Электротехника Часть 5 Методы расчёта электрических цепей
Всем доброго времени суток. В прошлой статье я рассматривал типы соединений приемников энергии в электрических цепях, а так же законы Кирхгофа, которые определяют основные соотношения токов и напряжений в этих цепях. Но кроме знания основных законов электротехники необходимо уметь рассчитывать неизвестные параметры электрических цепей по заданным известным параметрам. Так, например, по известным напряжениям, ЭДС и сопротивлениям необходимо знать какую мощность будет потреблять тот или иной приемник энергии, а так же вся цепь в целом. Этим мы и займёмся в данной статье.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Расчёт электрических цепей с помощью законов Кирхгофа
Существует несколько методов расчёта электрических цепей, которые различаются между собой параметрами, которые необходимо найти, а так же количеством необходимых расчётов.
Вначале я расскажу, как произвести расчёт цепи в общем виде, но в результате размеры вычислений будут неоправданно большими. Данный метод расчёта основан на законах Ома и Кирхгофа и используется при расчётах небольших цепей с малым количеством контуров. Для этого составляют систему уравнений из (q — 1) уравнений для узлов цепи и n уравнений для независимых контуров. Независимые контуры характеризуются тем, что при составлении уравнений для каждого нового контура входит хотя бы одна новая ветвь, не вошедшая в предыдущий контур. Таким образом, количество уравнений в системе уравнений по данному методу расчёта цепи будет определяться следующим выражением
В качестве примера рассчитаем электрическую цепь, приведённую на рисунке ниже
Пример электрической цепи для расчёта по законам Ома и Кирхгофа.
В качестве примера возьмём следующие параметры схемы: E1 = 50 B, E2 = 30 B, R1 = R3 = 10 Ом, R2 = R5 = 20 Ом, R4 = 25 Ом.
-
Составим уравнение по первому закону Кирхгофа. Так как узла у нас два, то выберем узел А и составим для него уравнение. Я выбрал условно, что токи I1 и I2 втекают в узел, а I3 – вытекает, тогда уравнение будет иметь вид
Таким образом, получившаяся система уравнений будет иметь следующий вид
Решив данную систему, получим следующие результаты: I1 ≈ 0,564 А, I2 ≈ 0,103 А, I2 ≈ 0,667 А.
В результате решения системы уравнений по данному методу может оказаться, что токи получились отрицательными. Это значит, что действительное направление токов противоположно по направлению выбранному.
Метод контурных токов
Рассмотренный выше метод расчета электрических цепей при анализе больших и разветвленных цепей приводит к неоправданно трудоемким расчетам, поэтому редко применяется. Более широко используется метод контурных токов, позволяющий значительно сократить количество уравнений. При этом вместо токов в ветвях электрической цепи определяются так называемые контурные токи при помощи второго закона Кирхгофа. Таким образом, количество требуемых уравнений будет равняться числу независимых контуров. В качестве примера рассчитаем цепь изображённую на рисунке ниже
Расчет цепи методом контурных токов.
Если бы мы вели расчёт цепи по методу законов Ома и Кирхгофа, то необходимо было бы решить систему из пяти уравнений. Для расчёта по методу контурных токов необходимо всего три уравнения.
В начале расчёта выделяют независимые контуры, в нашем случае это: E1R1R2E2, E2R2R4E3R3 и E3R4R5. Затем контурам присваивают произвольно направленный контурный ток, который имеет одинаковое направление для всех участков выбранного контура, в нашем случае для первого контура контурный ток будет Ia, для второго – Ib, для третьего – Ic. Как видно из рисунка некоторые контурные токи соответствуют токам в ветвях
Остальные же токи можно найти как разность двух контурных токов
В результате выбора контурных токов можно составить систему уравнений по второму закону Кирхгофа
Рассчитаем схему, изображённую на рисунке выше со следующими параметрами E1 = E3 = 100 B, E2 = 50 B, R1 = R2 = 10 Ом, R3 = R4 = R5 = 20 Ом. Запишем систему уравнений
В результате решения системы получим Ia = I1 = 4,286 А, Ib = I3 = 3,571 А, Ic = I5 = -0,714 А, I2 = -0,715 А, I4 = 4,285 А. Так же как и в предыдущем случае если токи получаются отрицательными, значит действительное направление противоположно принятому. Таким образом, токи I2 и I5 имеют направление противоположное изображённым на рисунке.
Метод узловых напряжений
Кроме метода контурных токов, для уменьшения трудоемкости расчётов, применяют метод узловых напряжений, при этом возможно еще меньшее число уравнений, так как при этом методе их число достигает
где q – количество узлов в электрической цепи.
Принцип расчёта электрической цепи заключается в следующем:
- Принимаем один из узлов цепи за базисный и присваиваем ему потенциал равный нулю;
- Для оставшихся узлов составляем уравнения по первому закону Кирхгофа, заменяя токи в ветвях по закону Ома через напряжение и сопротивление;
- После решения получившейся системы уравнений вычисляем токи в ветвях по обобщенному закону Ома.
В качестве примера возьмём предыдущую цепь и составим систему уравнений
Схема для решения уравнений методом узловых потенциалов.
В качестве базисного возьмём узел А и заземлим его, для остальных узлов B и D составим уравнения по первому закону Кирхгофа
Примем потенциалы узлов В = U1 и D = U2, тогда токи в ветвях выразятся через обобщённый закон Ома
В результате получившаяся система будет иметь следующий вид
Рассчитаем схему, изображённую на рисунке выше со следующими параметрами E1 = E3 = 100 B, E2 = 50 B, R1 = R2 = 10 Ом, R3 = R4 = R5 = 20 Ом. Запишем систему уравнений
В результате решения системы уравнений мы пришли к следующим результатам: потенциал в узле В – U1 = -57,14 В, а в узле D – U2 = 14,29 В. Теперь нетрудно посчитать, что токи в ветвях будут равны
Результат решения для токов I2 и I5 получился отрицательным, так как действительное направление токов противоположно направлению, изображённому на рисунке. Данные результаты совпадают с результатами, полученными для этой же схемы при расчёте по методу контурных токов.
Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБЫВАТЬ МОЖНО ЗДЕСЬ
Задачи на правило Кирхгофа с решением
Мы уже писали про закон Ома, а также параллельное и последовательное соединение проводников. Но это были цветочки. Сегодня разберемся с задачами посложнее: посмотрим, как решаются задачи на правила Кирхгофа.
Не забывайте подписаться на наш телеграм-канал: там вас ждут актуальные новости сферы образования, полезные лайфхаки и скидки для студентов.
Задачи на правило Кирхгофа с решением
Как решать задачи по правилу Кирхгофа? Прежде, чем приступать к решению задач, обязательно изучите теорию. Также мы подготовили для вас универсальную памятку по решению физических задач.
Задача №1 на эквивалентные преобразования соединений проводников.
Условие
Преобразуйте схему с помощью эквивалентных преобразований.
Решение
Кроме основных формул для последовательного и параллельного соединения проводников, существуют формулы для преобразования звезды резисторов в эквивалентный треугольник и наоборот. Треугольник резисторов R2 R3 R4 можно преобразовать в эквивалентную звезду RB RB RD по формулам:
Преобразованная схема будет выглядеть следующим образом:
Ответ: см. выше.
Правила Кирхгофа применяются для сложных цепей(например, для цепей с несколькими источниками питания), когда эквивалентные преобразования не приносят результата.
Задача №2 на первое правило (закон) Кирхгофа
Условие
Необходимо составить уравнения по первому закону Кирхгофа для следующей цепи:
Решение
В данной цепи 4 узла. По первому закону составляем 3 уравнения (на 1 уравнение меньше, чем количества узлов):
Ответ: см. выше.
Для решения задач на правила Кирхгофа необходимо уметь решать системы линейных уравнений. Для решения сложных систем удобно использовать специальные программы: MathCad, MatLab и т.д.
Далее для наглядности рассмотрим задачу с более простой схемой.
Задача №3 на правила Кирхгофа
Условие
Два источника питания E1=2В и E2=1В соединены по схеме, показанной на рисунке. Сопротивление R=5 Ом. Внутреннее сопротивление источников одинаково и равно r1=r2=1 Ом. Определить силу тока, который проходит через сопротивление.
Решение
По первому закону Кирхгофа сумма токов, сходящихся в узле, равна нулю (токи обозначим произвольно):
Выберем направление обхода верхнего контура против часовой стрелки. По второму закону Кирхгофа, сумма падений напряжений в контуре равна сумме ЭДС:
Запишем то же самое для второго контура, обходя его по часовой стрелке:
Объединим уравнения с неизвестными токами в систему:
Чтобы решить систему, выразим силу тока I1 из второго уравнения, а силу тока I2 – из третьего:
Первое уравнение теперь можно записать в виде:
Выражая искомый ток и подставляя значения из условия, получаем:
Ответ: 1,5 А.
Задача №4 на правила Кирхгофа
Условие
Дана схема электрической цепи. Необходимо:
- обозначить сопротивления, над каждой ветвью указать свой ток и источники ЭДС;
- указать на схеме направления токов и ЭДС;
- составить уравнения по первому и второму закону Кирхгофа.
Решение
Приведем схему, обозначив сопротивления, ЭДС и токи:
В схеме 7 токов и 4 узла. Необходимо составить 4 – 1 = 3 уравнения по первому закону Кирхгофа и 7 – 3 = 4 уравнения по второму закону Кирхгофа.
Первый закон Кирхгофа:
Второй закон Кирхгофа (выбранные контуры К1, К2, К3, К4 указаны на рисунке):
Ответ: см. выше.
Задача №5 на правила Кирхнофа
Условие
Определить все токи в ветвях, составив систему уравнений по законам Кирхгофа.
Параметры цепи: E1 = 40 В, E2 = 50 В, E3 = 60 В, R01 = 0,1 Ом, R02 = 0,3 Ом, R03 = 0,2 Ом, R1 = 4,4 Ом, R2 = 4,7 Ом, R3 = 4,6 Ом, R4 = 5,2 Ом, R5 = 7,6 Ом.
Решение
Направления токов в ветвях цепи и направления обхода контуров указаны на схеме. Цепь содержит 3 узла и 3 независимых контура. Таким образом, для расчета токов в ветвях необходимо составить два уравнения по первому закону Кирхгофа и три по второму:
Подставим числовые значения и решим систему уравнений:
Ответ: I1=10,68 А; I2=8,388 А; I3=7,192 А; I4=4,9 А; I5=2,292 А.
Вопросы на правила Кирхгофа
Вопрос 1. Сформулируйте первый закон Кирхгофа.
Ответ. Первый закон Кирхгофа связан с сохранением заряда и формулируется следующим образом:
Для любого узла электрической цепи алгебраическая сумма токов ветвей, подключенных к данному узлу, равна нулю.
Первое правило Кирхгофа является следствием закона сохранения электрического заряда, согласно которому ни в какой точке заряды не могут безгранично накапливаться: количество электричества, притекающее к данной точке за определенный промежуток времени, должно быть равно количеству электричества, оттекающему от неё.
Вопрос 2. Как следует выбирать направления токов в ветвях электрической цепи?
Ответ. Направления токов во всех ветвях электрической цепи задаются произвольно до составления уравнений. Токи, входящие в узел, принято считать положительными, а выходящие из узла – отрицательными.
Вопрос 3. Как формулируется второй закон Кирхгофа?
Ответ. Второй закон Кирхгофа связан с законом сохранения энергии и формулируется следующим образом:
Алгебраическая сумма всех ЭДС контура электрической цепи равна алгебраической сумме напряжений и алгебраической сумме падений напряжений на всех его участках.
Вопрос 4. Что следует учитывать при составлении уравнений второго закона Кирхгофа для цепи и ее конкретного контура.
Ответ. Перед составлением уравнений второго закона Кирхгофа для цепи необходимо произвольно выбрать направления токов во всех ветвях цепи и определить направление обхода контура.
При составлении уравнения для конкретного контура учитываются:
- токи, входящие в узлы принимаются положительными;
- ЭДС источников принимаются положительными, если
- направления их действия (стрелка) совпадает с выбранным направлением обхода (независимо от направления тока в них);
- падения напряжений в ветвях (IkRk) принимаются положительными, если положительное направление тока совпадает с выбранным направлением обхода;
- напряжения Uk, включенные в контур, принимаются положительными, если эти напряжения создают ток, направленный также как и направление обхода (направление напряжения, определяемое стрелкой, совпадает с направлением обхода).
Вопрос 5. Что такое эквивалентные преобразования последовательного и параллельного соединения пассивных элементов?
Ответ. Задачей эквивалентного преобразования последовательного и параллельного соединения пассивных элементов, является последовательное упрощение исходной схемы и нахождение эквивалентного сопротивления схемы.
Нужна помощь в решении задач и других студенческих заданий? Профессиональный сервис помощи учащимся окажет оперативную помощь с выполнением любой работы.