требованиям:
- • погрешность прибора не должна превышать предела (класса точности) и не должна изменяться с течением времени;
- • шкала прибора должна быть проградуирована в единицах СИ;
- • прибор должен быть снабжен успокоительной системой;
- • магнитные и электрические поля, температура окружающей среды не должны оказывать заметного влияния на показания прибора;
- • прибор должен потреблять минимальное количество энергии и должен выдерживать установленную соответствующим ГОСТ перегрузку.
На шкале каждого прибора наносятся следующие обозначения:
- • единица измерения;
- • система прибора;
- • класс точности прибора;
- • рабочее положение прибора;
- • степень защищенности от магнитных и других влияний;
- • величина испытательного напряжения изоляции измерительной цепи по отношению к корпусу;
- • год выпуска и заводской номер;
- • род тока;
- • тип прибора.
Условные обозначения на шкалах измерительных приборов приведены в приложении 9. Электроизмерительный прибор включает в себя измерительную цепь, измерительный механизм и отсчетное устройство. Измерительная цепь служит для преобразования измеряемой величины в некоторую промежуточную электрическую величину, которая воздействует на измерительный механизм. Измерительный механизм преобразует промежуточную электрическую величину в угол поворота подвижной части отсчетного устройства.
Рассмотрим основные системы электроизмерительных приборов, данные по которым приведены в табл. 16.1.
При эксплуатации электроизмерительных приборов должна проводиться их периодичная поверка в сроки, установленные руководителем предприятия, но не реже чем указано в табл. 16.2.
Поверка средств измерений — это совокупность операций, выполняемых органами Государственной метрологической службы в целях определения и подтверждения соответствия средств измерений установленным техническим требованиям. При внешнем осмотре прибора должно быть установлено: отсутствие внешних повреждений и повреждений покрытия шкалы; четкость всех надписей; укомплектованность прибора запасными частями, принадлежностями, необходимыми для проведения поверки. При опробовании должно быть установлено надежное закрепление зажимов приборов, плавный ход и четкая фиксация переключателей. Электрическую прочность и сопротивление изоляции проверяют по ГОСТ 8711—78 для амперметров и вольтметров и по ГОСТ 8476—78 — для ваттметров и варметров. Электрическое сопротивление изоляции не должно превышать значения, установленного в ГОСТ 8711—78 для амперметров и вольтметров и в ГОСТ 8476—78 — для ваттметров и варметров.