Чем печатает 3д принтер материал
Перейти к содержимому

Чем печатает 3д принтер материал

  • автор:

Обзор актуальных 3D-материалов

Материал в 3D-печати, как и в любой созидательной деятельности, одна из важнейших вещей. От материала зависят не только механические и химические свойства будущего изделия, но и его эстетическая ценность.

Всем, кто занимается 3D-печатью, давно известны такие материалы, как ABS и PLA. Это самые распространенные и используемые, самые известные филаменты с хорошо изученными свойствами. Но далеко не все — есть материалы, которые большинству печатников известны лишь по названиям, а некоторые о них и вовсе не знают. Между тем, у них тоже много полезных свойств, о которых стоит знать, чтобы применить их в случае необходимости.

Перед тем, как перейти к основной теме статьи, хотелось бы сказать пару слов в защиту PLA. Многие ошибочно считают, что ABS прочнее и лучше PLA, но это не совсем так. Проведенные недавно испытания пластиков показали, что PLA бьет ABS по всем показателям прочности.

Единственное, в чём ABS лучше, это долговечность — PLA биоразлагаемый, а изделия из ABS будут загрязнять планету еще сотни лет после того, как перестанут быть нужны.
Вот, теперь вернемся к нашим экзотикам.

Цены приведены ориентировочные и их лучше уточнять при покупке.

NYLON

NYLON отличается высокой прочностью и износостойкостью — именно эти свойства позволили ему давно и прочно занять свои позиции как в производстве волокон для одежды, так и среди промышленных пластиков. Они же привели его и в 3D-печать. Из этого материала печатается широкий спектр всевозможных изделий, от игрушек и предметов быта, до деталей техники, одежды и медицинских ортезов.

Примеры филамента с нейлоном:: Taulman 3D Nylon Bridge за 2580 рублей (0,45 кг), Nylon M1 Print Product за 1300 (0,75 кг), Nylon Super Natural U3print за 2500 (0,45 кг).

Полипропилен, как и нейлон, также давно хорошо известен. Сложно перечислить хотя бы малую часть вещей, которые из него делают. Чем же характерен PP? — это нетоксичный, износостойкий материал, хорошо переносящий контакт с агрессивными средами и имеющий неплохую прочность. Кроме того — он достаточно недорог и очень распространен, что увеличивает его доступность.

Из минусов: становится хрупким при температурах ниже минус пяти по цельсию. Плохо переносит прямой солнечный свет.

Примеры: PP полипропилен FL-33 стоит 4300 за 1 кг, PP пластик Print Product белый — 1500 рублей за 0,75 кг.

Относительно новый, все еще набирающий популярность промышленный эластомер. Отличается высокими механическими характеристиками. Обладает хорошей износостойкостью и эластичностью. Применяется для изготовления декоративных изделий, защитных покрытий, подошв, и т.д.

  • Хорошее сцепление с поверхностями.
  • Упругость.
  • Износостойкость
  • Долговечность.
  • Применение при температурах от -60 до +80 °С
  • Неплохая спекаемость.

Есть и минусы: устойчивость к распространенным реагентам достаточно низкая — применять в контакте с бензином, ацетоном и уксусной кислотой не рекомендуется.

На рынке представлены разными производителями выпускающими материалы в различной цветовой гамме и немного отличающихся механических свойств.

Например, материал компании REC отличается проверенной экологичностью — он разработан так, чтобы не выделять при печати токсичных газов. Его стоимость 2176 рублей за полкило.

Филамент FL-33 характерен своими оригинальными цветовыми решениями. Он стоит 4500.

TiTi FLEX SOFT от Print Product, за 1550 рублей (0,5 кг), характерен своей особой мягкостью, а Flex 1,75 от этой же фирмы, за 2300 (0,75 кг), помимо своих выдающихся механических свойств интересен ещё и прозрачностью — из него можно напечатать много красивых объектов с интересными оптическими свойствами.

FLEX применяется для печати упругих объектов. Например, можно напечатать небьющийся стаканчик-подставку для карандашей, любой формы — оригинальный подарок коллеге.

HIPS — материал не обладающий какими-то выдающимися механическими свойствами, но он совершенно незаменим при печати двумя и более экструдерам, как материал для создания растворимых поддержек и спаек. Именно благодаря ему существует возможность создавать сколь угодно сложные объекты, особенно такие, где один предмет находится внутри другого.

Также широко используется в прототипировании, поскольку хорошо сохраняет при печати заданные размеры — не ползет и не коробится.

  • Качественная передача заданных размеров
  • Растворимость
  • Возможность применения в изделиях контактирующих с пищей
  • Нетоксичность.

GLASSFIL

Glassfil — прозрачный термопластик с уникальными свойствами: он пропускает ультрафиолет и рентген, но отражает инфракрасное излучение. От ультрафиолета не разрушается, также устойчив и к влажности, и к бактериальному воздействию. Способен выдерживать низкие и высокие температуры без повреждений. Экологически чист и обладает диэлектрическими свойствами. Также к плюсам относятся: прозрачность или частичная прозрачность материала, устойчивость к ударным нагрузкам и хорошая обрабатываемость.

Может применяться для создания изделий предназначенных для медицины, сельского хозяйства, для печати всевозможных бытовых предметов.

Примеры материалов такого типа: GLASSFIL Print Product за 1500 рублей (0,75 кг), Ninjaflex за 3500 (1 кг), Zortax Z-Glass за 5700.

CERAMIC

Материал интересен тем, что содержит натуральные керамические частицы. При печати создается эффект керамической или каменной поверхности. Применяется для печати изделий имитирующих керамику или камень.

Примеры такого материала: Print Product CERAMIC стоимостью 1500 рублей (0,75), Filamentarno Pro Ceramo и Pro Ceramo-tex по 2200 за 0,75 кг.

Пластик Filamentarno интересен еще и тем, что может использоваться при печати посуды и игрушек — он не содержит токсичных веществ и не имеет запаха, как и все пластики этой фирмы. А Pro Ceramo-tex вспенивается при печати, давая совершенно неотличимую от настоящей необработанной керамики структуру.

Похожими на керамику свойствами готовых изделий обладает Laybrick, за 2500 за четверть килограмма, отличающийся тем, что его фактура зависит от температуры и скорости печати — он может быть как шершавым и фактурным, так и глянцевым. Другая его особенность — отсутствие необходимости в подогреве стола, а единственный недостаток — необходимость выждать некоторое время, прежде чем удалять готовую модель, ведь застывает он не сразу (время ожидания, как и фактура изделий из Laybrick, зависит от температурного режима печати).

  • Диаметр нити, мм 1,75
  • Температура печати 180 — 220 °C
  • Растворяется водой

Вы легко можете распечатать, например, мини-теплицу для комнатного цветка или контейнер для бутербродов, так как он нетоксичен в быту и может контактировать с пищевыми продуктами.

  • Диаметр нити, мм 1,75
  • Рабочая температура 230°-260°
  • Скорость печати: от 10 мм/с до 70 мм/с
  • Цвет натуральный

Материал PETG достаточно прочен. Материал, как правило, прозрачный или полупрозрачный, даже при добавлении красящего пигмента. Имеет красивый глянцевый вид.

Из других преимуществ: не имеет запаха, не впитывает влагу, удобен в печати — низкая усадка.
Минусы — требователен к температурному режиму печати.

Примеры такого материала: PETG Natural U3Print за 1000 рублей (0,45 кг), PETG FL-33 прозрачный за 3990 (1 кг), PETG пластик ESUN за 2300 (1 кг).

  • Высокая прочность
  • Температура печати около 210° — 250° (может слегка варьироваться от производителя к производителю)
  • Скорость печати от 10 мм/с до 70 мм/с
  • Не имеет запаха
  • Нетоксичен

Полиоксиметилен. Прочностные характеристики материала таковы, что изделия из него применяются в инженерии для замены металлических деталей. Также он биологически нейтрален и может быть использован в медицине и пищевой промышленности.

Примеры филамента: FL-33 инженерный POM за 3610 рублей за килограмм, POM Натуральный за 2800 за 0,75 кг.

PC — поликарбонат. Изделия из PC обладают высокой прочностью к ударным нагрузкам и выдерживают кратковременный нагрев до 153 градусов, а нормально функционировать могут в диапазоне от -100 до +115 градусов цельсия.

  • Печатается при температуре 230 — 280 градусов цельсия
  • Застывает при 130 градусах
  • Температура стола желательно 100 градусов

Примеры филамента с PC: PC поликарбонат SEM за 1700 рублей и PC поликарбонат FL-33 за 4180 — прозрачные, и PC поликарбонат FL-33 черный — с добавлением красителя, 4180 за 1 кг.

Применяется для создания оригинальных изделий имитирующих дерево и обладающих, во многом, его свойствами.

  • Диаметр нити, мм 1,75
  • Рабочая температура 190°-220°
  • Скорость печати от 10 мм/с до 70 мм/с

ANTISTATIC

Применяется для создания деталей и корпусов электроники, где статические разряды совершенно неуместны, упаковки для хранения микросхем и других чувствительных компонентов, ковриков для точной измерительной аппаратуры и т.д.

Также находит применение в индустрии моды, при печати тканей.

  • Диаметр нити, мм 1,75
  • Температура платформы 100 °C
  • Температура экструдера 210 — 240 °C

Материал накапливает свет, а в темноте постепенно отдает его. Время свечения изделий из такого филамента — до 14 часов.

Может применяться для изготовления игрушек, оригинальных сувениров, приборных панелей и циферблатов, корпусов и кнопок выключателей, а также многого другого.

  • Температура экструдера зависит от конкретного филамента
  • Технология печати FDM
  • Цвета разные

METALLIC

Материалы содержащие в себе частицы металла и имитирующие созданные из него вещи. Внешне, по весу и на ощупь получается очень похоже.

Изделия из этих материалов легко обрабатываются и полируются, принимая вид настоящих металлических вещей.

Примеры таких материалов: Bronze ESUN за 2300 рублей (0,5 кг), Colorfabb Bronzefill за 3900 (0,75 кг), Bestfilament Bronze.

COLORFUL

Если вам надоели однообразные, как в детском наборе фломастеров, цвета филаментов, то пора переходить на взрослую палитру. Для удобства можно выбрать одного производителя, обладающего таким ассортиментом, чтоб не перенастраивать каждый раз печать и иметь стабильный результат. Например, среди продукции компании Filamentarno есть множество красивых пластиков разных оттенков.

Ещё одно преимущество продукции этой компании перед многими другими (и в этом Filamentarno единомышленники компании REC) — безопасность всех материалов, все они могут безвредно контактировать с пищей, а значит — пригодны для изготовления пищевой посуды и детских игрушек.

Примеры пластиков: Бутылочно-зеленый, Бутылочно-оливковый, Бутылочно-коричневый, Желтый, Оранжевый, Красный. Это не все, там их десятки. Пластики этой линейки стоят по 1200 рублей за 0,75 кг.

Это далеко не полный перечень актуальных современных материалов, лишь малая их часть, но — нельзя объять необъятное. Однако у нас запланированы обзоры и по другим сегментам этой области. Следите за обновлениями.

Что такое 3D-печать и как устроен 3D-принтер

Технологии 3D-печати или аддитивного производства обрели популярность совсем недавно, хотя первые методы появились на свет еще в середине 80-х годов прошлого века. Назначение 3D-принтеров для многих людей до сих пор остается загадкой, хотя ничего сложного на самом деле нет: это самые настоящие автоматизированные фабрики, способные самостоятельно производить изделия практически любой формы.

Что такое 3D-печать и как устроен 3D-принтер

3D-принтеры применяются для самых разных задач. Изначально технологии 3D-печати получили название «быстрое прототипирование» и использовались, как можно догадаться, для изготовления прототипов и макетов. Нынешние, усовершенствованные технологии и материалы позволяют печатать уже не просто макеты, а вполне функциональные изделия, пригодные для повседневной эксплуатации: титановые имплантаты и лопатки газовых турбин, пластиковые игрушки, сувениры и корпуса бытовых приборов и гаджетов, керамическую посуду и даже бетонные строительные конструкции. Главным преимуществом 3D-печати над традиционными производственными технологиями считается принцип «прямого производства»: готовые изделия печатаются напрямую с цифровых моделей, в то время как для того же литья под давлением необходимо сначала изготовить дорогостоящую оснастку.

Принцип работы

Методов 3D-печати великое множество, но всех их объединяет общий принцип обработки цифровых моделей: для того чтобы 3D-принтер мог разобраться со сложной трехмерной структурой, цифровая модель разделяется на поперечные срезы, толщина каждого из которых соответствует толщине одного слоя. Представьте себе стопку бумаги, где каждый лист выполняет роль печатного слоя: если каждый лист вырезать по индивидуальному шаблону и вновь сложить в стопку, то получится трехмерный объект заданной формы. Собственно, именно так, вырезая и склеивая листы бумаги, работают 3D-принтеры по технологии LOM, выпускаемые компанией Mcor.

Что такое 3D-печать и как устроен 3D-принтер-2

Разница же заключается в методах изготовления слоев и используемых материалах. Так, в стереолитографии (SLA ) применяются жидкие фотополимерные смолы, отверждаемые лазером, а в селективном лазерном спекании ( SLS ) те же лазеры используются для спекания частиц различных порошков – металлических, полимерных или керамических. Самое же широкое распространение получила технология «моделирования методом послойного наплавления», известная под аббревиатурами «FD» и « FFF ». Популярность этого метода объясняется простотой и дешевизной как самих печатающих устройств, так и расходных материалов. В качестве сырья используются всевозможные пластики и композиты на полимерной основе, а FDM-принтеры представляют собой максимально упрощенные станки с числовым программным управлением.

В качестве материала используется тонкая пластиковая нить или «филамент», а роль печатающей головки играет «экструдер», состоящий из простого зубчатого механизма, проталкивающего пластиковый пруток в разогретую трубку («хотэнд») и выдавливающего расплавленный пластик через сопло. Расплавленной нитью можно вычерчивать один слой за другим, пока не образуется трехмерная физическая модель. Необходимо лишь устройство, которое будет приводить головку в движение по заданному алгоритму.

Что такое 3D-печать и как устроен 3D-принтер-3

Это устройство и называется 3D-принтером. Простейшие настольные 3D-принтеры состоят из шасси, служащего основой для направляющих, по которым передвигается печатающая головка и/или платформа, на которой выполняется построение. В обычном офисном принтере, печатающем на листе бумаги, необходима возможность позиционирования в двух измерениях: как правило, головка движется из стороны в сторону, а сам лист бумаги постепенно протягивается, строка за строкой. Если же мы строим трехмерную модель, то необходимо добавить и третье измерение в механизм позиционирования – так, чтобы можно было ориентироваться не только по ширине и длине, но и по высоте.

Головка и платформа устанавливаются на направляющие и приводятся в движение электромоторами. Порядок работы электромоторов, определяющий движение головки и подачу материала, закладывается в специальный программный код (т.н. G-код). Код вырабатывается автоматически с помощью специальных программ, называемых «слайсерами»: такие приложения берут нарисованные в графических редакторах трехмерные виртуальные модели, а затем разделяют их на слои и конвертируют каждый слой в серию команд, необходимых для построения физического аналога. Головка постепенно вычерчивает каждый слой, выдавливая расплавленный пластик на платформу или нанесенные ранее слои. После окончания слоя головка поднимается (или, наоборот, платформа опускается) на высоту одного слоя, и процесс начинается заново, только с использованием очередного шаблона.

Что такое 3D-печать и как устроен 3D-принтер-4

Как правило, толщина нити и самих слоев составляет доли миллиметра: типичный диаметр сопла варьируется от 0,3 до 0,8 мм, тогда как толщина слоя составляет от 50 до 300 микрон. Для сравнения, толщина человеческого волоса колеблется в пределах 80-100 микрон. Очевидно, что печать тонкой нитью занимает достаточно долгое время. Действительно, типичный производственный цикл с легкостью может измеряться часами, а то и превышать сутки: здесь все зависит от выбранного диаметра сопла, толщины индивидуальных слоев и габаритов самого изделия. Чем выше толщина нити и слоев, тем меньше времени уйдет на печать, но и качество поверхностей будет ниже.

Расходные материалы

Одним из самых привлекательных факторов FDM-печати остается огромное разнообразие относительно недорогих расходных материалов. Два наиболее популярных пластика АБС(акрилонитрилбутадиенстирол) и ПЛА (полилактид). С первым вариантом знакомы абсолютно все из нас – это наиболее широко используемый промышленный пластик, из которого изготовлена ваша любимая кофемолка, шариковая ручка, защитный кожух смартфона и множество других бытовых вещей. Второй же представляет собой экологичную альтернативу, будучи органическим, биоразлагаемым полимером, изготавливаемым из кукурузы или сахарного тростника. Пусть ПЛА и не так долговечен, его можно смело выбрасывать в мусор, так как под воздействием среды через несколько месяцев полилактид превратится в безвредный компост.

Что такое 3D-печать и как устроен 3D-принтер-5

Но при желании можно печатать и другими материалами: такими популярными термопластами, как поликарбонаты и нейлон. Филамент можно даже изготавливать в домашних условиях, используя в качестве сырья пустые контейнеры из ПЭТФ: из этого материала изготавливаются бутылки для газированной воды и пива.

Существуют и эластичные варианты, имитирующие резину – такие, как NinjaFlex. А если «пластиковый» образ вам не по душе, то можно попробовать композиты на основе ПЛА с добавлением различных наполнителей: песчаника, металлической пыли и даже древесины. Конечно же, физические и механические характеристики таких композитов несравнимы с настоящим камнем или сталью, но если вместо внешнего сходства вам необходима именно прочность и износоустойчивость, то всегда можно попробовать специальные композиты, армированные углеволокном.

Что такое 3D-печать и как устроен 3D-принтер-6

Остается лишь выбрать 3D-принтер по душе, что может быть нелегким делом ввиду растущего разнообразия: серьезные дизайнеры могут выбрать относительно большие устройства с двумя-тремя печатающими головками, в то время как для начинающих пользователей доступно множество простых в эксплуатации моделей с относительно скоромными характеристиками, но высоким уровнем автоматизации и вполне доступными ценами. Некоторые наиболее бюджетные устройства можно приобрести всего за 200-300$, а цены на филаменты начинаются от 10$ за килограмм.

Для тех, кто хочет знать больше

    — первый опыт работы с 3D-принтером: подводные камни и первые навыки — с чего стоит начать, если у вас появился 3D-принтер — что мы станем печатать на 3D-принтерах в ближайшем будущем — что еще стоит попробовать лично помимо 3D-принтеров — простые и доступные конструкторы, позволяющие приобщить детей к современным технологиям

Подписывайтесь на наш нескучный канал в Telegram, чтобы ничего не пропустить.

Як працює 3D-принтер: огляд 5 матеріалів і технологій

Поява технологій об’ємного 3D-моделювання дозволило зробити ривок в розважальних і промислових сферах. Застосування 3D-принтерівЗНАЙШЛИ в самих різних галузях. Знати Б принцип їх роботи .

Печать на 3D-принтере

Все можна виправити. У цій статті докладно про те, як працює 3D-принтер і які при цьому використовуються матеріали. А також розглядаються можливості промислового і домашнього типу пристроїв.

Що таке 3D-друк і де її застосовують

Поняття «3D-друк» означає створення моделей за допомогою нашарування спеціального пластичного матеріалу. Цю технологію також називають нарощуванням. В ході роботи пристрій поступово вибудовує задану об’ємну фігуру: будь-то іграшка, прикраса або макет будівлі.

Основні сфери, в яких використовують 3D-друк, відображені в таблиці:

Все, що можна надрукувати на 3D-принтері, буде досить якісним і міцним. Головне – правильно підібрати матеріал і грамотно скласти задачу для пристрою.

Як влаштований 3D-принтер

Апарат для об’ємного моделювання виглядає як верстат з програмним керуванням. Він виконує адитивні (нашаровується) операції відповідно до заданого ескізу. Апарат може мати різні розміри і технології друку.

Розглянемо, як влаштований 3D-принтер на прикладі найпоширенішого обладнання – ЕКСТРУЗІЙНОГО. Воно Створює моделі з пластиковою нитки. Матеріал Виходить з екструдера в розплавленому вигляді і розподіляється відповідно до заданої схемою.

Пристрій складається з наступних елементів:

  • друкованої платформи з алюмінію або скла;
  • механізмів, які прямують по трьох осях (X, Y і Z);
  • екструдера, з якого виходить розплавлений матеріал;
  • двигунів (крокової і лінійного), що відповідають за точність, швидкість і режими друку;
  • кінцевих фіксаторів, оснащених датчиками, необхідних для контролю руху голівки;
  • рами – конструкції для кріплення перерахованих елементів.

Конструкция 3D-принтера

Будова 3D-принтерів може відрізнятися в залежності від технологій, за якими він працює.

Основні принципи роботи 3D-принтера

Перш ніж приступити до роботи з апаратом, потрібно створити ескіз предмета на комп’ютері. При цьому задаються всі технічні параметри, форми і габарити. Після того як ескіз буде готовий, можна приступати до друку.

Принцип дії 3D-принтера залежить від використовуваної технології. Їх існує понад 10 видів. Розглянемо найпопулярніші.

Stereolithography Apparatus – стереолітографія, заснована на використанні фотополімерів, які тверднуть під впливом ультрафіолету. Готовий виріб поміщають в рідину для усунення зайвих елементів з поверхні. Потім повторно опромінюють ультрафіолетом для остаточного затвердіння.

Методом стереолітографії створюють протези кісток і зубів, моделі для наукових досліджень, прикраси та скульптури.

Лазерна технологія селективного спікання. Вона заснована на роботі вуглекислотного лазера. В якості сировини для виготовлення моделей використовують порошок з полімеру, скла, кераміки або легкоплавких металів. Під час нагрівання гранули спікається, але повністю не плавляться.

Метод SLS дозволяє друкувати об’єкти складних форм, механізми і елементи двигунів, точні прототипи конструкцій для тестування.

Плавлення електронно-променевим методом. Дана технологія є найдосконалішою серед існуючих. Вона призначалася для аерокосмічної галузі, але з часом також перейшла в інші сфери.

Методом EBM створюють дуже міцні вироби. Вони мають невелику вагу і надзвичайну стійкість до високої температури. В якості сировини використовують порошок з металів зі специфічними властивостями, наприклад, титанові сплави.

Цифрова обробка матеріалу світлом. У процесі створення виробів використовують фотополімери, які знаходять твердість під впливом світлового променя. Він генерується завдяки світлодіодним матриці, яка оснащена мікроскопічними дзеркальними пікселями.

Технологія DLP відрізняється тим, що шар матеріалу розподіляється по типу штампа, відразу на всю площу вироби. У той час як інші методи нашаровуються матеріал невеликими фрагментами. Отже, цифрова обробка матеріалу дозволяє створювати об’єкти набагато швидше. Але їх необхідно берегти від прямих сонячних променів, інакше полімер втратить міцність, і на його поверхні утворюються тріщини.

Метод моделювання об’єктів за допомогою наплавлення матеріалу. Цю технологію ще відома як FFF. Вона являє собою нарощування моделей розплавленими нитками із пластику. Готові вироби шліфують, щоб зробити їх поверхню гладкою.

Технологія FDM підходить для друку предметів щоденної експлуатації – від іграшок до побутової техніки. Також з її допомогою розробляють деталі обладнання високої точності.

Материалы для 3D-печати

Які матеріали потрібні для друку 3D

Для апарату тривимірного нарощування об’єктів використовують різноманітні матеріали. Але основним є пластмаса наступних видів:

  1. ABS – речовина, що складається з акрилонітрилу, стиролу і бутадієну.
  2. PLA – біорозкладаний пластик, який представляє собою поєднання мономера з алифатическим поліефіром. Для його виготовлення використовують целюлозу або крохмаль.
  3. PVA – склад матеріалу аналогічний клею ПВА. Може мати вигляд гранул або ниток.

Крім пластика, для тривимірної друку часто застосовують:

  • Полістирол і поліамід – речовини в порошковому вигляді, який може мати пластикові, металеві та скляні компоненти.
  • Фотополімери – еластичний і міцний матеріал, з якого можна створювати вироби різної складності, з деталізацією і ідеально гладкою поверхнею.
  • Металеві сплави – порошкоподібні речовини, що складаються з дрібнодисперсних гранул різних металів.
  • Віск – ідеально підходить для створення виробів шляхом нарощування. Застосовується в ливарному виробництві та ювелірній галузі.
  • Гіпс – матеріал у вигляді порошку, з якого виготовляють сувеніри, арт-об’єкти, моделі для презентацій і багато іншого. Гіпс універсальний і простий у використанні.

Напечатанные 3D-изделия

Крім перерахованих матеріалів, для 3D-друку використовують нестандартні речовини і субстанції. Це можуть бути нитки з дерева, паперу, гуми, скла, шоколаду і т. Д. Сфера їх застосування обмежена. З них роблять сувеніри, аксесуари і колекційні моделі.

Що можна надрукувати на 3D-принтері

Об’ємна друк дозволяє відтворювати практично будь-які об’єкти з високою точністю . Якщо спочатку на 3D-принтері друкували маленькі статуетки, деталі та сувеніри, з розвитком методик можливість адитивної апарату значно розширилися. На ньому можна друкувати:
взуття;

  • предмети інтер’єру та декору;
  • запчастини та деталі механізмів;
  • штучні органи і тканини;
  • техніку і музичні інструменти;
  • зброю, іграшки, прикраси і навіть солодощі.

3D-принтер вніс свою лепту в розвиток ряду галузей і сфер діяльності. Це пристрій полегшило і прискорило виконання складних завдань, які вимагають надвисокої точності. Це може бути виготовлення деталей з складної конструкцією для механізмів, або протезів для людей.

За печаткою в 3D-форматі – майбутнє. Адже з її допомогою можна вирішити більшість проблем, які зовсім недавно здавалися критичними. Щорічно ця технологія удосконалюється і знаходить все більшу доступність.

От воска до металла: обзор основных материалов для 3D-печати

Основные материалы для профессиональной и промышленной 3D-печати – это пластики в виде нитей/гранул или порошка, фотополимерные смолы, металлические порошки, воск и гипс. Обладая исключительно высокими качественными характеристиками, они с успехом используются в различных отраслях для прототипирования и изготовления функциональных деталей, и с развитием аддитивного производства их становится все больше.

Материалы для 3D-печати

Остановимся подробнее на каждом из материалов, применяемых в следующих технологиях:

  1. Моделирование методом послойного наплавления полимерной нити или гранул (FDM);
  2. селективное лазерное спекание пластиков (SLS);
  3. стереолитография с использованием фотополимеров (SLA/DLP/LCD);
  4. селективное лазерное плавление металлов (SLM);
  5. послойное склеивание композитного порошка связующим веществом (Binder Jetting);
  6. многоструйная 3D-печать воском или фотополимером (MJP);
  7. полноцветная печать гипсом (CJP).

Пластик

Пластик – один их самых востребованных расходных материалов для аддитивного производства. Ассортимент термопластиков и композитов, предназначенных для FDM-печати, исключительно разнообразен и позволяет выбрать, исходя из поставленных задач, наиболее подходящие по физико-механическим свойствам материалы.

В этом разделе мы рассматриваем расходные материалы FDM-принтеров. Это так называемые филаменты – пластики в виде нитей, намотанных на катушки. Иногда они выпускаются в виде гранул.

FDM-технология лежит в основе не только домашних, но и профессиональных и промышленных 3D-принтеров, поэтому пластики активно используются на производстве, для изготовления прототипов и функциональных изделий в таких отраслях, как автомобилестроение, авиационная промышленность, бытовые товары, электроника, архитектура, медицина, наука и образование.

  • широкий диапазон применений;
  • разнообразие цветов и фактур материала;
  • легкость механической обработки;
  • удобство в использовании;
  • гибкая структура материала;
  • возможность печати крупных цельных изделий;
  • относительно невысокая стоимость.

Основные виды пластиков

ABS-пластик. Обладает множеством положительных характеристик, включая повышенную ударопрочность при высокой эластичности и мягкости материала, а также простую механическую обработку. Высокая растворимость в ацетоне позволяет легко склеивать детали и сглаживать внешние поверхности изделий. Обычно ABS-пластик непрозрачен, но при необходимости легко окрашивается в любые цвета. Конечные изделия без окрашивания чувствительны к воздействию ультрафиолета и наделены невысокими электроизоляционными свойствами.

PLA-пластик. Имеет одни из самых низких температурных требований к 3D-принтеру. Ключевые составляющие PLA-пластика – это сахарный тростник и кукуруза, а в основе материала лежит молочная кислота. Регулируя ее уровень при производстве, можно получить различные свойства полимера, тем самым расширяя области его использования. Изделия из PLA-пластика обладают ровной и скользящей поверхностью. Материал нетоксичен, благодаря чему широко применяется для производства различных игрушек и сувениров. Имеет лишь один недостаток – недолговечность эксплуатации. Готовое изделие из пластика может прослужить до нескольких лет при минимальном использовании и температуре до +50 градусов.

PETG / PET / PETT-пластик. PET, или полиэтилентерефталат, – наиболее распространенный вид пластика. Для 3D-печати «чистый» PET используют редко, применяя в основном его разновидность – PETG. PETG более долговечен и обладает гораздо меньшей температурой переработки. Еще одной версией PET является PETT – более жесткий и достаточно популярный материал благодаря своей прозрачности.

PC-пластик (поликарбонат). Обладает высокой прочностью и износостойкостью, а также повышенным сопротивлением физическим воздействиям и термостойкостью. Выдерживает температуру до 110°C. Материал прозрачный, гибкий, легко гнется и не деформируется. Отлично подходит для использования в автомобилестроении, медицине и приборостроении.

Полиамид и полистирол

3D печать пластиком

Полиамид – порошковый материал, спекаемый лазером. Список полиамидов обширен и включает в себя как самые простые пластики, так и специальные материалы, среди которых в 3D-печати используются:

  • стеклонаполненные полиамиды, улучшающие физические свойства напечатанной модели;
  • угленаполненные полиамиды, которые позволяют уменьшить вес конструкции, сохраняя при этом физико-механические свойства изделия;
  • металлонаполненные полиамиды, необходимые в качестве барьерных материалов, например, при экранировании радиации.

Этот вид материалов для трехмерной печати задействован в таких областях, как машиностроение, аэрокосмическая отрасль, производство потребительских товаров и дизайн.

Полиамиды используются для изготовления конечных изделий, функционального тестирования и мелкосерийного производства, обеспечивая стабильную производительность и повторяемость изделий. Они дают возможность создавать конечные изделия с уникальными свойствами за один производственный цикл без последующей логистики и сборки компонентов.

Технология печати, в которой применяются полиамиды, – Selective Laser Sintering (SLS), послойное спекание частиц порошка под лучами CO2-лазера.

Еще один порошковый материал, используемый в 3D-печати по технологии SLS, – полистирол. Он представляет собой узкоспециализированное решение для промышленного литья и служит для создания форм и моделей с максимально качественной поверхностью. Этот материал дает возможность печатать изделия с разной геометрией на единой платформе, а выращенная из полистирола модель выжигается с минимальной зольностью.

Оборудование в каталоге iQB Technologies: ProtoFab, Sharebot
Материалы в каталоге iQB Technologies: Sharebot

Фотополимеры

Фотополимерная смола – один из самых перспективных и активно использующихся в аддитивном производстве материалов. Ее главное преимущество – универсальность. Под воздействием ультрафиолетового света или лазера фотополимеры, изначально находящиеся в жидком состоянии, затвердевают и могут приобретать совершенно разные механические свойства и характеристики.

Жесткие, эластичные, ударопрочные термопластики, прозрачные, полупрозрачные или разноцветные материалы – благодаря такому разнообразию сферы применения изделий из фотополимеров практически безграничны.

  • Качество. Изделия из фотополимерной смолы получаются гладкие и детализированные.
  • Точность. Напечатанные на фотополимерном 3D-принтере объекты сложной геометрии могут иметь очень тонкие части – до 0,025 мм на 25,4 мм детали.
  • Стабильность. Готовые модели и прототипы отличаются превосходными физическими и механическими свойствами.
  • Легкая обработка. Фотополимерные модели легко склеиваются, шлифуются, красятся и т.д. – с ними можно делать буквально всё что угодно.

Благодаря всем этим качествам предприятия авиационной, автомобильной, ювелирной промышленности, оборонного комплекса, машиностроения и других отраслей по достоинству оценили 3D-печать с использованием фотополимеров. Прототипы деталей самолетов, новых разработок двигателей – всё это изготавливается быстро и просто, в зависимости от поставленных задач, по технологиям стереолитографии (SLA/DLP/LCD) или многоструйной печати (MJP). Свойства и качество напечатанных изделий, а также нюансы процесса печати зависят от особенностей каждого из вышеупомянутых аддитивных методов.

Оборудование в каталоге iQB Technologies: ProtoFab, RAYSHAPE, Wiiboox, Sharebot
Материалы в каталоге iQB Technologies: ProtoFab и Sharebot

Металлические сплавы

3D печать металлами

Металл для аддитивных установок выпускается в виде мелкодисперсных сферических гранул с величиной зерна от 4 до 80 микрон. Применяемая технология заключается в сплавлении металлических порошков при помощи иттербиевого лазера и носит название селективного лазерного плавления (SLM).

Сегодня доступно около 20 материалов из металла, и их число будет расти. Это не только стандартные сплавы, но и уникальные высокотехнологичные материалы, которые предприятие может заказать для решения конкретных задач.

Из металлических порошков изготавливаются функциональные детали и технические прототипы, штампы, прессовые вставки, элементы пресс-форм для литья и другие изделия. Напечатанная на металлических 3D-принтерах продукция находит применение в аэрокосмической, нефтегазовой, автомобильной, пищевой промышленности, машиностроении, электронике, медицине.

Виды сплавов, используемых в 3D-печати:

  • нержавеющие (17-4PH, AISI 410, AISI 304L, AISI 316L, AISI 904L);
  • инструментальные (1.2343, 1.2367, 1.2709);
  • никелевые (Inconel 625, Inconel 718);
  • цветных металлов (CuSn6);
  • кобальт-хром (CoCr);
  • алюминиевые (AlSi12);
  • титановые (Ti6Al4V, Ti6Al4V).

Главное преимущество селективного лазерного плавления – это возможность создавать изделия исключительно высокой плотности и точности. Плотность напечатанных деталей в 1,5 раза выше, чем при литье. Кроме того, из металлических порошков можно вырастить мельчайшие детали сложных форм и фактур. 3D-печать металлами позволяет сократить цикл изготовления и уменьшить производственные расходы.

Оборудование в каталоге iQB Technologies: 3DLAM, HBD, SLM Solutions, Sharebot
Материалы в каталоге iQB Technologies: SLM Solutions

Песок

Песок используется как расходный материал в 3D-принтерах на основе технологии Binder Jetting. Основное назначение – создание высокоточных сложных форм для литья металлом. Выпускается в виде порошка, который в процессе печати послойно склеивается связующим агентом.

К видам песка, применяемым в аддитивном производстве, относятся кварцевый, хромированный, керамический, циркониевый и др. Чаще всего для изготовления песчано-полимерных форм используют кварцевый песок. Связующим веществом при 3D-печати является фурановая смола, поэтому песчаную форму не требуется запекать – она сразу готова к литью.

Среди главных преимуществ песка как материала для аддитивного производства стоит выделить доступную стоимость и возможность создавать модели с точностью до 100 микрон, в том числе крупногабаритные (до 2 метров).

Оборудование в каталоге iQB Technologies: Robotech

Восковые модели, напечатанные на 3д принтере

Это незаменимый материал для создания высокоточных выплавляемых моделей. Основные отрасли применения 3D-печати воском – ювелирное дело и литейное производство.

Раньше создание восковок и мастер-моделей было трудоемкой задачей, решение которой включало несколько этапов. С появлением восковых 3D-принтеров эта технология постепенно уходит в прошлое.

Воск идеально подходит для печати в ювелирной отрасли благодаря своим свойствам – хорошей выплавляемости (при t от 60°С) и легкости в постобработке. Еще один плюс восковой 3D-печати заключается в том, что стандартными методами производства вы при всем желании не сможете изготовить два совершенно идентичных образца. А 3D-принтеру такая возможность доступна.

Пожалуй, единственный недостаток воска – его хрупкость. При создании мастер-моделей сложных форм с тонкими стенками постобработку следует выполнять аккуратно.

Восковые мастер-модели отличаются точностью и высоким качеством поверхности. 3D-печать воском основана на технологии многоструйной печати (MultiJet Printing, MJP).

Оборудование в каталоге iQB Technologies: FlashForge WaxJet 400/410

3D печать гипсом

Гипс – материал в виде порошка, который используется в аддитивном производстве для создания:

  • сувенирной продукции;
  • моделей для презентаций;
  • архитектурных и конструкторских макетов;
  • дизайнерских арт-объектов; .

Преимущества гипса – в простоте, эффективности и универсальности его использования в 3D-печати для изготовления различных изделий. Материал распределяется по поверхности рабочего стола, сверху наносится клеящее средство, после чего снова наносится тонкий слой гипсового порошка. Напечатанные на 3D-принтере гипсовые изделия могут иметь любые цвета: белый, синий, красный, фиолетовый и т.д. Цветовой спектр в отдельных принтерах достигает 6 миллионов оттенков.

Гипсовая печать выполняется по технологии ColorJet Printing (CJP). Максимальный на сегодня размер камеры построения аддитивной установки – 508381229 мм (в профессиональном 3D-принтере ProJet 860 Pro компании 3D Systems). При этом изделия из гипса можно склеивать между собой, тем самым получая изделия гораздо большего размера, чем предусматривает камера построения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *