Эффект Пельтье и его применение (стр. 1 из 3)
Изготовить устройство в домашних условиях практически невозможно, тем более это не имеет особого смысла, учитывая его невысокую рыночную стоимость.
Но большинство умельцев все же предпочитает мастерить элемент пельтье своими руками, ссылаясь на ряд его достоинств:
- Компактность, удобство установки на самодельное электронное плато.
- Отсутствие движущихся деталей, что увеличивает сроки его эксплуатации.
- Возможность соединения нескольких элементов в каскадной схеме для снижения очень больших температур.
Тем не менее, пельтье своими руками имеет определенные недостатки: низкий коэффициент полезного действия (КПД), необходимость подачи высокого тока для получения заметного перепада температуры, сложность отведения тепловой энергии от охлаждаемой поверхности.
Рассмотрим на примере схем, как сделать пельтье своими руками:
- Задействовать его в качестве детали термоэлектрического генератора, согласно рисунку подключения.
- Собрать простой преобразователь на микросхеме ИМС L6920 (рисунок 1).
Рисунок 1. Элемент пельтье своими руками: универсальная схема
Далее стоит следовать простой инструкции, как сделать пельтье своими руками:
- Подать на вход получившегося преобразователя напряжение диапазоном 0.8-5.5В, чтобы иметь на выходе стабильные 5В.
- При использовании устройства обычного типа — поставить лимит температуры нагреваемой стороны в 150 градусов.
- Для калибровки — в качестве источника тепла использовать емкость с кипящей водой, которая точно не нагреется свыше 100 градусов.
Описание технологии и принцип действия
Способ работы термоэлектрического охладителя достаточно прост. Эффект пельтье своими руками основывается на контакте двух проводников тока, обладающих разным уровнем энергии электронов в зоне своей проводимости.
Рисунок 2. Принцип действия элемента
При подаче электротока через такую связь, электрон приобретает высокую энергию, позволяющую ему перейти в более высокоэнергетическую зону проводимости второго полупроводника. Когда эта энергия поглощается, происходит остуживание места охлаждения проводников (рисунок 2).
При протекании процесса в обратном направлении — реакция приводит к нагреванию контактного места и обычному тепловому эффекту.
Посмотрев пельтье своими руками видео, можно сделать определенные выводы о принципе его действия:
- Величина подаваемого тока будет пропорциональной степени охлаждения — если с одной стороны модуля сделать хороший теплоотвод, при использовании радиаторных схем, его холодная сторона обеспечит максимально низкую температуру.
- При смене полярности тока — нагревающая и охлаждающая плоскости меняются метами.
- При контакте объекта с металлической поверхностью, он становится настолько мал, что его нельзя увидеть на фоне омического нагрева, других эффектов теплопроводности, поэтому на практике применяют два полупроводника.
- Благодаря разнообразному количеству термопар — от 1 до 100, можно добиться практически любого показателя холодильных мощностей.
Технические характеристики элемента пельтье
Компонент получил широкое применение в различных холодильных схемах.
Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии |
Стартовая страница | О системе | Технические требования | Синтез | Обучающий модуль | Справка по системе | Контакты |
Общий каталог эффектов
- Естественнонаучные эффекты (ЕНЭ)
Выделение или поглощение (в зависимости от направления тока) тепла на контакте двух разнородных полупроводников или металла и полупроводника
Анимация
Эффект Пельтье — термоэлектрическое явление, обратное эффекту Зеебека: при пропускании электрического тока I через контакт (спай) двух различных веществ (проводников или полупроводников) на контакте, помимо джоулева тепла, происходит выделение дополнительного тепла Пельтье QP при одном направлении тока и его поглощение при обратном направлении.
Величина выделяемого тепла QP и его знак зависят от вида контактирующих веществ, силы тока и времени его прохождения:
Здесь p12=p1-p2 — коэффициент Пельтье для данного контакта, связанный с абсолютными коэффициентами Пельтье p1 и p2 контактирующих материалов. При этом считается, что ток идет от первого образца ко второму. При выделении тепла Пельтье имеем: QP>0, p12>0, p1>p2. При поглощении тепла Пельтье оно считается отрицательным и соответственно: QP<0, p12<0, p1<p2. Очевидно, что p12=-p21. Размерность коэффициента Пельтье
Вместо тепла Пельтье часто используют физическую величину, определяемую как тепловая энергия, ежесекундно выделяющаяся на контакте единичной площади. Эта величина, получившая название — мощность тепловыделения, определяется формулой:
где j=I/S — плотность тока;
S — площадь контакта;
размерность этой величины [qP]СИ=Вт/м2.
Из законов термодинамики вытекает, что коэффициент Пельтье и коэффициент термоэдс a связаны соотношением:
где Т — абсолютная температура контакта.
Коэффициент Пельтье, являющийся важной технической характеристикой материалов, как правило, не измеряется, а вычисляется по коэффициенту термоэдс, измерение которого более просто.
На рис. 1 и рис. 2 изображена замкнутая цепь, составленная из двух различных полупроводников ПП1 и ПП2 с контактами А и В.
Выделение тепла Пельтье (контакт А)
Поглощение тепла Пельтье (контакт А)
Такую цепь, принято называть термоэлементом, а ее ветви — термоэлектродами. Через цепь течет ток I, созданный внешним источником e. Рис. 1 иллюстрирует ситуацию, когда на контакте А (ток течет от ПП1 к ПП2) происходит выделение тепла Пельтье QP(А)>0, а на контакте В (ток направлен от ПП2 к ПП1) его поглощение — QP(В)<0. В результате происходит изменение температур спаев: ТА>ТВ.
На рис. 2 изменение знака источника меняет направление тока на противоположное: от ПП2 к ПП1 на контакте А и от ПП1 к ПП2 на контакте В. Соответственно меняется знак тепла Пельтье и соотношение между температурами контактов: QP(А)<0, QP(В)>0, ТА<�ТВ.
Причина возникновения эффекта Пельтье на контакте полупроводников с одинаковым видом носителей тока (два полупрводника n-типа или два полупрводника p-типа) такая же, как и в случае контакта двух металлических проводников. Носители тока (электроны или дырки) по разные стороны спая имеют различную среднюю энергию, которая зависит от многих причин: энергетического спектра, концентрации, механизма рассеяния носителей заряда. Если носители, пройдя через спай, попадают в область с меньшей энергией, они передают избыток энергии кристаллической решетке, в результате чего вблизи контакта происходит выделение теплоты Пельтье (QP>0) и температура контакта повышается. При этом на другом спае носители, переходя в область с большей энергией, заимствуют недостающую энергию от решетки, происходит поглощение теплоты Пельтье (QP<0) и понижение температуры.
Эффект Пельтье, как и все термоэлектрические явления, выражен особенно сильно в цепях, составленных из электронных (n — тип) и дырочных (р — тип) полупроводников. В этом случае эффект Пельтье имеет другое объяснение. Рассмотрим ситуацию, когда ток в контакте идет от дырочного полупроводника к электронному (р ® n). При этом электроны и дырки движутся навстречу друг другу и, встретившись, рекомбинируют. В результате рекомбинации освобождается энергия, которая выделяется в виде тепла. Эта ситуация рассмотрена на рис. 3, где изображены энергетические зоны (ec — зона проводимости, ev — валентная зона) для примесных полупроводников с дырочной и электронной проводимостью.
Выделение тепла Пельтье на контакте полупроводников р и n — типа
На рис. 4 (ec — зона проводимости, ev — валентная зона) иллюстрируется поглощение тепла Пельтье для случая, когда ток идет от n к р — полупроводнику (n ® p).
Поглощение тепла Пельтье на контакте полупроводников р и n — типа
Здесь электроны в электронном и дырки в дырочном полупроводниках движутся в противоположные стороны, уходя от границы раздела. Убыль носителей тока в пограничной области восполняется за счет попарного рождения электронов и дырок. На образование таких пар требуется энергия, которая поставляется тепловыми колебаниями атомов решетки. Образующиеся электроны и дырки увлекаются в противоположные стороны электрическим полем. Поэтому пока через контакт идет ток, непрерывно происходит рождение новых пар. В результате в контакте тепло будет поглощаться.
Для того, чтобы эффект Пельтье был заметен на фоне общего разогрева, связанного с выделением тепла Джоуля-Ленца, необходимо выполнение условия: ЅQPЅі QДж.. В результате получаются следующие соотношения, которые необходимо учитывать при проведении экспериментов:
где R — сопротивление участка термоэлектрода длины l, на котором происходит выделение тепла;
r — удельное электросопротивление.
Коэффициент Пельтье, определяющий количество тепла Пельтье, выделяющегося на контакте, зависит от природы контактирующих веществ и температуры контакта: p12=a12·Т=(a1-a2)·T, где a1 и a2 абсолютные коэффициенты термоэдс контактирующих веществ. Если для большинства пар металлов коэффициент термоэдс имеет порядок 10-5..10-4 В/К, то для полупроводников он может оказаться гораздо больше (до 1.5·10-3 В/К). Для полупроводников с разным типом проводимости a имеет разные знаки, вследствие чего Ѕa12Ѕ=Ѕa1Ѕ+Ѕa2Ѕ.
Необходимо отметить, что коэффициент термоэдс сложным образом зависит от состава и температуры полупроводника, при этом, по сравнению с металлами температурная зависимость a для полупроводников выражена значительно сильнее. Знак a определяется знаком носителей заряда. Не существует общих эмпирических, и тем более, теоретических формул, которые охватывали бы термоэлектрические свойства полупроводников в широком интервале температур. Обычно термоэлектродвижущая сила a полупроводника, начиная со значения a=0 при Т=0, растет сначала пропорционально Т, затем более замедленно, часто остается постоянной в некотором интервале температур, а в области высоких температур (более 500К..700К) начинает убывать по закону a
Другой отличительной чертой полупроводников является определяющая роль примесей, введение которых позволяет не только во много раз изменять величину, но и менять знак a.
В полупроводниках со смешанной проводимостью вклады в термоэдс дырок и электронов противоположны, что приводит к малой величине a и p.
В частном случае, когда концентрации (n) и подвижности (u) электронов и дырок равны ( ne= np и ue= up ) величины a и p обращаются в ноль:
( neue — npup) / (neue + npup).
Эффект Пельтье, как и другие термоэлектрические явления имеет феноменологический характер.
Эффект Пельтье в полупроводниках используется для термоэлектрического охлаждения и подогрева, что находит практическое применение при термостатировании и в холодильных устройствах.
Явление Пельтье было открыто Ж. Пельтье (J. Peltier) в 1834 г.
- полупроводник
- электроны
- электрический ток
- дырки
- носители заряда
- термоэлемент
- температура
- тепло Пельтье
- коэффициент термоэдс
- плотность тока
- термоэлектрическое охлаждающее устройство
- коэффициент Пельтье
- термоэлектрические явления
- тепло Джоуля — Ленца
- электронная и дырочная проводимость полупроводников
- полупроводники р- и n-типа
- Термоэлектрические явления
- Полупроводники
- Электрический ток в твердых телах
- Электрическое поле
- Твердые тела
- Термодинамика
Основные направления практического использования эффекта Пельтье в полупроводниках: получение холода для создания термоэлектрических охлаждающих устройств, подогрев для целей отопления, термостатирование, управление процессом кристаллизации в условиях постоянной температуры.
Термоэлектрический метод охлаждения обладает рядом преимуществ по сравнению с другими методами охлаждения. Термоэлектрические устройства отличаются простотой управления, возможностью тонкого регулирования температуры, бесшумностью, высокой надежностью работы. Основной недостаток термоэлектрических устройств- малая величина эффективности, что не позволяет их использовать для промышленного получения «холода».
Термоэлектрические охлаждающие устройства применяются в бытовых и транспортных холодильниках, термостатах, для охлаждения и термостатирования термочувствительных элементов радиоэлектронной и оптической аппаратуры, для управления процессом кристаллизации, в медико-биологических приборах и т.д.
В компьютерной технике термоэлектрические охлаждающие устройства имеют жаргонное название ”кулеры” (от английского cooler — охладитель).
Техническая реализация Пельтье эффекта в полупроводниках
Основным технологическим узлом всех термоэлектрических охлаждающих устройств является термоэлектрическая батарея, набранная из последовательно соединенных термоэлементов. Так как металлические проводники обладают слабыми термоэлектрическими свойствами, термоэлементы делаются из полупроводнков, причем одна из ветвей термоэлемента должна состоять из чисто дырочного (р
-тип), а другая из чисто электронного (
n
-тип) полупроводника. Если выбрать такое направление тока (рис. 5), при котором на контактах, расположенных внутри холодильника тепло Пельтье будет поглощаться, а на наружных контактах выделяться в окружающее пространство, то температура внутри холодильника будет понижаться, а пространство вне холодильника нагреваться (что происходит при любой конструкции холодильника).
Принципиальная схема термоэлектрического холодильника
Главная характеристика термоэлектрического охлаждающего устройства — это эффективность охлаждения:
где α — коэффициент термоэдс;
ρ — удельное сопротивление;
λ — удельная теплопроводность полупроводника.
Параметр Z
— функция температуры и концентрации носителей заряда, причем для каждой заданной температуры существует оптимальное значение концентрации, при которой величина
Z
максимальна. Максимальное снижение температуры связано с величиной эффективности выражением:
— температура холодного спая термоэлемента.
Чем больше значение Z
для отдельных ветвей, тем больше и то значение
Z
= (α1+α2)2/(√ρ1λ1+√ρ2λ2)2, которое определяет к.п.д. всего термоэлемента. Целесообразно выбирать полупроводники с наибольшими значениями подвижности и с минимальной теплопроводностью. Введение в полупроводник тех или иных примесей — основное доступное средство изменять его показатели (α, ρ, λ) в желательную сторону.
Современные термоэлектрические охлаждающие устройства обеспечивают снижение температуры от +20оС до 200оС; их холодопроизводительность, как правило, не более 100 Вт.
Технологически стержни из полупроводниковых материалов с р
— и
n
-проводимостью (1) монтируются на теплопроводящие платы из изоляционного материала (2) с помощью металлических соединителей (3) как показано на рис. 6.
Схема термоэлектрического модуля
1. Физическая энциклопедия.- М.: Большая Российская энциклопедия, 1998.- Т.5.- С.98-99, 125.
2. Сивухин С.Д. Общий курс физики.- М.: Наука, 1977.- Т.3. Электричество.- С.490-494.
3. Стильбанс Л.С. Физика полупроводников.- М., 1967.- С.75-83, 292-311.
4. Иоффе А.Ф. Полупрводниковые термоэлементы.- М., 1960.
Стартовая страница О системе Технические требования Синтез Обучающий модуль Справка по системе Контакты | |
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина |
Холодильник на элементах пельтье своими руками
Чтобы собрать холодильный агрегат вам понадобятся достаточное количество электрических проводников и специальные инструменты (рисунок 3).
Холодильник на пельтье своими руками требует особого подхода к сборке и используемым материалам:
- Основой для платы должна служить прочная керамика;
- Для максимального температурного перепада надо подготовить не менее 20 связей;
- Правильные расчеты — залог увеличения коэффициента полезного действия на 70%;
- Наибольшую мощность используемому оборудованию даст фреон;
- Самодельный модуль устанавливается возле его испарителя, рядом с мотором;
- Монтаж производится стандартным набором инструментом с применением прокладок;
- Они необходимы для изолирования рабочей модели от пускового реле;
- Изоляция понадобится и для самой проводки, перед ее подключением к компрессору;
- Чтобы избежать короткого замыкания, сила предельного напряжения звонится тестером.
Рисунок 3. С помощью элемента пельтье можно легко собрать походный холодильник
Подобную схему можно применить для автомобильного охладителя. Автохолодильник пельтье своими руками собирается на керамической плате толщиной не менее, чем 1 миллиметр. В нем используются медные немодульные связи с пропускной способностью в 4А и применяются проводники с маркировкой «ПР20», подходящие для контактов разного типа. Для соединения устройства с конденсатором используют обычный паяльник.
Мощный генератор на 12 модулях Пельтье
Лучшее время для работы термогенератора на основе элементов пельтье, это конечно же зима. Потому что их нужно хорошо охлаждать, чтобы хоть что-то получить.
В эксперименте с испытанием мощного генератора использованы 12 модулей Пельтье TEC1-12706. Самые дешевые и популярные, продаются в этом китайском магазине. Для него есть кулер охлаждения.
Охлаждение в показанном примере осуществлялось вентилятором мощностью 5,4 ватта, 12 вольт.
О том, что это такое элемент Пельтье, какие у него характеристики и как работает, конструкции рабочих моделей, описано в нескольких статьях на нашем сайте, которые вы легко сможете найти через строку удобного поиска.
Конструкция и работа термоэлемента Пельтье
Омметром (тестером) не касаясь проводяших частей (в т.ч. тела) замерить электрическое сопротивление между проводами термо модуля. Чаще всего, встречается в термомодуле встречается электрический обрыв, смотри конструкцию и материалы, из которых делается термомодуль Пельтье. На пределе измерения 2 килоома (2k) тестер DT9208A покажет не разрыв («1»), а «ахинею» 0,2. 1,4 килоома. Бегущие показания свидетельствуют об изменении разницы температур между горячей и холодной стороной термоэлемента (полупроводниковой «термопары»).
Работа термоэлемента ТЕС1-12706
02028 Приобрел ТЕС1-12706, как убедиться в исправности; при включении на 12в в помещении греются обе стороны, а где же холод? Объясните!
Работоспособность термоэлектрических модулей Пельтье
Термоэлектрический модуль Пельтье — это по-сути много полупроводниковых термопар, включенных последовательно, и термоэлектрический модуль Пельтье явлеется микросборкой полупроводниковых термопар (кусочков полупроводника с P и N проводимостью) на плате (как провило, керамической) с металлическими облуженными дорожками.
- при пропускании электрического тока работает как тепловой насос — одна из пластин подложки (стороны, обкладки) — теплее, другая холоднее окружающей среды;
- при помещении одной стороны в тепло, а второй в холод термоэлемент работает как термэлектрический генератор постоянного электрического тока.
- высокой теплопроводностью между обкладками;
- низким тепловым контактом сторон с источником тепла/холода;
- низкой механической, температурной и электрической прочностью термомодуля.
Из этого весьма вероятно предполагаю, что в термолементе ТЕС1-12706 нарушена физическая целостность, хотя как то странно.
Но рассмотрим подробно прочность модуля.
В Википедии (в русскоязычном варианте статья — убогая, поэтому читайте на Википедию английском языке):
Thermoelectric effect — Термоэлектрический эффект — Принцип работы термоэлектического модуля.
Хрупкие полупроводниковые «кристаллы» напаяны на хрупкую керамическую подложку с коммутирующим облученным припоем рисунком. Подложка 4х4 см (!) имеет толщину ок.1 мм, полупроводниковые кристаллы имеют размер ок. 1 мм (высота — 1 мм), плошадь контакта каждого кристалла с одной стороной — 1 мм квадратный. Всего в термоэлементе Пельтье ТЕС1-12706 128 полупроводниковых параллелипедов. Толщина металлических дорожек вместе с припоем облудки — 0, шишь десятых.
Щель между сторонами-пластинами, в которой полупроводниковые тела на металлических дорожках с припоем, заклеена (заполнена?) по краям силиконом. Силиконом же заполнено и вокруг подводящих двух проводов, припаянных к металлической дорожке пластины. Из материала «Генерация электричества: практические характеристики термоэлектрических модулей Пельтье и термопар» (линк выше) следует, что тепловой поток не столько генерирует электрический ток (соответственно, в режиме холодильника — не столько отбирает тепловую энергию), сколько проходит через полупроводиковые кристаллы, с низким КПД (коэффициентом полезного действия).
Поэтому — по конструкции термомодуля ТЕС1-12706 — это не столько генератор термо-электричества, сколько тепловой контакт (если рассмотривать электричество как побочный продукт) между горячим и холодным — смотри например теплообменники самодома — samodom.netnotebook.net и envirociety.org(простите за английский!).
Кто имел дело или разбирал микросхемы или транзисторы, диоды в металлических корпусах, тот ужаснется непрочности керамической конструкции ТЕС1-12706 площадью 1600 квадратных миллиметров при толщине 4 мм. Т.е. большая плошадь и маленькая толщина, и всё это — хрупкое керамическое!
Термопаста 40 мм Х 40 мм Х 2 стороны дает очень плохое прилегание или толстый слой с большим термическим сопротивлением, радиаторы типа
Если обеспечить температурное сопротивление холодная/горячая обкладка — радиатор (водный, жидкостный) много меньше, разность температур много больше — то есть обеспечить ВОЗМОЖНОСТЬ телового потока много больше, чем через сам термоэлемент (соответственно — тепловое сопротивление термоэлемента), то появляются условия для выработки электрической энергии. Что и делается в упомянутом самодоме — без всяких вращающихся турбин с воем и шумом, и механическими поломками.
Кто был в машзалах электростанций или наоборот — заводов или насосных станций, тот знает шум и вибрации генераторов / электродвигателей. Жизнь с этими звуками и трясками окрестностей несовместима, а значит и самодом в значительной степени становится безсмыленной затеей.
Какая сторона термомодуля нагревается, какая сторона термомодуля ТЕС1-12706 охлаждается? В режиме холодильника / нагревателя
- Красный провод вывода термоэлектрического модуля Пельтье — это плюс;
- Черный провод вывода термоэлектрического модуля Пельтье — это минус.
Расположите справа красный провод, слева черный; сверху получится холодная сторона элемента, снизу — горячая сторона.
Определение горячих и холодных сторон термомодуля на практике не так уж и важны, просто такая традиция.
Где плюс, где минус на термоэлементе в режиме генерации тока
(электричество)
На проводах термогенератора ТЕС1-12706: (и аналогичных моделей)
Расположите справа красный провод — плюс, слева черный — минус; наверу получится холодная сторона элемента, внизу — горячая сторона.
Электротехнические детали получения электричества из тепла и холода из электричества
Полная развязка — это когда электрическое сопротивление подложки-провод (выводной, любой) равно бесконечности; то есть, можно подключать термогенераторы «как заблагорассудится», назначив и подключив заземление (зануление) — синий провод — ноль, корпус; фаза — черный или коричневый, земля — желтый в зелёную полосочку. Такую расцветку проводов в кабеле или одиночных применяют, в частности, в европейском строительстве.
Керамические пластины термомодулей (и холодную, и горячую) делают с высокой точностью, низкой шершавостью поверхностей для плотного прилегания к радиаторам через термопасту (для хорошего теплового контакта с твердым телом), однако качественный тепловой контакт не получается, чему способствует отсутствие креплений (например, отверстий) на термомодуле.
Поэтому, тепловой контакт НЕПОСРЕДСТВЕННО жидкости с керамической (а значит — изолирующей!) пластиной обеспечивает несравнимо лучшие условия теплопередачи. Такую тепловую схему термоэлементов применяли в ядерных (радиоизотопных) космических аппаратах — для получения электроэнергии.
Но! Как учит партия, тела при нагревании терасширяются, а при охлаждении сужаются, то есть внутри термосборок возникают большие механические напряжения, которые отрывают ненадежно припаянные полупроводниковые элементы, рвут сами полупроводниковые «кристаллы», образуют микротрещины в керамических «сторонах» — одним словом, приводят к механическим разрушениям термоэлемента.
Сайт компании изготовителя термомодулей Пельтье TEC1-12706 (одного из?)
EVERREDtronics Ltd., производитель термомодулей и светодиодов; КНР.
Технические данные на продукцию.
everredtronics.com.
последние изменения статьи 02фев2015, 21мар2017
Перепечатка (кроме материалов под «стандартным копирайтом» — знаком ©) и цитирование приветствуются, если указываются:
в любых гипертекстовых документах — прямая гиперссылка на автора и на страницу-источник;
в обычных документах — указание автора, название материала, источник (например, FAQ-for-FAQ.NetNotebook.Net).
Авторские права, интеллектуальная собственность:
Статьи: указанный в статье автор или правообладатель
Вебдизайн и структуры: © Astrela Ltd., 2010-2018; 2019-2021 Вадим Шулман
alt=»Creative Commons License» width=»» />
лицензировано под Creative Commons Attribution-Share Alike 3.0 License,
если не указано иное.
Внешние элементы: их соответствующие правообладатели и лицензии.
(С), (TM): их соответствующие правообладатели.
Как проверить элемент пельтье тестером
Принцип действия элемента Пельтье основан на эффекте Пельтье, который заключается в том, что при пропускании постоянного электрического тока через спай двух разнородных проводников, происходит перенос энергии от одного проводника спая — к другому, при этом в месте спая выделяется или поглощается тепло.
Количество выделенного или поглощенного в ходе данного процесса тепла, будет пропорционально току, времени его протекания, а также коэффициенту Пельтье, характерному для данной пары спаянных проводников. Коэффициент Пельтье, в свою очередь, равен коэффициенту термо-эдс пары, умноженному на абсолютную температуру спая в текущий момент.
И поскольку эффект Пельтье наиболее выразителен у полупроводников, то данное их свойство и используется в популярных и доступных полупроводниковых элементах Пельтье. С одной стороны элемента Пельтье тепло поглощается, с другой — выделяется. Далее мы рассмотрим это явление более внимательно.
Непосредственно физический эффект Пельтье был открыт в 1834 году французским физиком Жаном Пельтье, а спустя четыре года суть данного явления исследовал русский физик Эмилий Ленц, показавший, что если стержни из висмута и сурьмы привести в плотный контакт, на место контакта капнуть воды, а затем пропустить через спай постоянный ток определенного направления, то если при первоначальном направлении тока вода превратится в лед, значит если направление тока изменить на противоположное, то этот лед быстро растает.
В своем эксперименте Ленц наглядно продемонстрировал, что тепло Пельтье поглощается или выделяется в зависимости от направления тока через спай.
Ниже приведена таблица коэффициентов Пельтье для трех популярных пар металлов. Кстати, эффект, обратный эффекту Пельтье, называется эффектом Зеебека (когда при нагревании или охлаждении спаев замкнутой цепи, в этой цепи возникает электрический ток).
Так почему же возникает эффект Пельтье? Причина в том, что в месте контакта двух веществ имеется контактная разность потенциалов, которая порождает контактное электрическое поле между ними.
Если теперь через контакт пропустить электрический ток, то это поле будет либо помогать прохождению тока, либо препятствовать ему. Поэтому, если ток направлен против вектора напряженности контактного поля, то источник прикладываемой ЭДС должен совершить работу, и энергия источника как раз выделяется в месте контакта, это приведёт к его нагреву.
Если же ток источника будет направлен по контактному полю, то он как-бы дополнительно поддержится этим внутренним электрическим полем, и теперь поле совершит дополнительную работу по перемещению зарядов. Эта энергия отбирается теперь у вещества, что в действительности и приводит к охлаждению места спая.
Итак, поскольку мы знаем, что в элементах Пельтье используются спаи пар полупроводников, то что за процесс реализован в полупроводниках?
Все просто. Полупроводники эти отличаются уровнями энергий электронов в зоне проводимости. При прохождении электрона через место контакта данных материалов, электрон приобретает энергию, чтобы суметь перейти в более высокоэнергетическую зону проводимости другого полупроводника пары.
При поглощении электроном этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному джоулеву теплу. Если бы вместо полупроводников в элементах Пельтье использовались чистые металлы, то тепловой эффект оказался бы настолько мал, что омический нагрев значительно превзошел бы его.
В реальном преобразователе Пельтье, таком например как TEC1-12706, между двумя керамическими подложками установлены несколько параллелепипедов из теллурида висмута и твердого раствора кремния и германия, спаянных между собой в последовательную цепочку. Эти пары полупроводников n- и p-типа соединены проводящими перемычками, которые и контактируют с керамическими подложками.
Каждая пара маленьких полупроводниковых параллелепипедов образует контакт для прохождения тока от полупроводника n-типа – к полупроводнику p-типа — с одной стороны преобразователя Пельтье, и от полупроводника p-типа — к полупроводнику n-типа — с другой стороны преобразователя.
Когда ток проходит через все эти последовательно соединенные параллелепипеды, то с одной стороны все контакты только охлаждаются, а с другой — все только нагреваются. Если полярность источника изменить, то стороны поменяются ролями.
По такому принципу и работает элемент Пельтье или, как его еще называют, термоэлектрический преобразователь Пельтье, где тепло отбирается от одной стороны изделия, и переносится на противоположную его сторону, при этом создается разность температур с двух сторон элемента.
Можно даже дополнительно охлаждать нагревающуюся сторону элемента Пельтье при помощи радиатора с вентилятором, тогда температура холодной стороны станет ещё ниже. В широко доступных элементах Пельтье разность температур может достигать около 69 °C.
Для того, чтобы проверить исправность элемента Пельтье, достаточно пальчиковой батарейки. Красный провод элемента присоединяется к положительной клемме источника питания, черный — к отрицательной. Если элемент исправен, то с одной стороны будет происходить нагрев, с другой — охлаждение, вы сможете почувствовать это пальцами рук. Сопротивление обычного элемента Пельтье находится в районе пары-тройки Ом.
Принцип действия элемента Пельтье основан на эффекте Пельтье, который заключается в том, что при пропускании постоянного электрического тока через спай двух разнородных проводников, происходит перенос энергии от одного проводника спая — к другому, при этом в месте спая выделяется или поглощается тепло.
Количество выделенного или поглощенного в ходе данного процесса тепла, будет пропорционально току, времени его протекания, а также коэффициенту Пельтье, характерному для данной пары спаянных проводников. Коэффициент Пельтье, в свою очередь, равен коэффициенту термо-эдс пары, умноженному на абсолютную температуру спая в текущий момент.
И поскольку эффект Пельтье наиболее выразителен у полупроводников, то данное их свойство и используется в популярных и доступных полупроводниковых элементах Пельтье. С одной стороны элемента Пельтье тепло поглощается, с другой — выделяется. Далее мы рассмотрим это явление более внимательно.
Непосредственно физический эффект Пельтье был открыт в 1834 году французским физиком Жаном Пельтье, а спустя четыре года суть данного явления исследовал русский физик Эмилий Ленц, показавший, что если стержни из висмута и сурьмы привести в плотный контакт, на место контакта капнуть воды, а затем пропустить через спай постоянный ток определенного направления, то если при первоначальном направлении тока вода превратится в лед, значит если направление тока изменить на противоположное, то этот лед быстро растает.
В своем эксперименте Ленц наглядно продемонстрировал, что тепло Пельтье поглощается или выделяется в зависимости от направления тока через спай.
Ниже приведена таблица коэффициентов Пельтье для трех популярных пар металлов. Кстати, эффект, обратный эффекту Пельтье, называется эффектом Зеебека (когда при нагревании или охлаждении спаев замкнутой цепи, в этой цепи возникает электрический ток).
Так почему же возникает эффект Пельтье? Причина в том, что в месте контакта двух веществ имеется контактная разность потенциалов, которая порождает контактное электрическое поле между ними.
Если теперь через контакт пропустить электрический ток, то это поле будет либо помогать прохождению тока, либо препятствовать ему. Поэтому, если ток направлен против вектора напряженности контактного поля, то источник прикладываемой ЭДС должен совершить работу, и энергия источника как раз выделяется в месте контакта, это приведёт к его нагреву.
Если же ток источника будет направлен по контактному полю, то он как-бы дополнительно поддержится этим внутренним электрическим полем, и теперь поле совершит дополнительную работу по перемещению зарядов. Эта энергия отбирается теперь у вещества, что в действительности и приводит к охлаждению места спая.
Итак, поскольку мы знаем, что в элементах Пельтье используются спаи пар полупроводников, то что за процесс реализован в полупроводниках?
Все просто. Полупроводники эти отличаются уровнями энергий электронов в зоне проводимости. При прохождении электрона через место контакта данных материалов, электрон приобретает энергию, чтобы суметь перейти в более высокоэнергетическую зону проводимости другого полупроводника пары.
При поглощении электроном этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному джоулеву теплу. Если бы вместо полупроводников в элементах Пельтье использовались чистые металлы, то тепловой эффект оказался бы настолько мал, что омический нагрев значительно превзошел бы его.
В реальном преобразователе Пельтье, таком например как TEC1-12706, между двумя керамическими подложками установлены несколько параллелепипедов из теллурида висмута и твердого раствора кремния и германия, спаянных между собой в последовательную цепочку. Эти пары полупроводников n- и p-типа соединены проводящими перемычками, которые и контактируют с керамическими подложками.
Каждая пара маленьких полупроводниковых параллелепипедов образует контакт для прохождения тока от полупроводника n-типа – к полупроводнику p-типа — с одной стороны преобразователя Пельтье, и от полупроводника p-типа — к полупроводнику n-типа — с другой стороны преобразователя.
Когда ток проходит через все эти последовательно соединенные параллелепипеды, то с одной стороны все контакты только охлаждаются, а с другой — все только нагреваются. Если полярность источника изменить, то стороны поменяются ролями.
По такому принципу и работает элемент Пельтье или, как его еще называют, термоэлектрический преобразователь Пельтье, где тепло отбирается от одной стороны изделия, и переносится на противоположную его сторону, при этом создается разность температур с двух сторон элемента.
Можно даже дополнительно охлаждать нагревающуюся сторону элемента Пельтье при помощи радиатора с вентилятором, тогда температура холодной стороны станет ещё ниже. В широко доступных элементах Пельтье разность температур может достигать около 69 °C.
Для того, чтобы проверить исправность элемента Пельтье, достаточно пальчиковой батарейки. Красный провод элемента присоединяется к положительной клемме источника питания, черный — к отрицательной. Если элемент исправен, то с одной стороны будет происходить нагрев, с другой — охлаждение, вы сможете почувствовать это пальцами рук. Сопротивление обычного элемента Пельтье находится в районе пары-тройки Ом.
Холодильное оборудование настолько прочно вошло в нашу жизнь, что даже трудно представить, как можно было без него обходиться. Но классические конструкции на хладагентах не подходят для мобильного использования, например, в качестве походной сумки-холодильника.
Сумка-холодильник на элементах Пельтье, нет компрессора, не нуждается во фреоне или других хладагентах
Для этой цели используются установки, в которых принцип работы построен на эффекте Пельтье. Кратко расскажем об этом явлении.
Что это такое?
Под данным термином подразумевают термоэлектрическое явление, открытое в 1834 году французским естествоиспытателем Жаном-Шарлем Пельтье. Суть эффекта заключается в выделении или поглощении тепла в зоне, где контактируют разнородные проводники, по которым проходит электрический ток.
В соответствии с классической теорией существует следующее объяснение явления: электрический ток переносит между металлами электроны, которые могут ускорять или замедлять свое движение, в зависимости от контактной разности потенциалов в проводниках, сделанных из различных материалов. Соответственно, при увеличении кинетической энергии, происходит ее превращение в тепловую.
На втором проводнике наблюдается обратный процесс, требующий пополнения энергии, в соответствии с фундаментальным законом физики. Это происходит за счет теплового колебания, что вызывает охлаждение металла, из которого изготовлен второй проводник.
Современные технологии позволяют изготовить полупроводниковые элементы-модули с максимальным термоэлектрическим эффектом. Имеет смысл кратко рассказать об их конструкции.
Устройство и принцип работы
Современные модули представляет собой конструкцию, состоящую из двух пластин-изоляторов (как правило, керамических), с расположенными между ними последовательно соединенными термопарами. С упрощенной схемой такого элемента можно ознакомиться на представленном ниже рисунке.
Устройство модульного элемента Пельтье
Обозначения:
- А – контакты для подключения к источнику питания;
- B – горячая поверхность элемента;
- С – холодная сторона;
- D – медные проводники;
- E – полупроводник на основе р-перехода;
- F – полупроводник n-типа.
Конструкция выполнена таким образом, что каждая из сторон модуля контактирует либо p-n, либо n-p переходами (в зависимости от полярности). Контакты p-n нагреваются, n-p – охлаждаются (см. рис.3). Соответственно, возникает разность температур (DT) на сторонах элемента. Для наблюдателя этот эффект будет выглядеть, как перенос тепловой энергии между сторонами модуля. Примечательно, что изменение полярности питания приводит к смене горячей и холодной поверхности.
Рис. 3. А – горячая сторона термоэлемента, В – холодная
Технические характеристики
Характеристики термоэлектрических модулей описываются следующими параметрами:
- холодопроизводительностью (Qmax), эта характеристика определяется на основе максимально допустимого тока и разности температуры между сторонами модуля, измеряется в Ваттах;
- максимальным температурным перепадом между сторонами элемента (DTmax), параметр приводится для идеальных условий, единица измерения — градусы;
- допустимая сила тока, необходимая для обеспечения максимального температурного перепада – Imax;
- максимальным напряжением Umax, необходимым для тока Imax, чтобы достигнуть пиковой разницы DTmax;
- внутренним сопротивлением модуля – Resistance, указывается в Омах;
- коэффициентом эффективности – СОР (аббревиатура от английского — coefficient of performance), по сути это КПД устройства, показывающее отношение охлаждающей к потребляемой мощности. У недорогих элементов этот параметр находится в пределах 0,3-0,35, у более дорогих моделей приближается к 0,5.
Маркировка
Рассмотрим, как расшифровывается типовая маркировка модулей на примере рисунка 4.
Рис 4. Модуль Пельтье с маркировкой ТЕС1-12706
Маркировка разбивается на три значащих группы:
- Обозначение элемента. Две первые литеры всегда неизменны (ТЕ), говорят о том, что это термоэлемент. Следующая указывает размер, могут быть литеры «С» (стандартный) и «S» (малый). Последняя цифра указывает, сколько слоев (каскадов) в элементе.
- Количество термопар в модуле, изображенном на фото их 127.
- Величина номинального тока в Амперах, у нас – 6 А.
Таким же образом читается маркировка и других моделей серии ТЕС1, например: 12703, 12705, 12710 и т.д.
Применение
Несмотря на довольно низкий КПД, термоэлектрические элементы нашли широкое применение в измерительной, вычислительной, а также бытовой технике. Модули являются важным рабочим элементом следующих устройств:
- мобильных холодильных установок;
- небольших генераторов для выработки электричества;
- систем охлаждения в персональных компьютерах;
- кулеры для охлаждения и нагрева воды;
- осушители воздуха и т.д.
Приведем детальные примеры использования термоэлектрических модулей.
Холодильник на элементах Пельтье
Термоэлектрические холодильные установки значительно уступают по производительности компрессорным и абсорбционным аналогам. Но они имеют весомые достоинства, что делает целесообразным их использование при определенных условиях. К таким преимуществам можно отнести:
- простота конструкции;
- устойчивость к вибрации;
- отсутствие движущихся элементов (за исключением вентилятора, обдувающего радиатор);
- низкий уровень шума;
- небольшие габариты;
- возможность работы в любом положении;
- длительный срок службы;
- небольшое потребление энергии.
Такие характеристики идеально подходят для мобильных установок.
Термоэлектрический автохолодильник установленный в салоне автомобиля
Элемент Пельтье как генератор электроэнергии
Термоэлектрические модули могут работать в качестве генераторов электроэнергии, если одну из их сторон подвергнуть принудительному нагреву. Чем больше разница температур между сторонами, тем выше сила тока, вырабатываемая источником. К сожалению, максимальная температура для термогенератора ограничена, она не может быть выше точки плавления припоя, используемого в модуле. Нарушение этого условия приведет к выходу элемента из строя.
Для серийного производства термогенераторов используют специальные модули с тугоплавким припоем, их можно нагревать до температуры 300°С. В обычных элементах, например, ТЕС1 12715, ограничение – 150 градусов.
Поскольку КПД таких устройств невысокий, их применяют только в тех случаях, когда нет возможности использовать более эффективный источник электрической энергии. Тем не менее, термогенераторы на 5-10 Вт пользуются спросом у туристов, геологов и жителей отдаленных районов. Большие и мощные стационарные установки, работающие от высокотемпературного топлива, используют для питания приборов газораспределительных узлов, аппаратуры метеорологических станций и т.д.
Термоэлектрический генератор B25-12 (М) на 12 вольт, мощностью 25 ватт
Для охлаждения процессора
Относительно недавно данные модули стали использовать в системах охлаждения CPU персональных компьютеров. Учитывая низкую эффективность термоэлементов, польза от таких конструкций довольно сомнительна. Например, чтобы охладить источник тепла мощностью 100-170 Вт (соответствует большинству современных моделей CPU), потребуется потратить 400-680 Вт, что требует установки мощного блока питания.
Второй подводный камень – незагруженный процессор будет меньше выделять тепловой энергии, и модуль может охладить его меньше точки росы. В результате начнет образовываться конденсат, что, гарантировано, выведет электронику из строя.
Тем, кто решиться создать такую систему самостоятельно, потребуется провести серию расчетов по подбору мощности модуля под определенную модель процессора.
Исходя из выше сказанного, использовать данные модули в качестве системы охлаждения CPU не рентабельно, помимо этого они могут стать причиной выхода компьютерной техники из строя.
Совсем иначе обстоит дело с гибридными устройствами, где термомодули используются совместно с водяным или воздушным охлаждением.
Термоэлектрический кулер Армада
Гибридные системы охлаждения доказали свою эффективность, но высокая стоимость ограничивает круг их почитателей.
Кондиционер на элементах Пельтье
Теоретически такое устройство конструктивно будет значительно проще классических систем климат-контроля, но все упирается в низкую производительность. Одно дело — охладить небольшой объем холодильной камеры, другое — помещение или салон автомобиля. Кондиционеры на термоэлектрических модулях будут больше (в 3-4 раза) потреблять электроэнергии, чем оборудование, работающее на хладагенте.
Что касается использования в качестве автомобильной системы климат-контроля, то для работы такого устройства мощности штатного генератора будет недостаточно. Замена его на более производительное оборудование приведет к существенному расходу топлива, что не рентабельно.
В тематических форумах периодически возникают дискуссии на эту тему и рассматриваются различные самодельные конструкции, но полноценного рабочего прототипа пока не создано (не считая кондиционера для хомячка). Вполне возможно, ситуация измениться, когда появятся в широком доступе модули с более приемлемым КПД.
Для охлаждения воды
Термоэлектрический элемент часто используют как охладитель для кулеров воды. Конструкция включает в себя: охлаждающий модуль, контролер, управляемый термостатом и обогреватель. Такая реализация значительно проще и дешевле компрессорной схемы, помимо этого, она надежней и проще в эксплуатации. Но есть и определенные недостатки:
- вода не охлаждается ниже 10-12°С;
- на охлаждение требуется дольше времени, чем компрессорному аналогу, следовательно, такой кулер не подойдет для офиса с большим количеством работников;
- устройство чувствительно к внешней температуре, в теплом помещении вода не будет охлаждаться до минимальной температуры;
- не рекомендуется установка в запыленных комнатах, поскольку может забиться вентилятор и охлаждающий модуль выйдет из строя.
Настольный кулер для воды с использованием элемента Пельтье
Осушитель воздуха на элементах Пельтье
В отличие от кондиционера, реализация осушителя воздуха на термоэлектрических элементах вполне возможна. Конструкция получается довольно простой и недорогой. Охлаждающий модуль понижает температуру радиатора ниже точки росы, в результате на нем оседает влага, содержащаяся в воздухе, проходящем через устройство. Осевшая вода отводится в специальный накопитель.
Простой и недорогой китайский осушитель воздуха на элементах Пельтье
Несмотря на низкий КПД, в данном случае эффективность устройства вполне удовлетворительная.
Как подключить?
С подключением модуля проблем не возникнет, на провода выходов необходимо подать постоянное напряжение, его величина указанна в даташит элемента. Красный провод необходимо подключить к плюсу, черный — к минусу. Внимание! Смена полярности меняет местами охлаждаемую и нагреваемую поверхности.
Как проверить элемент Пельтье на работоспособность?
Самый простой и надежный способ – тактильный. Необходимо подключить модуль к соответствующему источнику напряжения и дотронуться до его разных сторон. У работоспособного элемента одна из них будет теплее, другая – холоднее.
Если подходящего источника под рукой нет, потребуется мультиметр и зажигалка. Процесс проверки довольно прост:
- подключаем щупы к выводам модуля;
- подносим зажженную зажигалку к одной из сторон;
- наблюдаем за показаниями прибора.
В рабочем модуле при нагреве одной из сторон генерируется электрический ток, что отобразится на табло прибора.
Как сделать элемент Пельтье своими руками?
Сделать самодельный модуль в домашних условиях практически невозможно, тем более в этом нет смысла, учитывая их относительно невысокую стоимость (порядка $4-$10). Но можно собрать устройство, которое будет полезным в походе, например, термоэлектрический генератор.
Схема подключения самодельного термогенератора
Для стабилизации напряжения необходимо собрать простой преобразователь на микросхеме ИМС L6920.
Принципиальная схема преобразователя напряжения
На вход такого преобразователя подается напряжение в диапазоне 0,8-5,5 В, на выходе он будет выдавать стабильные 5 В, что вполне достаточно для подзарядки большинства мобильных устройств. Если используется обычный элемент Пельтье, необходимо ограничить рабочий диапазон температуры нагреваемой стороны 150 °С. Чтобы не утруждать себя отслеживанием, в качестве источника тепла лучше использовать котелок с кипящей водой. В этом случае элемент гарантировано не нагреется выше температуры 100 °С.