Электрон больше чем атом
Перейти к содержимому

Электрон больше чем атом

  • автор:

 

Электроны: на задворках атомов

Электроны, крохотные объекты, населяющие задворки атомов, играют ведущую роль в химии, переносят электрический ток по нашим электрическим сетям и внутри ударов молний, и составляют «катодные лучи», использовавшиеся для создания изображений в телевидении XX века и на экранах компьютеров. Это наиболее типичный пример (вроде бы) элементарных частиц.

Под «элементарными» я подразумеваю, что электроны неделимы и не состоят из частиц меньшего размера. При помощи «вроде бы» я напоминаю, что они элементарны, насколько нам позволяют судить об этом современные знания – то, что мы знаем об электронах, получено в экспериментах, а наши эксперименты не обладают бесконечной властью. Если электроны не элементарны, но настолько малы, что наши текущие эксперименты не могут их разломать – они будут выглядеть элементарными во всех экспериментах, проведённых нами в прошлом и настоящем, но не во всех будущих экспериментах. Так что, когда-нибудь – ведь 80 лет назад люди считали, что протоны могут быть элементарными, но им не хватало знаний, а 150 лет назад люди считали, что атомы могут быть элементарными, но им не хватало знаний – мы можем обнаружить, что электроны не элементарны. Но пока, поскольку все доступные нам эксперименты демонстрируют, что они элементарны, мы будем условно предполагать, что так и есть – помня, что это частично экспериментальный факт, и частично – предположение!

Электрон стал первой из обнаруженных субатомных частиц (первым найденным объектом, чей размер был меньше атома). Во времена его открытия, в 1890-х (обычно пишут 1897 год, но это открытие было в некотором роде постепенным), научные дебаты по поводу того, состоит ли материя из атомов, или же атомы были просто выдумкой, удобной для описания поведения материи, подходили к концу. Но даже те, кто верил в существование атомов, не обязательно считали, что атомы были неделимы (как предполагало их имя, произошедшее от греческого «неразрезаемый»). Поколение спустя, к середине 1930-х, физики подтвердили существование атомов, поняли их базовую структуру и узнали, как подсчитывать их свойства с высокой точностью. Эти подсчёты они провели с помощью уравнений из теории поведения материи 1920-х годов, называемой «квантовая механика», ставшей необходимой потому, что знаменитые уравнения Ньютона не справлялись с описанием работы атомов. Многие ключевые проверки точности квантовой механики были связаны с точными измерениями поведения электронов внутри и снаружи атомов.

Все электроны идентичны и неразличимы; если я поменяю два из них местами, вы не сможете этого обнаружить. Так что я могу писать о «свойстве электрона», а вы можете быть уверены в том, что эти свойства таковы для всех электронов. Какие же свойства присущи им?

Масса!

У электрона есть масса – она мала по сравнению с массой любого атома, поэтому про неё обычно можно забыть в начальных классах химии, но она не настолько мала, чтобы забыть о ней в физике частиц и даже в понимании структуры атомов. Хотя электроны не вносят значительного вклада в массу атома, масса электрона необходима для определения размера атома. В этом, в частности, заключается важность поля и частицы Хиггса. Эту массу можно записать по-разному, и каждый из способов даёт вам свою перспективу:

  • Она равна примерно 9 × 10 -31 кг = 0.000 000 000 000 000 000 000 000 000 000 9 кг.
  • Она равна примерно 0,05% (точнее, 1/1838) массы атома водорода – легчайшего атома в природе. Большая часть его массы содержится в его ядре.
  • Энергия, хранящаяся в массе электрона, E = mc 2 , равна 0,000 511 ГэВ. Это в 200 000 раз больше энергии, переносимой одним фотоном зелёного цвета. В физике частиц масса частицы часто записывается через обратное взаимоотношение энергии и массы: для стационарной частицы m = E / c 2 . В этих терминах масса электрона равна 0,000511 ГэВ / c 2 .

Электрический заряд!

У электрона есть электрический заряд – а значит, на него действуют электрическое и магнитное поля. На электрически заряженную частицу в присутствии электрического поля будет действовать электрическая сила. Именно такие силы удерживают электроны внутри их атомов.

Насколько велик электрический заряд электрона? Представьте себе статическое электричество – вы прошли в ботинках по ковру, а затем, прикоснувшись к дверной ручке, другому человеку или компьютеру (. ), вы почувствуете искру. Эта искра переносит заряд из одного места в другое – и обычно она в 10 миллионов миллионов раз больше заряда, переносимого электроном. Физики измеряют заряд с использованием произвольно выбранной единицы под названием кулон (так же, как время измеряется в секундах и длина в метрах). В типичном заряде статического электричества содержится одна миллионная доля кулона. Величину заряда электрона обычно обозначают e, и e примерно равно 1,6 × 10 -19 Кл.

Размер?

Размер электрона неизвестен; он может оказаться точечным объектом без размера, или у него может быть чрезвычайно малый размер, радиус которого не превышает 10 -18 м. Это, по меньшей мере, в 100 000 000 раз меньше радиуса атома. В ином случае мы бы видели признаки размера электрона в экспериментах.

Как на самом деле выглядит электрон? Как я писал в статье про атомы, определить понятие размера элементарной частицы сложно, поскольку электрон, хотя его и называют частицей, не является какой-нибудь пылинкой или крупинкой соли или песка. У него также есть и волновые свойства. В атоме электроны в каком-то смысле распределены по всему атому, как распространяется звуковая волна от барабана. В этом смысле, находясь внутри атома, они имеют размер всего атома.

Но это контекстуальный, а не присущий самому электрону размер. Я так и буду называть это «контекстуальным размером». Измените контекст – выньте электрон из атома, поместите его в маленькую металлическую коробку – и распределение электрона может вырасти или ужаться. У протона, наоборот, есть присущий ему размер, примерно в 100 000 раз меньше атома. Ни в каком смысле нельзя сделать протон меньше присущего ему размера, не разломав его. Короче, контекстуальный размер не может быть меньше внутреннего размера. Уменьшив контекстуальный размер электрона до минимума, в основном через рассеяние электронов высокой энергии с других частиц, мы искали их внутренний размер. Пока что ничего не нашли.

Так что, можно сказать, что эксперименты показывают, что присущий электрону размер меньше, чем 10 -18 м. А как далеко электрон распространяется в виде волны, зависит от контекста.

Про это свойство вы могли и не слышать. Оно может покорёжить вам мозг (как покорёжило мне!)

Среди странных свойств квантового мира есть очень странный факт (впервые открытый в 1920-х Гаудсмитом и Уленбеком, пытавшимися осмыслить данные, полученные с измерений электронов в атоме) — элементарные частицы могут крутиться, даже не имея размера! Представить это невозможно: мне, по крайней мере, это недоступно. Скажем это в практическом смысле: электроны и многие другие частицы природы ведут себя так, будто это маленькие вращающиеся волчки – если их поглощает другой объект, это заставляет этот объект немного крутиться. Представьте себе, как вращающийся кусок мягкой глины падает на способный крутиться стол. Глина прилипнет к столу, и стол начнёт вращаться.

Что ещё более странно, каждый из типов частиц всегда вращается с одной и той же скоростью! Мы говорим, что у электронов спин равен 1/2; это самая малая ненулевая скорость вращения, которой способна обладать частица. Нам также известны другие типы элементарных частиц со спином 1/2, 1, и (как мы думаем) 0, и не-элементарных частиц со спинами 0, 1/2, 1, 3/2, 2, 5/2, и далее, до очень больших значений.

Магнетизм↑

Электрически заряженный вращающийся шар вёл бы себя, как магнит, и вы можете догадаться, что поскольку у электронов есть заряд и спин, они ведут себя, как магниты. И вы правы! То, что электроны ведут себя, как маленькие магниты, помогает подтвердить тот факт, что они на самом деле вращаются. Обычные, повседневные магниты, сделанные из, допустим, железа, приобретают свой магнетизм от электронов; множества и множества электронов, чьи спины аккуратно выровнены, могут создать большой магнит из множеств и множеств маленьких!

А вы уверены в том, что электроны реально существуют?

Не пора ли в этой статье продемонстрировать изображение электрона?


Электрически заряженная частица проходит через специально подготовленную пузырьковую камеру, оставит за собой след из пузырьков. Пузырьки быстро раздуваются до видимого размера, а затем этот след можно сфотографировать. Магнитное поле изгибает путь частиц; направление изгиба сообщает вам, был ли заряд частицы положительным или отрицательным. Это знаменитое фото 1933 года демонстрирует тонкий искривлённый путь пузырьков, отмеченный красными стрелками, ведущий себя точно так же, как след электрона – за исключением того, что след электрона выгнулся бы вправо. Изгиб не в ту сторону доказывает, что у частицы, оставившей след, заряд положительный, и поэтому след оставлен позитроном, античастицей электрона. Горизонтальная черта и диагональные линии – это артефакты фотографии и экспериментальной установки.

В отличие от молекул и атомов, достаточно крупных для того, чтобы сделать их фотографии при помощи особых микроскопов, изображение электрона сделать невозможно. Он просто слишком мал и неуловим. Мы можем делать изображения следов электронов, проходящих сквозь материю, как на рисунке (там показан антиэлектрон, позитрон, но электрон выглядел бы практически точно так же), но мы не можем получать изображения электронов напрямую.

Но наша уверенность в существовании электронов очень сильна, а наши знания их свойств весьма точны. Откуда берётся это уверенность?

Это важный вопрос, поскольку один из самых частых вопросов, который задают специалистам по физике частиц – это знаем ли мы на самом деле, что эти частицы существуют, или же мы обманываем себя (и всех остальных), и тратим кучу денег на ерунду, которая оказывается всего лишь горячим воздухом, выходящим из наших голов.

Да, мы знаем, что мы делаем. И мы знаем об этом уже более ста лет. Часть нашей уверенности получена благодаря таким изображениям, которое приведено выше. Но есть и множество других источников уверенности, о которых я, возможно, напишу позже.

Самые маленькие частицы во Вселенной ⁠ ⁠

Ответ на постоянный вопрос о самой маленькой вещи во Вселенной развился вместе с человечеством. Люди когда-то думали, что песчинки были строительными блоками того, что мы видим вокруг.

Затем был открыт атом. Концепция атомов была впервые предложена греками, которые полагали, что объекты могут быть бесконечно разделены на две части, пока не останется одна неделимая частичка материи. Эта невообразимо малая единица не могла быть разделена дальше и поэтому называлась «атомом», образованным от греческого слова A-tomos. Где «А» означает «нет» и «томос» – делить.

Он считался неделимым, пока он не раскололся, чтобы обнаружить протоны, нейтроны и электроны внутри. Они тоже казались фундаментальными частицами, прежде чем ученые обнаружили, что протоны и нейтроны состоят из трех кварков каждый.

Так какие же из частиц являются самыми маленькими во Вселенной?

10. Электрон

Самые маленькие частицы во Вселенной Частица, Наука, Маленький размер, Длиннопост

Электрон – отрицательно заряженная субатомная частица. Он может быть свободным (не привязанным к какому-либо атому) или связанным с ядром атома. Электроны в атомах существуют в сферических оболочках различного радиуса, представляющих энергетические уровни. Чем больше сферическая оболочка, тем выше энергия, содержащаяся в электроне электрических проводниках поток тока возникает в результате движения электронов от атома к атому в отдельности и от отрицательных к положительным электрическим полюсам в целом. В полупроводниковых материалах ток также возникает как движение электронов.

Самые маленькие частицы во Вселенной Частица, Наука, Маленький размер, Длиннопост

Позитроны – это античастицы электронов. Основным отличием от электронов является их положительный заряд. Позитроны образуются при распаде нуклидов, в ядре которых имеется избыток протонов по сравнению с числом нейронов, когда происходит распад, эти радионуклиды испускают позитрон и нейтрино.

В то время как нейтрино выходит без взаимодействия с окружающим веществом, позитрон взаимодействует с электроном. Во время этого процесса аннигиляции массы позитрона и электрона превращаются в два фотона, которые расходятся в почти противоположных направлениях.

Самые маленькие частицы во Вселенной Частица, Наука, Маленький размер, Длиннопост

Протонная стабильная субатомная частица с положительным зарядом, равным по величине единице заряда электрона и массой покоя 1,67262 × 10 -27 кг.

Около десяти лет назад казалось, что и спектроскопия, и эксперименты по рассеянию сходились на протонном радиусе 0,8768 фемтометров (миллионные доли миллионной доли миллиметра).

Но в 2010 году новый поворот в спектроскопии поставил под сомнение этот идиллический консенсус. Команда измерила протонный радиус 0,84184 фемтометров.

Самые маленькие частицы во Вселенной Частица, Наука, Маленький размер, Длиннопост

Вы знаете, что нейтроны находятся в ядре атома. В нормальных условиях протоны и нейтроны слипаются в ядре. Во время радиоактивного распада они могут быть выбиты оттуда. Нейтронные числа способны изменять массу атомов, потому что они весят примерно столько же, сколько протон и электрон вместе.

Нейтроны можно найти практически во всех атомах вместе с протонами и электронами. Водород -1 является единственным исключением. Атомы с одинаковым количеством протонов, но с разным количеством нейтронов называются изотопами одного и того же элемента.

Количество нейтронов в атоме не влияет на его химические свойства. Однако это влияет на его период полураспада, меру его стабильности. Нестабильный изотоп имеет короткий период полураспада, при котором половина его распадается на более легкие элементы.

Самые маленькие частицы во Вселенной Частица, Наука, Маленький размер, Длиннопост

Представьте себе луч желтого солнечного света, сияющего через окно. Согласно квантовой физике, этот луч состоит из миллиардов крошечных пакетов света, называемых фотонами, которые текут по воздуху. Но что такое фотон?

Фотон – это наименьшее дискретное количество или квант электромагнитного излучения. Это основная единица всего света.

Фотоны всегда находятся в движении и в вакууме движутся с постоянной скоростью всем наблюдателям 2,998 × 10 8 м/с. Обычно это называют скоростью света, обозначаемой буквой с.

Согласно квантовой теории света Эйнштейна, фотоны имеют энергию, равную частоте их колебаний, умноженной на постоянную Планка. Эйнштейн доказал, что свет – это поток фотонов, энергия этих фотонов – это высота частоты их колебаний, а интенсивность света соответствует количеству фотонов.

Самые маленькие частицы во Вселенной Частица, Наука, Маленький размер, Длиннопост

Кварк – одна из фундаментальных частиц в физике. Они соединяются, чтобы сформировать адроны, такие как протоны и нейтроны, которые являются компонентами ядер атомов.

Кварк имеет ограничение, что означает, что кварки не наблюдаются независимо, но всегда в сочетании с другими кварками. Это делает невозможным непосредственное измерение свойств (массы, спина и четности); эти черты должны быть выведены из частиц, состоящих из них.

 

Самые маленькие частицы во Вселенной Частица, Наука, Маленький размер, Длиннопост

Спустя миллионную долю секунды после Большого взрыва Вселенная была невероятно плотной плазмой, настолько горячей, что не могло существовать ни ядер, ни даже ядерных частиц.

Плазма состояла из кварков, частиц, которые составляют нуклоны и некоторые другие элементарные частицы, и глюонов, безмассовых частиц, которые «переносят» силу между кварками.

Глюоны – это обменные частицы для цветовой силы между кварками, аналогичные обмену фотонов в электромагнитной силе между двумя заряженными частицами. Глюон можно считать фундаментальной обменной частицей, лежащей в основе сильного взаимодействия между протонами и нейтронами в ядре.

Самые маленькие частицы во Вселенной Частица, Наука, Маленький размер, Длиннопост

Мюоны имеют такой же отрицательный заряд, как и электроны, но в 200 раз больше массы. Они возникают, когда частицы высокой энергии, называемые космическими лучами, врезаются в атомы в атмосфере Земли.

Путешествуя со скоростью, близкой к скорости света, мюоны осыпают Землю со всех сторон. Каждая область планеты размером с руку поражена примерно одним мюоном в секунду, и частицы могут пройти через сотни метров твердого материала, прежде чем они будут поглощены.

По словам Кристины Карлогану, физика из Физической лаборатории Клермон-Феррана во Франции, их вездесущность и проникающая способность делают мюоны идеальными для визуализации больших плотных объектов без их повреждения.

Самые маленькие частицы во Вселенной Частица, Наука, Маленький размер, Длиннопост

Нейтрино – это субатомная частица, которая очень похожа на электрон, но не имеет электрического заряда и очень маленькой массы, которая может даже быть нулевой.

Нейтрино являются одной из самых распространенных частиц во Вселенной. Однако, поскольку они очень мало взаимодействуют с материей, их невероятно сложно обнаружить.

Для обнаружения нейтрино требуются очень большие и очень чувствительные детекторы. Как правило, нейтрино с низкой энергией проходит через многие световые годы нормальной материи, прежде чем взаимодействовать с чем-либо.

Следовательно, все наземные нейтринные эксперименты основаны на измерении крошечной доли нейтрино, которые взаимодействуют в детекторах разумного размера.

1. Бозон Хиггса («Частица Бога»)

Самые маленькие частицы во Вселенной Частица, Наука, Маленький размер, Длиннопост

Физике частиц обычно тяжело конкурировать с политикой и сплетнями знаменитостей за заголовки, но бозон Хиггса привлек серьезное внимание. Возможно, знаменитое и неоднозначное прозвище знаменитого бозона, «Частица Бога», заставляло гудеть средства массовой информации.

С другой стороны, интригующая возможность того, что бозон Хиггса отвечает за всю массу во Вселенной, захватывает воображение.

Бозон Хиггса является, если не сказать, самой дорогой частицей всех времен. Это немного несправедливое сравнение; например, для открытия электрона потребовалось немного больше, чем для вакуумной трубки и настоящего гения, а для поиска бозона Хиггса потребовалось создание экспериментальных энергий, которые раньше редко встречались на планете Земля.

О протонах, электронах и атомах на пальцах. По понятиям Творца.

Будем, однако, благодарны этому Паули. Ибо без его епитимьи, названной позднее принципом запрета Паули, не было бы никакой химии, никаких молекул кроме молекулы водорода и не было бы никакой Жизни. За что ему, несомненно, следует присвоить чин архангела. И заодно посмотреть на тот порядок в атомах, который он установил вместе с другими архангелами квантового мира. По тем понятиям, которые внушил им Творец.

1. Создание кирпичиков для постройки атомов. Творец понимал лозунги Свободы, Равенства и Братства весьма своеобразно. Он признал Равенство электрона и протона по росту и ширине спины величине электрического заряда и магнитного момента (спина). Но по толщине кошелька массе сделал их очень разными. Подарив протону массу почти в 2000 раз большую, чем электрону.

Свободу Всевышний понимал как осознанную необходимость. Даруя ее только тем электронам, которым внешние силы смогли навязать эту идею. Остальные же электроны отдал в рабство протонам. Внушив им, что это рабство и есть проявление Братства.

И тут в игру вступил архангел Гайзенберг. Заметив, что по замыслу Творца мир не должен быть заполнен точечными, то есть имеющими нулевой размер, частицами. И потому наложил свой запрет, названный позднее принципом неопределенности:

Δv * Δx > h / m, (1)

где h — постоянная уже старого к тому моменту архангела Планка, а m — масса частицы (протона или электрона). О чем говорит этот запрет? Он говорит, что если, не дай бог, электрон или протон станут имеющими нулевой размер частицами (неопределенность их положения Δx = 0), то неопределенность их скорости Δv станет бесконечной и неизвестно где они окажутся в следующий момент времени. Что недопустимо. Ибо Творец запретил кому либо двигаться со скоростью большей скорости света. Поэтому то же самое неравенство можно записать так:

Δ x > h / , (2)

где с — скорость света.

Из неравенства (2) следует, что минимальный размер имеющей массу частицы Δ x min

h / mс. Отсюда следует, что размер протона никак не может быть меньше примерно одной десятитриллионной части сантиметра <

10 ↑ (-13) см>. Протон так и поступил — сделал свой размер чуть больше этого минимума.

А размер электрона по тому же неравенству не может быть меньше нескольких миллиардных долей сантиметра. Электрон неукоснительно соблюдает это правило. Приближаясь к указанному минимуму лишь в самых внутренних электронных оболочках атомов с самыми большими атомными номерами. И далеко и вольготно удалясь от этого минимума в атомах с малыми атомными номерами.

2. Атом водорода. Атом водорода устроен проще пареной репы. В нем один протон и один электрон. В школе нас всех учили, что электрон вращается вокруг протона. Ничего подобного. Электрон в основном состоянии атома водорода вокруг протона не вращается. Он выбрал для себя роль шубы, надежно экранирующей своим зарядом равный по величине заряд протона. Вот так:

Рис.1. Атом водорода.

На этой картинке внизу — график вероятности обнаружения электрона на конкретном расстоянии от протона. Ибо позиция "0" на графике определяет местонахождение протона. А электрон образует собой сферически симметричную шубу вокруг протона. И вверху картинки — изображение этой электронной шубы в атоме водорода. Диаметр этой шубы — примерно одна стомиллионная доля сантиметра. Что в десятки раз больше разрешенного электрону архангелом Гайзенбергом минимального размера.

Шуба эта сидит на протоне достаточно прочно. Чтобы ее снять, то есть ионизовать атом водорода, надо затратить немало энергии. Конкретно — 13,6 электронвольт (эВ — единица измерения энергии в атомной физике). Если делать это квантами света, то нужны фотоны с длиной волны вчетверо меньшей длины волны фиолетового света. И, следовательно, вчетверо энергичнее фиолетового фотона. Такие фотоны мы своими глазами не воспринимаем.

Почему водород одновалентен? У него только один электрон и только его он может командировать на наведение связи с другим атомом. Но у него есть и еще одно место на его основном энергетическом уровне (1s — уровень), которое принцип запрета Паули оставил свободным. Поэтому водород может и пригласить в свою шубу один электрон из другого атома. Оба варианта делают водород одновалентным.

У атома водорода есть и возбужденные состояния, в которых электронная шуба протона может раздуваться или даже деформироваться. Но дабы не замыливать никому мозги изображать такие шубы не буду.

3. Атом гелия. В ядре атома гелия — два протона и два нейтрона (нейтрон — это практически протон без электрического заряда). Ясно, что такое ядро своим электрическим зарядом вдвое сильнее притягивает электроны, чем один протон. И потому оба электрона атома гелия находятся заметно ближе к ядру, чем электрон в атоме водорода. Из приведенного ниже графика следует, что атом гелия, как размер шубы ядра гелия, почти вдвое меньше атома водорода.


Рис.2. Размеры атомов (по горизонтали — атомный номер, равный числу протонов в ядре атома, по вертикали — радиус атома в нанометрах, равных десятимиллионным долям сантиметра).

В атоме гелия оба электрона сидят на одном энергетическом уровне 1s. И образуют единую сферически симметричную электронную шубу для атомного ядра. Но эта шуба по сравнению с шубой в атоме водорода обладает двумя особенностями. Во-первых, эта шуба двусторонняя — пошита и мехом вверх и мехом вниз. В том смысле, что принцип запрета Паули позволяет обоим электронам сидеть на одном энергетическом уровне только в таких позициях, в коих их спины (магнитные моменты) противонаправлены — у одного вверх, у другого вниз. Неважно, что понимать под верхом, лишь бы низ был в противоположном направлении.

Во-вторых, из-за более сильного притяжения к ядру гелия его электронную шубу труднее с него снять. Из графика на рис. 3. видно, что энергия, необходимая для отрыва только одного электрона от атома гелия почти вдвое больше, чем энергия отрыва электрона от атома водорода. Конкретно — 24,6 электронвольт. Поэтому для ионизации атома гелия нужен почти вдвое более жесткий, чем для ионизации водорода, ультрафиолетовый фотон. И по этой же причине гелий практически ни с какими атомами не вступает в химические реакции — слишком энергетически затратно направить хотя бы один электрон атома гелия на организацию химической связи с любым другим атомом. Из-за чего мы вынуждены считать гелий химически нейтральным.


Рис. 3. Энергия, необходимая для отрыва одного электрона от атома (по горизонтали — число протонов в ядре атома, по вертикали — энергия однократной ионизации в электронвольтах).

4. Атомы лития и бериллия. У атомов лития и бериллия по 3 и 4 протона в ядре соответственно. Внутренняя шуба из двух электронов еще более компактна, чем у гелия. И ее электроны ни в каких химических реакциях никогда не участвуют. Но появляется внешняя электронная шуба из одного (у лития) и двух (у бериллия) электронов, сидящих на гораздо более высоком энергетическом уровне. Который будем называть вторым (2s — уровень). Внешняя шуба, как и внутренняя, сферически симметрична. Из-за более слабой связи электронов внешней шубы с ядром размеры этих атомов больше, чем у атома водорода (рис.2), а энергия связи — существенно меньше (рис.3). Поэтому литий и бериллий имеют валентности 1 и 2 соответственно.

5. Атомы от бора до неона. У всех этих атомов энергетические уровни 1s и 2s полностью заняты — архангел Паули запретил на них садиться другим электронам. Но есть довольно близкий к уровню 2s по энергетике уровень 2р. И на него можно сажать электроны, которые будут вращаться вокруг ядра атома, создавая третью шубейку. Совсем не сферически симметричную. На этот уровень можно посадить до 6 электронов (больше Паули не позволит). На уровне 2р бор имеет один электрон, который обычно отдает другому атому, вступая с ним в связь. И потому бор одновалентен.

У углерода на энергетическом уровне 2р два электрона, но он взял в привычку не отдавать их другим атомам, а приглашать электроны других атомов на 4 еще свободных места на энергетическом уровне 2р. Становясь, тем самым, 4-валентным. И такое гостеприимство было вознаграждено Творцом — углерод стал базовым элементом любых проялений мыслимой нами Жизни.

Другие элементы этой же строки таблицы Менделеева, как и других ее строк, обсуждать здесь не буду. Большинству из вас будет достаточно уже написанного, а кому недостаточно — сам разберется.

Но в заключение хочу отметить два важных момента. Самые большие по размеру атомы — не более чем в 5 раз больше атома водорода, самые маленькие — не более чем в два раза меньше атома водорода. И у всех энергетика взаимодействия между собой лежит в полностью в ультрафиолетовом диапазоне. Оберегая наши глаза, не восприимчивые к фотонам этого диапазона, от ослепительных свершений Творца.

Какую изобретательность проявил Творец, создав столь многообразный набор кирпичиков мироздания, не слишком сильно различающихся по размерам и энергетике взаимодействия между собой!

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *