Что называется электрической перегрузкой
Перейти к содержимому

Что называется электрической перегрузкой

  • автор:

Что такое перегрузка электрической сети и е основные причины

Перегрузка электросети

Электроэнергия значительно упрощает жизнь человека, но не все люди правильно оценивают потенциальную опасность электричества. Давно известный факт, что любая электросеть рассчитана на определенную степень нагрузки. Многие это знают и понимают, но упорно продолжают нагружать сеть, что зачастую приводит к неприятным последствиям.

Излишняя нагрузка может приводить к незначительным перебоям в работе различных устройств и приспособлений, мерцанию света. Однако это сущие пустяки по сравнению с тем, что может произойти в случае возникновения критической перегрузки – пожар в помещении. Как устранить причины появления перегрузок и обезопасить себя тем самым от неприятностей?

В чем выражается старение изоляции электропроводки?

С металлической жилой провода, при идеальных условиях эксплуатации, может быть и правда ничего не сделается. Однако, в реальных условиях, проводник подвержен окислению, ухудшению контакта и разогреву в месте плохого контакта… Кроме того, плохие контакты образуются и из-за ослабления затяжки винтовых соединений проводов.
А вот с изоляцией проводов — еще сложнее. Старение изоляции становится причиной выхода провода из строя и может сопровождаться различными неприятностями – от короткого замыкания, до пожара.

Прежде всего, в уменьшении эластичности и механической прочности её материала. Изоляция становится хрупкой и ломкой. Достаточно небольшого воздействия, и ее целостность нарушается. После чего, может произойти электрический пробой изоляции и замыкание. А при том, что раньше в качестве изоляционных материалов использовали, в основном, горючие материалы, то при аварийном нагреве токопроводящих жил проводов и наличии пожароопасной среды, возникает пожар.

Одной из главных причин преждевременного старения изоляции является тепловое старение, вызванное повышением температуры проводника. Естественно, что провод нагревается не просто так, а при перегрузках электросети, вызванных длительным превышением тока, допустимого для данного сечения проводника. Причем, срок службы изоляции при повышении температуры проводника от нормальной всего на 8 градусов — снижается в 2 раза!

Возможные последствия

Даже незначительная перегрузка бытовой электросети может создать множество проблем и привести к серьезным последствиям. Перечислим их, чтобы Вы понимали всю серьезность этой проблемы:

  • Нагрев кабеля приводит к повреждению изоляции проводов, что может спровоцировать возникновение коротких замыканий и, как следствие, — пожара.
  • Частые аварийные автоматические отключения могут привести к потере данных на компьютерном оборудовании и вызвать сбои в работе электронных устройств.
  • Существенное повышение тока вызывает падение напряжения в участке цепи, что отражается на работе практически всех электроприборов.

Это далеко не полный список последствий. Как видите, наиболее серьезное из них может привести к тому, что возникнет пожар. Причем, как показывает печальная статистика, при перегрузках чаще всего из-за замыкания возникают возгорания, последствия которых намного серьезней, чем потеря информации из-за отключения автоматов.

Часто причины пожаров связаны с перегрузкой электросети

Часто причины пожаров связаны с перегрузкой электросети

Причины старения изоляции электропроводки

С металлической жилой провода, при идеальных условиях эксплуатации, может быть и правда ничего не сделается. Однако, в реальных условиях, проводник подвержен окислению, ухудшению контакта и разогреву в месте плохого контакта… Кроме того, плохие контакты образуются и из-за ослабления затяжки винтовых соединений проводов.

А вот с изоляцией проводов — еще сложнее. Старение изоляции становится причиной выхода провода из строя и может сопровождаться различными неприятностями – от короткого замыкания, до пожара.

ЧИТАТЬ ДАЛЕЕ: Как выбрать электрический встраиваемый духовой шкаф: полезные советы

Диагностика и ремонт при перегрузке

Для начала вскрываем корпус внешнего блока и освобождаем доступ к компрессору.

Включаем кондиционер в режим охлаждения

  • если компрессор даже не пытается запуститься, то проверяем соединительные цепи и прозваниваем сам компрессор
  • устраняем замыкания в проводах
  • заменяем компрессор при КЗ
  • если КЗ не обнаружено, то
  • неисправен датчик тока
  • ремонтируем плату
  • меняем плату
  • меняем силовую инверторную плату
  • если давление на магистрали не меняется и заметны повышенные вибрации — компрессор заклинило
  • пытаемся расклинить его
  • меняем компрессор

Электрический ток

Важность защиты электрической сети и приборов в электрической сети от воздействия больших скачков напряжения трудно переоценить. Защита от скачков напряжения в электрической сети может строиться на применении специальных устройств для защиты от скачков напряжения, сетевых фильтров. Для защиты сети и потребителей от скачков могут использоваться и стабилизаторы напряжения со встроенной защитой от скачков напряжения.

Как защитить свой дом от скачков напряжения, смотрите в разделах Защита от скачков напряжения и Стабилизаторы напряжения.

Электроэнергия значительно упрощает жизнь человека, но не все люди правильно оценивают потенциальную опасность электричества. Любая электросеть рассчитана на определенную степень нагрузки.

Многие это знают и понимают, но упорно продолжают нагружать сеть, что зачастую приводит к неприятным последствиям.lt;pgt;

Излишняя нагрузка может приводить к незначительным перебоям в работе различных устройств, мерцанию света.

Однако это сущие пустяки по сравнению с тем, что может произойти в случае возникновения критической перегрузки — пожар в помещении.

Существует множество причин, по которым возникает перегрузка электрической сети. Например, это явление может возникнуть по вине неквалифицированных работников, проводивших различные манипуляции с электросетью.

  • Неправильно рассчитанная нагрузка,
  • выбор недостаточного сечения провода,
  • ошибки в выборе и монтаже защитного устройства

— всё это в большинстве случаев приводит к последующим неприятностям. Избежать всего этого возможно, если обращаться за помощью к профессиональным специалистам.

Однако качественно проведенные монтажные работы электрической сети не являются гарантом безопасности.

Сам потребитель электроэнергии зачастую провоцирует возникновение перегрузок. Подключение к одной группе недопустимого количества электроприборов на сегодняшний день является наиболее распространенной проблемой.

Особенно это актуально в домах старого жилого фонда, где электросети, как правило, не соответствуют современным требованиям, предъявляемым к ним не только действующими нормативами, но и образом жизни домочадцев, т.к. в эксплуатации всё больше появляется мощных электроприборов.

Рассмотрим вариант с часто встречающимися сейчас в быту электроприборами. Например, имеется розетка на два гнезда, в которую пользователь электросети включает стиральную машину мощностью 2,5 киловатт (кВт) и электрочайник мощностью 2,2кВт, суммарная нагрузка составляет 4,7кВт и электрический ток, протекающий по проводам, будет около 22 Ампер (А).

В итоге происходит отключение электроэнергии, так как в большинстве случаев в щитке сработает автоматический выключатель или перегорит пробка, потому что они, как правило, рассчитаны на ток 10−16А.

Здесь многие допускают критическую ошибку — устанавливают автоматический выключатель или пробку с большим пределом допустимой нагрузки, зачастую это 25А. Приборы работают, автомат не выбивает, все довольны.

НО! Так как наиболее распространенная электропроводка в домах выполнена проводом, выдерживающим ток 19А, а современные розетки рассчитаны на ток 16А, то начинает тлеть изоляция проводов, плавиться корпус розетки, что впоследствии может вылиться в пожар.

Ещё хуже ситуация, когда подобные приборы включаются в розетку через удлинитель или тройник, т.к. к пожару это может привести ещё скорее.

К перегрузке могут привести так же и неисправности, как в электроприборах, так и в электропроводке. При длительной эксплуатации расслабляются контактные соединения в тех же розетках, автоматах и разветвительных коробках, где соединение выполнено зачастую скруткой проводов, поэтому даже номинальная нагрузка вызывает их нагрев, что может привести к возгоранию.

Так же распространенное явление — провода в местах изгибов со временем изламываются, сечение провода уменьшается, следовательно, падает и его пропускная способность, что опять же ведет к возгоранию.

Отдельно хочется упомянуть несертифицированный китайский «ширпотреб», который в большинстве своём продается на рынках в виде тройников, разветвителей, удлинителей, переносок и т. п., которые вообще эксплуатировать не рекомендуется. Порой даже маломощное зарядное устройство для мобильного телефона вызывает нагрев в их контактных соединениях.

Отдельно хочется упомянуть об ошибках в монтаже и ремонте электропроводки, когда горе-мастера или неспециалисты соединяют провода просто скруткой, утверждая, что раньше все так делали и эти соединения до сих пор служат. Да, во многих домах такие соединения служили долгие годы. Но раньше не было таких нагрузок на электрическую сеть.

Чтобы обезопасить сеть от возникновения перегрузок, еще на этапе капитального ремонта или строительства нового дома необходимо:

  1. Рассчитать допустимое количество электроприборов на ответвление.
  2. Определиться с правильным расположением приборов.
  3. Рассчитать необходимое сечение проводов.
  4. Разделить электропроводку на отдельные группы.
  5. Выбрать защитную аппаратуру в соответствии с сечением проводов и подключаемой нагрузкой.

В период эксплуатации, что бы избежать перегрузок, так же необходимо выполнять ряд правил:

  1. Периодически приглашать квалифицированных специалистов для осмотра и обслуживания электропроводки и контактных соединений в распределительном щитке, розетках, выключателях, разветвительных коробках, выполнения необходимых электрофизических измерений.
  2. В случае срабатывания защитной аппаратуры приглашать специалиста для выяснения причин и при необходимости выполнения ремонтных работ в электросети.
  3. Своевременно проводить капитальный ремонт электропроводки и осуществлять своевременную замену устаревших элементов.
  4. Не допускать включения в одну розетку нескольких электроприборов.
  5. Не пользоваться самодельными или не сертифицированными электроприборами и другими электроизделиями.

Все работы по проектированию, монтажу и ремонту электропроводки и электрооборудования должны выполняться квалифицированными специалистами, которые учитывают все нюансы и требования, как действующих нормативов, так и заказчика.

Воспользовавшись этими советами, можно обеспечить в электрической сети жилого помещения стабильность, надежность и главное — безопасность, предотвратить возникновение перегрузок, пожаров и других неприятностей.

О.В. Семенович, руководитель группы энергоинспекции Слуцкого МРО «Энергонадзор»

Что такое перегрузка электрической сети и е основные причины

Короткие замыкания (КЗ или “коротыш” как говорят электрики) в электрических сетях чаще всего случаются из-за разрушения изоляции токопроводящих частей в результате механических воздействий, естественного старения, воздействия агрессивных сред и влаги, а также ошибочных действий электротехнического персонала.

Короткое замыкание сопровождается резким возрастанием тока в цепи, а также значительным увеличением выделяющегося тепла, пропорционального квадрату величины тока.Воздействие теплового нагрева на проводку резко снижает механическую и диэлектрическую прочность изоляции.

ЧИТАТЬ ДАЛЕЕ: Что лучше и выгоднее — газовый или электрический котел Сравнительный обзор

А в результате регулярной перегрузки электрических сетей токами, которые существенно превышают допустимую для данного вида и сечений проводников норму, происходит её тепловое старение.

Воздействие влаги и агрессивных сред на изоляцию сопровождается, как правило, появлением поверхностных токов утечки. Тепловой нагрев приводит к испарению жидкости и образованию на ней солевых отложений. После испарения влаги токи утечки исчезают, но при последующем увлажнении процесс повторяется.

Только сейчас из-за повышенной концентрации соли проводимость достигает таких значений, при которых ток утечки не исчезает и по окончании испарения. Действие тока утечки приводит к обугливанию изоляции и потери ей механической прочности.

Возникает ситуация, способная привести к распространению поверхностного дугового разряда и загоранию изоляции.

Коренное отличие режима короткого замыкания от режима перегрузки состоит в том, что в первом случае аварийная ситуация возникает вследствие разрушения изоляции, а во втором – является его причиной. В некоторых случаях перегрузка электропроводки во время аварийного режима может иметь большую пожарную опасность, чем короткое замыкание.

При возникающих в сети перегрузках на воспламеняющую способность проводов существенное влияние оказывает материал жилы. Проведённые в режиме перегрузки испытания убедительно доказали, что вероятность загорания изоляции у кабелей с медными жилами выше, чем у проводов из алюминиевого материала.

При испытаниях на короткое замыкание проявилась схожая закономерность.

Кроме того, оказалось, что провода и кабели в полиэтиленовой оболочке, а также используемые при их прокладке полиэтиленовые трубы имеют большую «склонность» к возгоранию, чем аналогичная электропроводка, выполненная в винипластовых трубах.

Особо опасна перегрузка в частном жилом секторе, т.е. в домах, где обычно от общей электросети запитаны все потребители, а защитное оборудование рассчитано лишь на токи К.З. К тому же, ничто не препятствует жильцам многоквартирных жилых домов бесконтрольно увеличивать потребляемую ими мощность.

Следует обратить особое внимание на тот факт, что электроустановочные изделия снабжаются, как правило, специальными надписями, указывающими на предельные значения токов, напряжений и допустимую рассеиваемую мощность данного устройства. Для того чтобы эксплуатация этих устройств не вызывала проблем – необходимо научиться расшифровывать эти надписи.

Выбор сечения провода и автоматов Результат подключения к розетке большой нагрузки Что такое перегрузка по току? Неисправность электропроводки Что такое перегрузка по току? Излишняя нагрузка на электросеть Реле напряжения

Причины перегрузки электросети

Есть несколько причин возникновения перегрузки электросети и электропроводки, среди которых можно выделить: — неправильный расчет сечения проводника;

— подключение дополнительных потребителей, мощность которых превышает допустимые проектные значения;

— механические перегрузки на валу электродвигателей бытовых электроприборов;

— длительные отклонения напряжения электросети от номинального значения.

— недостаточная электрическая мощность, подведенная к внутренней электросети.

Большая Энциклопедия Нефти и Газа

Перегрузки электрических сетей, машин и аппаратов, следствием чего является нагрев электрооборудования, участков электропроводки, также могут послужить источником пожара. [1]

Перегрузку электрических сетей, машин и аппаратов можно также определить, измерив их температуру и сравнив ее с максимально допустимой. Для этой цели используют термометры, термопары и различные термоиндикаторы. [2]

Проточные электроводонагреватели требуют значительных мощностей, что приводит кперегрузке электрических сетей, поэтому область их применения ограничивается только производственными, общественными зданиями. [3]

Недостатком плавких предохранителей является то, что они допускают, не перегорая, перегрузку электрической сети током, который иногда в 1 5 раза превышает номинальный ток предохранителя.

В последнее время в продаже появились автоматические выключатели в форме пробок, которые ввертываются на их место.

Такие выключатели размыкают цепь даже при небольшом превышении тока сверх номинального. Поэтому их не надо заменять и они являются вечными сторожами против всяких нарушений в сети. Если автомат отключил сеть, то для обратного включения надо нажать кнопку вклкн чения.

Перед этим отключить все электроприборы, включенные в сеть, которые могли быть причиной перегрузки и короткого замыкания. [4]

Такие выключатели размыкают цепь даже при небольшом превышении тока сверх номинального. Поэтому их не надо заменять и они являются вечными сторожами против всяких нарушений в сети. [5]

Во время эксплуатации внутрицеховых электросетей контролируют электрические нагрузки, которые могут изменяться.

Если произведенные проверки покажут, что перегрузки электрических сетей являются систематическими, то необходимо принять меры к разгрузке сетей или к их реконструкции. [6]

Однако не всегда тепловое действие электрического тока приносит пользу. При неумелом и неправильном использовании электрического тока его тепловое действие может принести вред. Так, из-заперегрузки электрической сети сгорает изоляция проводов; возникает короткое замыкание в обмотке электродвигателя, в результате перегрузки выходит из строя электродвигатель. [8]

Если произведенные проверки покажут, чтоперегрузки электрических сетей являются систематическими, то необходимо принять меры к разгрузке сетей или к их реконструкции. [9]

Во время эксплуатации внутрицеховых электросетей контролируют и их токовую нагрузку. Это определяется тем, что электрические нагрузки могут по разным причинам изменяться.

Перегрузки же электрических сетей в течение продолжительного времени приводят к нежелательному перегреву электрической изоляции.

Если произведенные проверки покажут, чтоперегрузки электрических сетей являются систематическими, то необходимо принять меры к разгрузке сетей или к их усилению. [10]

Перегрузки сетей в течение продолжительного времени приводят к нежелательному перегреву электрической изоляции.

Если произведенные проверки покажут, чтоперегрузки электрических сетей являются систематическими, то необходимо принять меры к разгрузке сетей или к их усилению. [11]

Перегрузка групп освещения

Перегрузка групп освещения, редко встречаемая неисправность. Как правило, с группами освещения проблем с перегрузкой нет. Правда, если вместо одной люстры в комнате, сделать новые гирлянды точечных светильников по всему потолку, то перегрузка и в группах освещения вполне может быть.

Здесь, то же есть выход. Современные экономные лампы значительно снижают нагрузку освещения, и это может стать решением проблемы перегрузки.

Статьи по теме: Расчет автоматов защиты

Основные неисправности электросети

Так, перегрузка проводов на 25% сокращает срок службы их примерно до 3-5 месяцев вместо 20 лет, а перегрузка на 50% приводит в негодность провода в течение нескольких часов.

– несоответствие сечения проводников рабочему току (например, когда электропроводка к звонку выполняется телефонным проводом);

ЧИТАТЬ ДАЛЕЕ: Плоский шифер размеры листа гост применение технические характеристики плюсы и минусы асбестоцементного покрытия

– параллельное включение в сеть не предусмотренных расчетом токоприемников без увеличения сечения проводников (например, подключение удлинителя с 3-4 розетками в одну рабочую);

– попадание на проводники токов утечки, молнии;

– повышение температуры окружающей среды.

Что такое перегрузка электрической сети и е основные причины

Кроме того, при перегрузке электросети приборы и аппараты, подключенные к ней, постоянно испытывают нехватку тока, что может привести к их аварийному выходу из строя.

В связи с этим, обратите внимание на паспортные данные электроприборов: силу тока и напряжение.

Желательно, чтобы напряжение питания электроприборов отклонялось на максимально допустимую величину от 220 В (например, от 90 до 260 В).

При возникновении замыкания в цепи ее общее сопротивление уменьшается, что приводит к увеличению токов в ее ветвях по сравнению с токами нормального режима.

Переходным сопротивлением называется сопротивление, возникающее в местах перехода тока с одного провода на другой или с провода на какой-либо электроаппарат при наличии плохого контакта в местах соединений и оконцеваний (при скрутке, например).

При прохождении тока в таких местах за единицу времени выделяется большое количество теплоты. Если нагретые контакты соприкасаются с горючими материалами, то возможно их воспламенение, а при наличии взрывоопасных смесей взрыв.

В этом и заключается опасность ПС, которая усугубляется тем, что места с наличием переходных сопротивлений трудно обнаружить, а защитные аппараты сетей и установок, даже правильно выбранные, не могут предупредить возникновение пожара, так как электрический ток в цепи не возрастает, а нагрев участка с ПС происходит только вследствие увеличения сопротивления.

Искрение и электродуга – результат прохождения тока через воздух.

Что такое перегрузка электрической сети и е основные причины

Искрение наблюдается при размыкании электрических цепей под нагрузкой (например, когда вынимается электровилка из электророзетки), при пробое изоляции между проводниками, а также во всех случаях при наличии плохих контактов в местах соединения и оконцевания проводов и кабелей. Под действием электрического поля воздух между контактами ионизируется и, при достаточной величине напряжения, происходит разряд, сопровождающийся свечением воздуха и треском (тлеющий разряд).

Общие принципы пожарной безопасности от искр, дуг, перегрузок, коротких замыканий и переходных сопротивлений.

– правильно производить соединение и оконцевание проводников;

– тщательно соединять провода и кабели (пайкой, сваркой, опрессовкой, специальными сжимами);

– правильно выбирать сечение проводников по нагреву электрическим током;

– ограничить параллельное включение токоприемников в сеть;

– создавать условия для охлаждения проводов электроприборов и аппаратов;

– применять только калиброванные плавкие предохранители или автоматические выключатели;

– проводить планово-предупредительные осмотры и измерения сопротивления изоляции проводов и кабелей;

– устанавливать быстродействующие аппараты защиты

– защищать от окисления разъединяемые контакты.

Способы контроля нагрева электрооборудования в процессе эксплуатации

Методы контроля нагрева электрооборудования

Для контроля нагрева электрооборудования применяют метод:

контроль нагрева электрооборудования по методу термометра

Метод термометра

применяют для измерения температуры доступных поверхностей. Используют ртутные (избегать, токсично!), спиртовые и толуоловые стеклянные термометры, погружаемые в специальные гильзы, герметически встроенные в крышки и кожухи оборудования.

Ртутные термометры

обладают более высокой точностью, но применять их в условиях действия электромагнитных полей не рекомендуется ввиду высокой погрешности, вносимой дополнительным нагревом ртути вихревыми токами.

При необходимости передачи измерительного сигнала на расстояние нескольких метров (например, от теплообменника в крышке трансформатора до уровня 2–3 м от земли) используют термометры манометрического типа

, например, термосигнализаторы ТСМ-10.

Термосигнализатор ТСМ-10

состоит из термобаллона и полой трубки, соединяющей баллон с пружиной показывающей части прибора. Термосигнализатор заполнен жидким метилом и его парами. При изменении температуры изменяется давление паров хлористого метила, который передается стрелке прибора. Достоинство манометрических приборов заключается в их вибрационной устойчивости.

Контроль нагрева электрооборудования термометром с указателем манометрического типа

Метод сопротивления основан на учете изменения величины сопротивления металлического проводника от его температуры. Для мощных трансформаторов и синхронных компенсаторов применяют термометры с указателем манометрического типа

. Схема включения дистанционного электротермометра показаны на рис. 22.

Рис. 22.
Дистанционный электротермометр манометрического типа
В дистанционном электротермометре стрелки указателя имеют два контакта для сигнализации температуры, заданной установкой. При замыкании контактов срабатывает соответствующее реле в схеме сигнализации.

Для измерения температуры в отдельных точках синхронных компенсаторов (в пазах для измерения стали, между стержнями обмоток для измерения температуры обмоток и других точках) устанавливаются терморезисторы

. Сопротивление резисторов зависит от температуры в точках измерения.

Терморезисторы изготовляют из платиновой или медной проволоки, их сопротивления калиброваны.

Схема измерения температур с помощью терморезистора показана на рис. 23.

Рис. 23.
Схема измерения температур с помощью терморезистора
Такой терморезистор R4 включается в плечо резистивного моста. В одну из диагоналей моста включается источник питания, в другую — измерительный прибор. Резисторы R1—R4 в плечах моста подбираются таким образом, что при номинальной температуре мост находится в равновесии, и ток в цепи прибора отсутствует.

При отклонении температуры в любую сторону от номинальной изменяется сопротивление терморезистора R4, нарушается баланс моста и стрелка прибора отклоняется, показывая температуру измеряемой точки. Перед измерением стрелка прибора должна находиться в нулевом положении.

Контроль нагрева электрооборудования с помощью термометров сопротивления

Средством дистанционного измерения температуры обмотки и стали статора генераторов, синхронных компенсаторов, температуры охлаждающего воздуха, водорода являются термометры сопротивления

, в которых также использована зависимость величины сопротивления проводника от температуры.

Конструкции термометров сопротивления разнообразны. В большинстве случаев — это бифилярно намотанная на плоский изоляционный каркас тонкая медная проволока, имеющая входное сопротивление 53 Ом при температуре 0 °С. В качестве измерительной части

, работающей в совокупности с термометрами сопротивления, применяют автоматические электронные мосты и логомеры, снабженные температурной шкалой.

Установку термометров сопротивления в статор машины выполняют при ее изготовлении на заводе. Медные термометры сопротивления укладывают между стержнями обмотки и на дно паза.

Контроль нагрева электрооборудования по методу термопары

Метод термопары основан на использовании термоэлектрического эффекта, т. е. температурной зависимости ЭДС, возникающей на концах электрической цепи из разнородных проводников при условии разности температур точки их спая и свободных концов этих проводников. Наиболее часто для измерений используют медь-константановые, хромель-копелевые, платино-родиевые термопары.

Если измеряемая температура не превышает 100–120 °С, то между термоЭДС и разностью температур нагретых и холодных концов термопары существует прямопропорциональная зависимость.

Откалиброванные термопары присоединяют к измерительным приборам компенсационного типа, потенциометрам постоянного тока и автоматическим потенциометрам, которые предварительно градуируют. С помощью термопар измеряют температуры конструктивных элементов турбогенераторов, охлаждающего газа, активных частей, например, активной стали статора.

Контроль нагрева электрооборудования по методу инфракрасного излучения

Метод инфракрасного излучения положен в основу приборов, измеряющих температуру по интенсивности или спектру инфракрасного излучения, испускаемого нагретыми поверхностями.

В энергетике получили применение как тепловизоры

(
термовизоры)
, так и
радиационные пирометры
. Тепловизоры обеспечивают возможность получения картины теплового поля исследуемого объекта и его температурного анализа. С помощью радиационного пирометра определяется только температура объекта контроля.

Очень часто тепловизор используется совместно с пирометром. Сначала с помощью тепловизора выявляют объекты с повышенным нагревом, а затем, используя пирометр, определяют его температуру. Поэтому точность измерения температуры определяется, прежде всего, параметрами применяемого пирометра.

Как возникает перегрузка в электросети и почему это приводит к пожарам. Объясняет «Энергонадзор»

Чаще, перегрузка в электросети не является неисправностью. Это скорее просчет при создании проекта электроснабжения квартиры и ее монтаже. Если в одну группу розеток включили большое количество розеток, при этом неправильно рассчитали номинал автомата защиты, то перегрузка неизбежна.

Например, на кухне было две розетки. Решив увеличить количество розеток, мастера не позаботились о создании новой группы, а шлейфом смонтировали еще несколько розеток. Каждая отдельная розетка не перегружает цепь, а при включении нескольких приборов приводит к перегрузке.

Хочу напомнить, что при перегрузки электросети автоматические выключатели не срабатывают моментально, как при коротком замыкании. В устройстве автомата защиты, для защиты от перегрузки есть биметаллическая пластина, нагрев которой отключает аварийную цепь. Для нагрева пластины и отключения цепи при перегрузки требуется несколько минут.

Статьи по теме: Устройство УЗИП: назначение и классы

Поэтому, если у вас периодически срабатывают автоматы защиты, при включении бытовых приборов, то вполне вероятна перегрузка электросети и неправильное распределение нагрузки или неправильно подобранный номинал уставки автомата защиты.

Сложность предварительного расчета каждой группы розеток квартиры, создало одно простое правило монтажа. На одну розеточную группу не «вешайте» более 4 розеток. При таком распределении нагрузки в сочетании с медным кабелем 3×2,5 мм² и автоматом защиты в 25 Ампер, никогда не будет перегрузки групповой цепи.

Включение в сеть неисправного прибора

Но перегрузка электросети может появляться не только при неправильном распределении нагрузки. Неисправный электроприбор, вполне, может потреблять повышенный ток и приводить к перегрузке сети.

Если отключение автомата защиты происходит только при работе «подозреваемого» прибора, а мощность прибора не более 2500Вт, то прибор нужно ремонтировать или менять.

Неисправность электропроводки Излишняя нагрузка на электросеть

Как возникает перегрузка в электросети и почему это приводит к пожарам. Объясняет «Энергонадзор»

Электроэнергия значительно упрощает жизнь человека, но не все люди правильно оценивают потенциальную опасность электричества. Любая электросеть рассчитана на определенную степень нагрузки. Многие это знают и понимают, но упорно продолжают нагружать сеть, что зачастую приводит к неприятным последствиям.

Излишняя нагрузка может приводить к незначительным перебоям в работе различных устройств, мерцанию света. Однако это сущие пустяки по сравнению с тем, что может произойти в случае возникновения критической перегрузки — пожар в помещении.


Реклама

Существует множество причин, по которым возникает перегрузка электрической сети. Например, это явление может возникнуть по вине неквалифицированных работников, проводивших различные манипуляции с электросетью.

  • Неправильно рассчитанная нагрузка,
  • выбор недостаточного сечения провода,
  • ошибки в выборе и монтаже защитного устройства

— всё это в большинстве случаев приводит к последующим неприятностям. Избежать всего этого возможно, если обращаться за помощью к профессиональным специалистам.

Однако качественно проведенные монтажные работы электрической сети не являются гарантом безопасности.

Сам потребитель электроэнергии зачастую провоцирует возникновение перегрузок. Подключение к одной группе недопустимого количества электроприборов на сегодняшний день является наиболее распространенной проблемой.

Особенно это актуально в домах старого жилого фонда, где электросети, как правило, не соответствуют современным требованиям, предъявляемым к ним не только действующими нормативами, но и образом жизни домочадцев, т.к. в эксплуатации всё больше появляется мощных электроприборов.

Как на практике возникает перегрузка сети?

Рассмотрим вариант с часто встречающимися сейчас в быту электроприборами. Например, имеется розетка на два гнезда, в которую пользователь электросети включает стиральную машину мощностью 2,5 киловатт (кВт) и электрочайник мощностью 2,2кВт, суммарная нагрузка составляет 4,7кВт и электрический ток, протекающий по проводам, будет около 22 Ампер (А).

В итоге происходит отключение электроэнергии, так как в большинстве случаев в щитке сработает автоматический выключатель или перегорит пробка, потому что они, как правило, рассчитаны на ток 10−16А.

Здесь многие допускают критическую ошибку — устанавливают автоматический выключатель или пробку с большим пределом допустимой нагрузки, зачастую это 25А. Приборы работают, автомат не выбивает, все довольны. НО! Так как наиболее распространенная электропроводка в домах выполнена проводом, выдерживающим ток 19А, а современные розетки рассчитаны на ток 16А, то начинает тлеть изоляция проводов, плавиться корпус розетки, что впоследствии может вылиться в пожар. Ещё хуже ситуация, когда подобные приборы включаются в розетку через удлинитель или тройник, т.к. к пожару это может привести ещё скорее.

К перегрузке могут привести так же и неисправности, как в электроприборах, так и в электропроводке. При длительной эксплуатации расслабляются контактные соединения в тех же розетках, автоматах и разветвительных коробках, где соединение выполнено зачастую скруткой проводов, поэтому даже номинальная нагрузка вызывает их нагрев, что может привести к возгоранию.

Так же распространенное явление — провода в местах изгибов со временем изламываются, сечение провода уменьшается, следовательно, падает и его пропускная способность, что опять же ведет к возгоранию.

Отдельно хочется упомянуть несертифицированный китайский «ширпотреб», который в большинстве своём продается на рынках в виде тройников, разветвителей, удлинителей, переносок и т. п., которые вообще эксплуатировать не рекомендуется. Порой даже маломощное зарядное устройство для мобильного телефона вызывает нагрев в их контактных соединениях.

Отдельно хочется упомянуть об ошибках в монтаже и ремонте электропроводки, когда горе-мастера или неспециалисты соединяют провода просто скруткой, утверждая, что раньше все так делали и эти соединения до сих пор служат. Да, во многих домах такие соединения служили долгие годы. Но раньше не было таких нагрузок на электрическую сеть.

Сейчас же, покупая современную бытовую технику, которая потребляет значительную мощность, люди, не задумываясь, подключают её к существующей сети и со временем получают проблемы в виде оплавленной изоляции, подгорающих контактов и, хуже того, возгорания. Что бы таких проблем не возникало, действующими правилами и предусмотрено соединение проводов при помощи опрессовки, сварки, пайки или сжимов (винтовых, болтовых и т. п.).

Чтобы обезопасить сеть от возникновения перегрузок, еще на этапе капитального ремонта или строительства нового дома необходимо:

  1. Рассчитать допустимое количество электроприборов на ответвление.
  2. Определиться с правильным расположением приборов.
  3. Рассчитать необходимое сечение проводов.
  4. Разделить электропроводку на отдельные группы.
  5. Выбрать защитную аппаратуру в соответствии с сечением проводов и подключаемой нагрузкой.

В период эксплуатации, что бы избежать перегрузок, так же необходимо выполнять ряд правил:

  1. Периодически приглашать квалифицированных специалистов для осмотра и обслуживания электропроводки и контактных соединений в распределительном щитке, розетках, выключателях, разветвительных коробках, выполнения необходимых электрофизических измерений.
  2. В случае срабатывания защитной аппаратуры приглашать специалиста для выяснения причин и при необходимости выполнения ремонтных работ в электросети.
  3. Своевременно проводить капитальный ремонт электропроводки и осуществлять своевременную замену устаревших элементов.
  4. Не допускать включения в одну розетку нескольких электроприборов.
  5. Не пользоваться самодельными или не сертифицированными электроприборами и другими электроизделиями.

Все работы по проектированию, монтажу и ремонту электропроводки и электрооборудования должны выполняться квалифицированными специалистами, которые учитывают все нюансы и требования, как действующих нормативов, так и заказчика.

Воспользовавшись этими советами, можно обеспечить в электрической сети жилого помещения стабильность, надежность и главное — безопасность, предотвратить возникновение перегрузок, пожаров и других неприятностей.

О.В. Семенович, руководитель группы энергоинспекции Слуцкого МРО «Энергонадзор»

Перегрузка групп освещения

Перегрузка групп освещения, редко встречаемая неисправность. Как правило, с группами освещения проблем с перегрузкой нет. Правда, если вместо одной люстры в комнате, сделать новые гирлянды точечных светильников по всему потолку, то перегрузка и в группах освещения вполне может быть.

Здесь, то же есть выход. Современные экономные лампы значительно снижают нагрузку освещения, и это может стать решением проблемы перегрузки.

Статьи по теме: Что влияет на стоимость электромонтажных работ

К ЧЕМУ МОЖЕТ ПРИВЕСТИ ПЕРЕГРУЗКА В ЭЛЕКТРИЧЕСКОЙ СЕТИ?

Перегрузка в электрической сети м ожет привести к негативным последствиям, а именно, к возникновению пожара. Из-за перегрузки кабель нагревается, изоляция рассыхается, распадается и в итоге происходит короткое замыкание.

Происходит это, чаще всего, из-за того, что сечение электропроводки не соответствует нормативу, то есть, нагрузка потребления энергии превышает пропускную возможность пр оводника.

Еще одна причина, которую следует взять во внимание, на групповой линии может быть установлен завышенный по номиналу автоматический выключатель, так, например, на кабеле сечением в 2,5 квадрата должен быть установлен автомат на 16 А. Если установить автомат на 25 или 32 А проводник будет сильно греться и в результате приведет к тому результату, о котором раннее было сказано.

Максимально допустимая температура для изоляции из ПВХ — 65 °С при продолжительной нагрузке. Допустимые нагрузки должны находится в прямой зависимости от сечения электропроводки, автоматов защиты и условий окружающей среды, а также важно учитывать технологии прокладывания проводника.

Так же Вас может заинтересовать:

Закажите выезд специалиста:

Или оставьте заявку, мы перезвоним в течении 5 минут!

НАС РЕКОМЕНДУЮТ!

Более половины новых клиентов приходят к нам по рекомендации от своих друзей и знакомых!

Читайте отзывы о компании Уют Мастер!

НАШИ ВЫПОЛНЕННЫЕ РАБОТЫ

Монтаж и замена труб

  • Замена водопроводных труб
  • Монтаж труб Rehau
  • Монтаж полипропиленовых труб
  • Монтаж металлопластиковых труб
  • Ремонт водопроводных труб
  • Замена канализации в квартире

Сантехнические и ремонтные работы

  • Сантехнические работы
  • Ремонт сантехники
  • Душевые кабины
  • Установка душевой кабины
  • Установка душевой кабины NIAGARA
  • Ремонт душевых кабин
  • Замена герметика в душевой кабине
  • Установка душевого поддона
  • Установка и замена полотенцесушителя
  • Замена батарей отопления
  • Монтаж радиаторов отопления под ключ
  • Установка ванны
  • Установка стальной ванны
  • Установка унитаза
  • Установка кухонной мойки

Токовые перегрузки и их влияние на работу и срок службы электродвигателей

Анализ повреждений асинхронных двигателей показывает, что основной причиной их выхода из строя является разрушение изоляции из-за перегрева.
Перегрузка электротехнического изделия (устройства) — превышение фактического значения мощности или тока электротехнического изделия (устройства) над номинальным значением. (ГОСТ 18311-80).

Температура нагрева обмоток электродви гателя зависит от теплотехнических характеристик двигателя и параметров окружающей среды. Часть выделяемого в двигателе тепла идет на нагрев обмоток, а остальное отдается в окружающую среду. На процесс нагрева влияют такие физические параметры, как теплоемкость и теплоотдача .

В зависимости от теплового состояния электродвигателя и окружающего воздуха степень их влияния может быть различной. Если разность температур двигателя и окружающей среды невелика, а выделяемая энергия значительна, то ее основная часть поглощается обмоткой, сталью статора и ротора, корпусом двигателя и другими его частями. Происходит интенсивный рост температуры изоляции . По мере нагрева все больше проявляется влияние теплоотдачи. Процесс устанавливается после достижения равновесия между выделяемым теплом и теплом, отдаваемым в окружающую среду.

Расчет и измерение токов короткого замыкания

При коротком замыкании вся мощность электрической сети сосредотачивается на маленьком участке. Если бы кабели, провода и коммутационные аппараты не имели бы собственных сопротивлений, ток КЗ достигал бы огромных величин. Но на самом деле он ограничивается суммарным сопротивлением линии от источника питания (трансформатора на подстанции, генераторов энергосистемы) до точки КЗ.

При проектировании электроустановок величину этого тока обязательно рассчитывают. Для этого используются данные о сопротивлениях (активных и реактивных) всего электрооборудования, установленного на пути КЗ. Ток считается для самой удаленной от источника точки, чтобы проверить, отключит ли его защита.

В эксплуатации или после монтажа ток КЗ измеряют специальными приборами: измерителями петли фаза-нуль. Делается это для того, чтобы удостовериться в правильности расчетов или в местах, для которых этот расчет выполнить невозможно.

Прибор MZC-200 для измерения петли фаза-нуль

Прибор MZC-200 для измерения петли фаза-нуль

Чем дальше точка КЗ от источника, тем ток замыкания меньше. При определенном удалении может получиться ситуация, когда тока будет не хватать для срабатывания отсечек автоматических выключателей. В этом случае:

  • вместо модульных выключателей с характеристикой «С» (кратность отсечки 5-10) применяют «В» (кратность 3-5);
  • увеличивают сечение питающих кабелей.

Диагностика и ремонт при перегрузке

Для начала вскрываем корпус внешнего блока и освобождаем доступ к компрессору.

Включаем кондиционер в режим охлаждения

  • если компрессор даже не пытается запуститься, то проверяем соединительные цепи и прозваниваем сам компрессор
  • устраняем замыкания в проводах
  • заменяем компрессор при КЗ
  • если КЗ не обнаружено, то
  • неисправен датчик тока
  • ремонтируем плату
  • меняем плату
  • неисправен силовой (IGBT) модуль меняем силовую инверторную плату
    если давление на магистрали не меняется и заметны повышенные вибрации — компрессор заклинило

Перегрузка трансформатора, ее виды

Совокупность допустимых нагрузок и перегрузок – определяет нагрузочную способность трансформатора.

Допустимая нагрузка – нагрузка, соответствующая номинальному режиму работы, неограниченная по времени, при которой не происходит износ изоляции обмоток, вызываемый нагревом в процессе работы.

Перегрузка – режим работы, вызванный подключением мощности нагрузки больше номинальной или температуры окружающей среды больше расчетной. При перегрузке происходит ускоренный износ изоляции обмоток.

  1. Систематические – вызванные суточным графиком работы. Такие режимы работы должны соответствовать допустимым коэффициентам перегрузки и времени их прохождения для каждого конкретного устройства.
  2. Аварийные – вызванные аварийными ситуациями. Перегрузки данного вида бывают:
  • Кратковременные;
  • Длительные.

Перегрузка масляных трансформаторов

Масляный трансформатор – силовой агрегат, в котором в качестве охлаждающей жидкости используется масло.

Режим работы аппаратов подобного типа регламентирован ГОСТ 14209-97 (МЭК354-91) «Руководство по нагрузке силовых масляных трансформаторов», который введен в действие в 2001 году.

Предельные значения температуры и тока для режима перегрузок:

  • Для аварийных перегрузок, которые имеют кратковременный характер, предельные значения температуры охлаждающего реагента (масла) в верхнем слое и наиболее нагретого участка – не установлены. Причиной этого, является то, что при эксплуатации подобного типа оборудования, нет возможности осуществлять контроль продолжительности аварийной перегрузки данного типа трансформаторов.
  • При эксплуатации распределительных трансформаторов необходимо не забывать, что при температуре превышающей 140-160 °С, возможно выделение пузырьков газа, снижающих электрическую прочность изоляции.

Перегрузка трансформаторов тока

Устройство и режим работы устройств регламентированы ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия», принят Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол N 20 от 1 ноября 2001 г.) и введен в действие 01.01.2003 года.

Перегрузки как аварийный режим работы электрооборудования

Перегрузкой

называется такой
аварийный режим
, при котором в проводниках электрических сетей, машин и аппаратов возникают токи, длительно превышающие величины, допускаемые нормами.

Одним из видов преобразования электрической энергии является переход ее в тепловую. Электрический ток в проводниках электрических сетей, машин и аппаратов выделяет теплоту, рассеивающуюся в окружающем пространстве. Проводники при этом могут нагреваться до опасных температур. Так, для голых медных, алюминиевых и стальных проводов воздушных линий максимально допустимая температура не должна превышать 70°С. Объясняется это тем, что с повышением температуры усиливаются окислительные процессы и на проводах (особенно в контактных соединениях) образуются окиси, имеющие высокое сопротивление; увеличивается сопротивление контакта, и, следовательно, выделяемая в нем теплота. С увеличением температуры соединения увеличивается окисление, а это может привести к полному разрушению контакта провода.

Причиной возникновения

перегрузки может быть неправильный расчет проводников при проектировании. Если сечение проводников занижено, то при включении всех предусмотренных электроприёмников возникает перегрузка. Перегрузка может возникнуть из-за дополнительного включения электроприёмников, на которые проводники сети не рассчитаны.

Чтобы избежать перегрузки или ее последствий, при проектировании необходимо правильно выбирать сечения проводников сетей по допустимому току, а также электродвигатели и аппараты управления.

В процессе эксплуатации электрических сетей нельзя включать дополнительно электроприёмники, если сеть на это не рассчитана.

Перегрузка силовых трансформаторов (длительная допустимая и кратковременная аварийная)

Короткое замыкание (КЗ) – это возникновение электрического контакта между разными фазами, фазой и нулевым рабочим или защитным проводом. В сети с глухозаземленной нейтралью коротким замыканием можно считать контакт между фазным проводником и землей.
Причинами короткого замыкания могут быть:

  • ухудшение или повреждение изоляции;
  • попадание посторонних предметов, проводящих электрический ток, на токоведущие части;
  • механические повреждения или разрушения электрических машин и аппаратов;
  • ошибки работников при монтаже или обслуживании электрооборудования;
  • аварийные режимы работы сети, связанные с возникновением в ней перенапряжений или резких бросков тока.

Со временем изоляция стареет и теряет свои свойства. Это относится в равной степени и к кабелям, и к обмоткам электродвигателей, и к изоляторам. Этому свойству подвержены и изоляционные поверхности: корпуса автоматических выключателей, предохранителей. На ухудшение свойств изоляторов влияет среда, в которой они работают: степень загрязненности, наличие влаги, пыли, агрессивных газов. Стоит появиться небольшому токопроводящему участку, и он начинает греться и разрастаться, пока ток через него не достигнет критической величины. Он лавинообразно возрастет, разогреет и обуглит поверхность, по которой протекает. С этого момента участок с ослабленной изоляцией становится местом короткого замыкания.

Примером посторонних предметов на токоведущих частях являются деревья, падающие на провода линий электропередач. Сами они создают контакт между землей и фазными проводниками, дополнительно обрываются провода или замыкаются между собой.

Износ подшипников электродвигателей тоже может привести к короткому замыканию. Ротор при вращении цепляет своими обмотками за внутренние детали или обмотку статора. Изоляция повреждается и возникает КЗ. Кабели, проложенные в земле, неизбежно подвергаются механическим деформациям. Над ними проезжает транспорт, а при смене времен года подвижки грунта испытывают их на прочность.

Невнимательность, неаккуратность, несоблюдение правил безопасности тоже могут привести к КЗ. При этом дополнительно наносится вред здоровью работников.

Перенапряжения сами по себе не являются причинами КЗ. Они лишь ускоряют их возникновение на участках с пониженной изоляцией, где рано или поздно замыкание все равно бы произошло.

Перераспределение мощности электросети

Еще одной возможностью использовать все необходимые в доме бытовые приборы без увеличения разрешенной мощности является установка в доме специального оборудования распределения энергии. Функции распределения энергии по нескольким потребителям может выполняться в электросистеме за счет установки специальных реле, монтаж которых обязательно должен учитываться специалистами при разработке проекта электроснабжения.

Распределительное оборудование можно настроить на приоритетное электроснабжение отдельных бытовых устройств или целых инженерных систем, если для их работы требуется электрическая энергия. Принцип действия таких устройств достаточно прост, реле будут автоматически отключать от питания ненужные электрические приборы, чтобы мощности системы было достаточно для работы приоритетных систем или устройств. Чаще всего распределительные реле устанавливаются в случаях, когда электрика используется для работы систем канализации, вентиляции воздуха или отопления внутренних помещений в частном доме. Они позволяют использовать мощное оборудование, которое требуется для комфортного проживания людей на территории объекта. По сравнению с резервным электроснабжением, такая технология требует гораздо меньше финансовых вложений от собственника и обеспечивает безопасность электрики в загородном доме.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.

Причины старения изоляции электропроводки

С металлической жилой провода, при идеальных условиях эксплуатации, может быть и правда ничего не сделается. Однако, в реальных условиях, проводник подвержен окислению, ухудшению контакта и разогреву в месте плохого контакта… Кроме того, плохие контакты образуются и из-за ослабления затяжки винтовых соединений проводов.

А вот с изоляцией проводов — еще сложнее. Старение изоляции становится причиной выхода провода из строя и может сопровождаться различными неприятностями – от короткого замыкания, до пожара.

ЧИТАТЬ ДАЛЕЕ: Как правильно подключить сверхяркие светодиоды к блоку питания?

Емкость сети [ править ]

Сетевые ресурсы ограничены, включая время обработки маршрутизатора и пропускную способность канала . Конкуренция за ресурсы может происходить в сетях при ряде общих обстоятельств. Беспроводная локальная сеть легко заполняются один персональным компьютером. [2] Даже в быстрых компьютерных сетях магистраль может быть легко перегружена несколькими серверами и клиентскими ПК. Атаки типа «отказ в обслуживании» со стороны ботнетов способны заполнять даже самые крупные магистральные сетевые каналы Интернета, создавая масштабную перегрузку сети. В телефонных сетях массовые вызовы могут перегрузить цифровые телефонные сети.

Возможные последствия

Даже незначительная перегрузка бытовой электросети может создать множество проблем и привести к серьезным последствиям. Перечислим их, чтобы Вы понимали всю серьезность этой проблемы:

  • Нагрев кабеля приводит к повреждению изоляции проводов, что может спровоцировать возникновение коротких замыканий и, как следствие, — пожара.
  • Частые аварийные автоматические отключения могут привести к потере данных на компьютерном оборудовании и вызвать сбои в работе электронных устройств.
  • Существенное повышение тока вызывает падение напряжения в участке цепи, что отражается на работе практически всех электроприборов.

Чем опасно понижение напряжения в сети


Чаще всего страдают электрические приборы из-за быстрого и значительного повышения напряжения. Но и низкий показатель этой величины может быть опасным для того оборудование, работа которого зависит от двигателя.

ВНИМАНИЕ! Допустимые по нормам отклонения в размере 10% от 220В могут значительно изменить работу лабораторного оборудования, медицинской диагностической техники.

При низком напряжении двигатель не имеет достаточной мощности для нормальной работы, он перегревается, обмотки его могут сгореть. Наиболее подвержены поломке такие бытовые приборы с компрессорными агрегатами, как холодильники, кондиционеры.

Повышение напряжения выше допустимых значений

Одной из частых причин выхода бытовых электрических устройств из строя является повышение напряжения выше допустимых значений. Статистика неумолима — сообщения о сгоревших холодильниках, телевизорах и другой технике появляются периодически и причина, как правило, колебания напряжения. В чем же причина таких явлений? Для понимания причин повышения напряжения, стоит сказать несколько слов о том, какие же напряжения действуют в 3-х фазной электрической сети.

Итак, в 3-х фазной сети действуют 2 вида напряжения: линейное — напряжение между двумя фазами и фазное, это напряжение между фазой и рабочим нулевым проводником, (его еще часто называют «нулем» или «нейтралью»). Соответственно, линейное напряжение равно 380 В, фазное — 220 В. В бытовой электросети мы используем фазное напряжение, но при обрыве нулевого проводника (так называемом «обрыве нуля») это напряжение может достигать 1,73* фазного напряжения, или 380 В. Таким образом, подключенные к сети устройства в этом момент окажутся под напряжением, на которые не рассчитаны и будут выведены из строя или, что еще хуже, загорятся и могут вызвать пожар.

Защитить оборудование в доме от подобной опасности может устройство, называемое реле напряжения. Это компактный защитный элемент сети, который устанавливается в электрическом щитке и контролирует напряжение в сети. Как только напряжение превышает заданный порог, устройство отключает участок сети, но само при этом остается включенным. После того, как напряжение вновь станет нормальным, реле напряжения снова включит питание. Таким образом реле напряжения позволяет защитить от повреждения подключенное оборудование.

Что такое перегрузка электрической сети и защита от кз

Токами повреждения называются токи коллектора (или стока), превышающие пределы, заданные для определенных условий эксплуатации, вследствие ошибки схемы управления или повреждения нагрузки. Отказ полупроводниковых ключей в этом случае может быть обусловлен следующими механизмами:

  • тепловое повреждение вследствие повышения мощности рассеяния и перегрева;
  • динамический пробой;
  • статическое или динамическое защелкивание;
  • перенапряжение при отключении аварийного тока.

Токовые перегрузки, причиной которых являются сбои в алгоритме управления или падение нагрузки, характеризуются следующими факторами:

  • относительно низкая скорость изменения di/dt (зависящая от индуктивности нагрузки и управляющего напряжения);
  • повреждающий ток протекает по DC-шине;
  • транзистор не выходит из насыщения.

Короткое замыкание (КЗ) вследствие пробоя одного из ключей полумоста (case 1 на рис. 1) или замыкания цепи нагрузки (например, из-за повреждения изоляции, case 2 на рис. 1) характеризуется следующими факторами:

  • очень высокая скорость изменения тока di/dt;
  • повреждающий ток протекает по DC-шине;
  • транзистор выходит из насыщения.

Токи замыкания на землю, которые могут быть вызваны пробоем изоляции (case 3 на рис. 1), характеризуются следующими факторами:

  • скорость изменения тока di/dt зависит от индуктивности цепи заземления и рабочего напряжения;
  • повреждающий ток не замыкается по DC-шине;
  • выход транзистора из насыщения зависит от величины аварийного тока.

Рис. 1. Причины возникновения короткого замыкания

Добавляем реализм в систему защиты

Давайте теперь в симуляторе добавим шунт, нагрузку, источник питания и прочие атрибуты, которые приблизят нашу модель к реальности. Полученный результат выглядит следующим образом (картинка кликабельная):

Скачать файл симуляции для MultiSIM можно — тут.

Тут уже мы видим наш шунт R1 с сопротивлением все те же 2 мОм, источник питания я выбрал 310В (выпрямленная сеть) и нагрузкой для него является резистор 10.2 Ом, что опять по закону Ома дает нам ток:

На шунте как видите падают, ранее посчитанные, 60 мВ и их мы усиливаем с коэффициентом усиления: На выходе мы получаем усиленный сигнал с амплитудой 3.1В. Согласитесь, его уже и на АЦП можно подать, и на компаратор и протащить по плате 20-40 мм без каких либо опасений и ухудшения стабильности работы. С этим сигналом мы и будем далее работать.

Отличие короткого замыкания и тока перегрузки

Короткое замыкание не стоит путать с током перегрузки, основное отличие между авариями таких типов заключается в том, что при КЗ может быть повреждена изоляция, а в случае с перегрузкой, авария является следствием повреждения изоляции или других проблем в электросети

Важно отметить, что перегрузка электросети, продолжающаяся в течение определенного времени с большей вероятностью приведет к возникновению пожара, чем кратковременное замыкание

Вероятность возникновения возгорания при коротких замыканиях и токов перегрузки напрямую зависит от типа и характеристик используемых в электрических системах кабелей

Именно поэтому крайне важно грамотно подобрать проводку для любой электросети, чтобы она полностью соответствовала уровню нагрузки и особенностям эксплуатации. Хуже всего от возникновения пожаров защищены электрические кабели с изоляцией из резины и полиэтилена, потому профессиональные специалисты не рекомендуют использовать такие материалы, особенно при использовании скрытой проводки под штукатуркой

Лучше всего на практике себя показывают электрические кабели ВВГ Нг, имеющие надежную, негорючую изоляцию и не подвергающие опасности пользователей электросетей даже при возникновении аварийных ситуаций.

Установки надежных электрических кабелей недостаточно для обеспечения полной безопасности эксплуатации бытовой электросистемы. Гарантированно защитить пользователей от коротких замыканий и токов перегрузки могут лишь правильно подобранные по номиналам устройства защитного отключения (УЗО) и автоматические выключатели.

Тепловое воздействие и аварийный режим работы ламп накаливания

Устройство лампы накаливания

Основными причинами возникновения пожаров от электрических ламп накаливания являются:

  • непосредственное соприкосновение горючих материалов с нагретой колбой лампы;
  • воздействие теплового излучения лампы на горючие материалы;
  • вылет раскаленных капель спирали, образовавшихся под воздействием дуги между электродами или одним из электродов и обгоревшей нитью накаливания;
  • попадание нагретых частиц спирали на горючие материалы в результате взрыва колбы лампы накаливания.

Возникновение пожаров от ламп накаливания может быть обусловлено:

  • нарушением правил эксплуатации ламп накаливания, например, использованием их в пожароопасных помещениях без защитных стеклянных колпаков;
  • несоблюдение минимально допустимых расстояний от ламп накаливания до легковоспламеняющихся и горючих материалов, использование бумажных абажуров и др.;
  • некачественным энергоснабжением (резкими колебаниями напряжения в электрической сети, что может повлечь к возникновению дуги или взрыву колбы).

Степень нагрева колб электрических ламп накаливания зависит от расстояния от нити накала до колбы и от мощности лампы. При этом лампы меньшей мощности с малым размером колб могут иметь более высокую температуру на поверхности колб, чем более мощные лампы больших размеров. У изготавливаемых промышленностью ламп накаливания мощностью от 40 до 100 Вт в условиях нормальной эксплуатации температура на поверхности колб находится в пределах 125-240 °С. Но при условии аккумуляции тепла (например, соприкосновения с какими-либо материалами) она может повышаться на несколько сот градусов и привести к воспламенению горючих материалов. Так, например, лампа накаливания мощностью 100 Вт, обернутая хлопчатобумажной тканью уже через 5 мин. может иметь температуру на поверхности колбы 350 °С и привести к загоранию ткани.

Проведенные исследования показали, что хлопок, вата и изделия, изготовленные на их основе, находящиеся на расстоянии до 30 мм от колбы лампы накаливания, способны воспламениться в течение одного часа.

Аварийный режим в лампах накаливания и как следственно разрыв колб, возникновение дуги, оплавление электродов и проплавление каплями расплавленного металла колб ламп возможен при значительном повышении напряжения в электрической сети, а также вследствие низкого качества ламп накаливания (конструктивных и технологических факторов, например плохого контакта в месте подсоединения вольфрамовой нити накала к никелевому электроду).

При разрушении колбы лампы накаливания возможно выпадение раскаленных частиц спирали и попадание их на горючие материалы. При образовании внутри колбы лампы накаливания электрической дуги попадание раскаленных частиц металла на горючие материалы возможно не только при разрушении колбы лампы, но и при проплавлении ее расплавленными частицами металла. Исследования показали, что при оплавлении никелевых электродов капли металла в 50% случаев проплавляют колбу лампы накаливания, оставляя отверстия диаметром от 1 до 3 мм. Раскаленные капли никеля при выходе из колбы лампы накаливания в атмосферу взрываются, образуя поток, состоящий примерно из 4000 частиц. Температура частиц никеля размером от 0,5 до 3 мм находится в диапазоне 1500-2200 °C, что представляет их высокую пожароопасность.

Причины возникновения ошибки перегрузки:

  • КЗ может возникнуть в самом компрессоре — пробить обмотку на корпус
  • также возможно возникновение замыкания на пути следования питания к компрессору — на плате, на соединительных проводах, клеммах

межвитковое замыкание

  • в этом случае обмотку не пробивает на корпус, а замыкает отдельные витки между собой
  • при этом ток увеличивается на несколько процентов, или десятков %, чего хватает для срабатывания защиты

высокое давление нагнетания

  • из-за перезаправки хладагентом ток может значительно превышать номинальный, часто это случается при неправильной заправке в зимний период
  • при плохой теплоотдачи конденсатора — когда он грязный давление может превышать норму в несколько раз
  • иногда даже просвечивающийся конденсатор не отдаёт тепло, так как имеет тончайшую плёнку на поверхности с низким значением теплопроводности

заклинивание компрессора

  • в этом случае ротор компрессора не вращается
  • соответственно для двигателя это мощнейшая нагрузка — ток значительно увеличивается

Расчет и измерение токов короткого замыкания

При коротком замыкании вся мощность электрической сети сосредотачивается на маленьком участке. Если бы кабели, провода и коммутационные аппараты не имели бы собственных сопротивлений, ток КЗ достигал бы огромных величин. Но на самом деле он ограничивается суммарным сопротивлением линии от источника питания (трансформатора на подстанции, генераторов энергосистемы) до точки КЗ.

При проектировании электроустановок величину этого тока обязательно рассчитывают. Для этого используются данные о сопротивлениях (активных и реактивных) всего электрооборудования, установленного на пути КЗ. Ток считается для самой удаленной от источника точки, чтобы проверить, отключит ли его защита.

В эксплуатации или после монтажа ток КЗ измеряют специальными приборами: измерителями петли фаза-нуль. Делается это для того, чтобы удостовериться в правильности расчетов или в местах, для которых этот расчет выполнить невозможно.

Защита электродвигателя. виды, схемы, принцип действия защиты электродвигателя. Защита электродвигателя. виды, схемы, принцип действия защиты электродвигателя. Виды защит от токов кз Короткое замыкание - причины возникновения, виды и способы защиты от кз Перегрузка электродвигателя причины и способы защиты Как защитить электропроводку от перегрузки и замыкания Какие электрические аппараты применяют для защиты электрических сетей от токов короткого замыкания и перегрузки? | техническая библиотека lib.qrz.ru Защита оборудования от коротких замыканий и перегрузок Перегрузка — это условия оперирования электрически не поврежденной цепи, которые вызывают сверхток определение согласно ГОСТ 303311-2013 Проблемы обеспечения безопасности силовых ключей в аварийных режимах

Прибор MZC-200 для измерения петли фаза-нуль

Чем дальше точка КЗ от источника, тем ток замыкания меньше. При определенном удалении может получиться ситуация, когда тока будет не хватать для срабатывания отсечек автоматических выключателей. В этом случае:

  • вместо модульных выключателей с характеристикой «С» (кратность отсечки 5-10) применяют «В» (кратность 3-5);
  • увеличивают сечение питающих кабелей.

Что происходит с генератором при перегрузке

Выбирая электростанцию, особое внимание надо обратить на расчет мощности, ведь при подключении к слабому устройству мощной техники может случиться такая ситуация, как перегрузка. Такое часто бывает, когда человек просчитывается с мощностями или не учел пускового тока, который может присутствовать в потребителях

Самым распространенным прибором, который имеет пусковой ток, считается холодильное оборудование.

Как генератор ведет себя при перегрузке?

Или бывает такой вариант, когда мощности станции хватает для вас, вы спокойно работаете на улице со строительным инструментом, а в этот момент ваш родственник или помощник решает выпить кофе и ничего не говоря, подключает к установке электрический чайник. В этом случае мощность потребителей будет намного больше максимально допустимой и происходит перегруженность прибора.

В последнее время огромным спросом среди покупателей пользуются устройства, имеющие специальную защиту от перегрева и перенапряжения. Стоит заметить, что она может быть трех видов, в зависимости от мощности, предназначения и модели агрегата:

  1. Самой распространенной и надежной считается электронная защита.
  2. Также прекрасно проявили себя тепловые предохранители.
  3. На третьем месте стоят уникальные предохранители-автоматы.

Каждый агрегат, который продается на рынке, имеет два вида мощности: максимальная и номинальная. Чтобы было яснее, рассмотрим на примере такой модели как УГБ-6000. В документах к агрегату пишет, что его максимальная возможность 6,5 кВт. Любой специалист скажет вам, что нельзя загружать устройство на всю, даже номинальную мощность. Это приводит к быстрой поломке оборудования. Поэтому всегда требуется оставлять 15–20% про запас, тогда есть большая возможность, что он прослужит длительный период времени. Это касается постоянной работы оборудования и номинальной мощности.

Что же такое максимальная возможность техники? Это предел напряжения, которое он может выдержать без поломки на протяжении небольшого периода времени. После этого предохранители срабатывают и отключают подключенное оборудование или саму установку.

На что обращать внимание при работе генератора

В первую очередь необходимо прислушиваться к работе двигателя. Ведь даже при небольшом перенапряжении, можно услышать, как тяжело начинает работать мотор, как проседают его обороты. Если вы слышите неправильные звуки, то следует немедленно прекращать работу, ведь агрегат сам отключится.

Лучше самому отключить оборудование. Не стоит надеяться на то, что он сам это сделает. Ведь во время перенапряжения может пострадать не только электростанция, но и подключенный в это время потребитель.

Чтобы не доводить до таких плачевных ситуаций, всегда правильно подсчитывайте мощность потребителей, и тогда вам не потребуется беспокоиться о перегрузке.

Износ электропроводки

Старые провода, многократно и во многих местах скрученные, изогнутые, пережатые, — первопричина всех проблем.

В местах изгибов и пережатий уменьшается сечение провода. Снижается пропускная способность. Рассыхается и трескается изолирующая оболочка проводов. Короткое замыкание и связанные с этим перегрузки, возгорание проводки становится всего лишь вопросом времени.

  • Проводите своевременный осмотр, ремонт и замену устаревшей электропроводки;
  • Не экономьте на качественной электротехнике и на устройствах защиты электрооборудования и сетей;
  • Изучайте соответствующую техническую литературу, а еще лучше, — пользуйтесь услугами профессиональных электромонтеров для периодических осмотров и регламентного обслуживания ваших электросетей и электротехнического оборудования.

Берегите жизнь и собственное здоровье, а также жизнь и здоровье живущих с вами по соседству людей от аварий и пожаров.

Каким должно быть сечение электропроводки

Самый важный шаг, который существенно сократит риск перегрузки электропроводки, связан с правильным выбором сечения проводников. Если провода будут толстыми, то они меньше нагреются при возникновении перегрузок, а также успеют вовремя отдать тепло в окружающую среду.

Под каждую нагрузку существует своё, определённое сечение проводов. В ПУЭ (правила устройства электроустановок) есть специальная таблица 1.3.4 по которой можно определить сечение кабеля для той или иной нагрузки. Но, как говорится, лучше выбрать провода с небольшим запасом, чем в дальнейшем столкнуться с рядом непредвиденных сложностей и возможной опасностью.

Так, например, опытные электрики рекомендуют выбирать провода для электропроводки с небольшим запасом. Для групп освещения, кабеля сечением в 1 мм², а для розеток, не менее 2,5 мм². Конечно же, многое зависит от установленных электроприборов в доме, наличия электроплиты, кондиционера и т. д. Поэтому лучше будет заранее рассчитать суммарную мощность всех электроприборов, и уже затем делать какие-либо выводы.

Электротехнические причины пожара: описание и виды Почему при перегрузке выбивает вводной автомат, а не групповой? Короткое замыкание - практическая электроника Защита от электрического перенапряжения, способы и компоненты Проблемы обеспечения безопасности силовых ключей | силовая электроника Защита от короткого замыкания Перегрузка силовых трансформаторов по пуэ - всё о пожарной безопасности 5 причин перегрузки проводки в доме Чем опасны перегрузки электросетей, и как избегать их Методическая разработка режимы работы электрических цепей

Расчет и измерение токов короткого замыкания

При коротком замыкании вся мощность электрической сети сосредотачивается на маленьком участке. Если бы кабели, провода и коммутационные аппараты не имели бы собственных сопротивлений, ток КЗ достигал бы огромных величин. Но на самом деле он ограничивается суммарным сопротивлением линии от источника питания (трансформатора на подстанции, генераторов энергосистемы) до точки КЗ.

При проектировании электроустановок величину этого тока обязательно рассчитывают. Для этого используются данные о сопротивлениях (активных и реактивных) всего электрооборудования, установленного на пути КЗ. Ток считается для самой удаленной от источника точки, чтобы проверить, отключит ли его защита.

В эксплуатации или после монтажа ток КЗ измеряют специальными приборами: измерителями петли фаза-нуль

. Делается это для того, чтобы удостовериться в правильности расчетов или в местах, для которых этот расчет выполнить невозможно.

  • вместо модульных выключателей с характеристикой «С» (кратность отсечки 5-10) применяют «В» (кратность 3-5);
  • увеличивают сечение питающих кабелей.

№ 10: Застрахуйте оборудование

Вы можете предпринять многочисленные шаги для предотвращения электрического повреждения компьютеров, серверов и другого компьютерного оборудования, но иногда ваших усилий может быть просто недостаточно. Зачастую материнские платы, сетевые карты, жесткие диски и многое другое сгорает из-за ударов молнии, даже будучи подключенными к ИБП и сетевым фильтрам.

Несмотря на меры предосторожности, оборудование может по-прежнему быть потеряно из-за электрических повреждений, вызванных скачками напряжения, молнией и другими помехами. Владельцы даже небольшого бизнеса при оформлении страховки должны убедиться, что в страховой полис включены пункты, явно касающиеся компьютеров и соответствующего оборудования

ИТ-специалисты, работающие в крупных организациях, должны также работать со своими техническими директорами, чтобы должным образом поддерживать документацию, требуемую страховщиками корпорации

Владельцы даже небольшого бизнеса при оформлении страховки должны убедиться, что в страховой полис включены пункты, явно касающиеся компьютеров и соответствующего оборудования. ИТ-специалисты, работающие в крупных организациях, должны также работать со своими техническими директорами, чтобы должным образом поддерживать документацию, требуемую страховщиками корпорации.

Причины возникновения и последствия коротких замыканий

Наиболее распространенной причиной возникновения коротких замыканий в электрической проводке является нарушение изоляции токопроводящих частей системы. Изоляция электрического кабеля может быть нарушена из-за механических повреждений, воздействия влаги и других неблагоприятных условий окружающей среды, а также из-за старения электрических проводов. КЗ приводит к кратковременному возрастанию силы тока и объема выделяемой тепловой энергии.

Сильное тепловое воздействие на изоляцию кабелей снижает диэлектрические свойства изолирующих материалов и укорачивает сроки эксплуатации проводов. Термальному старению подвержены кабели с бумажной, картонной изоляцией, а также изоляционные материалы из полимерных соединений.

Схематично короткое замыкание показано на рисунке ниже.

Короткие замыкания в сети могут приводить к возникновению различных аварийных ситуаций, опасных для пользователей электросистемы и их имущества. Чаще всего следствием КЗ становится возгорание, способное привести к воспламенению изоляции электрических кабелей, окружающих материалов и веществ.

Авария в электрической сети может произойти также из-за токов перегрузки. Они могут появиться в электросети из-за неправильного подключения или использования поврежденных потребителей электрической энергии. В этом случае суммарный ток в электрической сети может превысить номинальные значения и привести к перегрузке системы.

Повышение напряжения выше допустимых значений

Одной из частых причин выхода бытовых электрических устройств из строя является повышение напряжения выше допустимых значений. Статистика неумолима — сообщения о сгоревших холодильниках, телевизорах и другой технике появляются периодически и причина, как правило, колебания напряжения. В чем же причина таких явлений? Для понимания причин повышения напряжения, стоит сказать несколько слов о том, какие же напряжения действуют в 3-х фазной электрической сети.

Итак, в 3-х фазной сети действуют 2 вида напряжения: линейное — напряжение между двумя фазами и фазное, это напряжение между фазой и рабочим нулевым проводником, (его еще часто называют «нулем» или «нейтралью»). Соответственно, линейное напряжение равно 380 В, фазное — 220 В. В бытовой электросети мы используем фазное напряжение, но при обрыве нулевого проводника (так называемом «обрыве нуля») это напряжение может достигать 1,73* фазного напряжения, или 380 В. Таким образом, подключенные к сети устройства в этом момент окажутся под напряжением, на которые не рассчитаны и будут выведены из строя или, что еще хуже, загорятся и могут вызвать пожар.

Защитить оборудование в доме от подобной опасности может устройство, называемое реле напряжения. Это компактный защитный элемент сети, который устанавливается в электрическом щитке и контролирует напряжение в сети. Как только напряжение превышает заданный порог, устройство отключает участок сети, но само при этом остается включенным. После того, как напряжение вновь станет нормальным, реле напряжения снова включит питание. Таким образом реле напряжения позволяет защитить от повреждения подключенное оборудование.

Выбивает автомат в квартире причины

Наиболее частой причиной срабатывания автомата считается выполнение им своей основной функции – защиты электропроводки от перегрузок. Каждая модель отличается собственным номинальным током расцепления, начиная от 6 ампер и выше. При одновременном включении нескольких мощных приборов, происходит превышение уставки тока и срабатывание защитного устройства. Чаще всего перегрузку вызывает стиральная машина, водонагреватель и другая бытовая техника.

Данную проблему вполне можно решить различными способами. В первую очередь следует не допускать одновременного включения мощного оборудования. При наличии качественной проводки с медными жилами и сечением не менее 2,5 мм2 допускается установка более мощного автомата.

В некоторых случаях, когда выбивает автомат причины могут быть связаны с неисправной бытовой техникой. Поэтому автомат начинает выбивать при ее включении в одно и то же время. При наличии серьезной поломки отрицательное влияние могут оказать даже такие приборы, как чайник или компьютер. Чтобы проверить этот факт, следует поочередно отключить все приборы и посмотреть, как поведет себя автоматический выключатель. Если он работает нормально, значит причина заключается в одном из бытовых устройств, при включении которого произойдет срабатывание.

Довольно распространенной причиной считается короткое замыкание проводки. В каком-либо месте фаза соприкасается с нулем и автомат выполняет вторую функцию – защищает от короткого замыкания путем срабатывания.

Установить почему выбивает автомат можно простым способом. Все приборы должны быть отключены, и если автомат все равно срабатывает, значит неисправна проводка. Начинать проверку рекомендуется с розеток и выключателей, после них проверяются распределительные коробки, светильники и уже в самом конце выполняется проверка проводов. Обычно наличие короткого замыкания определяется с помощью мультиметра. Однако в особо сложных случаях рекомендуется вызвать мастера способного точно и быстро обнаружить неисправность.

Иногда незапланированные срабатывания происходят из-за низкого качества самого автомата. Неисправность можно выявить путем замены прибора новым устройством. В большинстве случаев это позволяет эффективно решить данную проблему.

Принцип действия теплового автоматического выключателя

На графике справа показана зависимость сопротивления от температуры для стандартного теплового автоматического выключателя. У каждого производителя эта характеристика своя. TN обычно лежит в интервале 150-160 °C.

Подключение трёхфазного электродвигателя со встроенным тепловым выключателем и реле перегрузки.

Обозначение TP на графике

Защита по стандарту IEC 60034-11:

TP 111 (постепенная перегрузка). Для того чтобы обеспечить защиту при блокировке ротора, электродвигатель должен быть оборудован реле перегрузки.

Перегрузка электросети | ehto.ru Как возникают перегрузки в электросети и к чему приводят: возможные причины, последствия и их преодоление 10 способов защиты электрических цепей от перегрузок Почему при перегрузке выбивает вводной автомат, а не групповой? Короткое замыкание Что такое короткое замыкание Электротехнические причины пожара Какие электрические аппараты применяют для защиты электрических сетей от токов короткого замыкания и перегрузки? Когда хорошо работающая электроника вдруг выходит из строя,или как защитить ее аналоговые входные каскады

Терморезисторы, встраиваемые в обмотки

Второй тип внутренней защиты — это терморезисторы, или датчики с положительным температурным коэффициентом (PTC). Терморезисторы встраиваются в обмотки электродвигателя и защищают его при блокировке ротора, продолжительной перегрузке и высокой температуре окружающей среды. Тепловая защита обеспечивается с помощью контроля температуры обмоток электродвигателя с помощью PTC датчиков. Если температура обмоток превышает температуру отключения, сопротивление датчика меняется соответственно изменению температуры.

В результате такого изменения внутренние реле обесточивают контур управления внешнего контактора. Электродвигатель охлаждается, и восстанавливается приемлемая температура обмотки электродвигателя, сопротивление датчика понижается до исходного уровня. В этот момент происходит автоматическое приведение модуля управления в исходное положение, если только он предварительно не был настроен на сброс данных и повторное включение вручную.

Если терморезисторы установлены на концах катушки самостоятельно, защиту можно классифицировать только как TP 111. Причина в том, что терморезисторы не имеют полного контакта с концами катушки, и, следовательно, не могут реагировать так быстро, как если бы они изначально были встроены в обмотку.

Система, чувствительная к температуре терморезистора, состоит из датчиков с положительным температурным коэффициентом (PTC), устанавливаемых последовательно, и твердотельного электронного выключателя в закрытом блоке управления. Набор датчиков состоит из трёх — по одному на фазу. Сопротивление в датчике остаётся относительно низким и постоянным в широком диапазоне температур, с резким увеличением при температуре срабатывания. В таких случаях датчик действует как твердотельный тепловой автоматический выключатель и обесточивает контрольное реле. Реле размыкает цепь управления всего механизма для отключения защищаемого оборудования. Когда температура обмотки восстанавливается до допустимого значения, блок управления можно привести в прежнее положение вручную.

Все электродвигатели Grundfos мощностью от 3 кВт и выше оснащены терморезисторами. Система терморезисторов с положительным температурным коэффициентом (PTC) считается устойчивой к отказам, так как в результате выхода из строя датчика или отсоединении провода датчика возникает бесконечное сопротивление, и система срабатывает так же, как при повышении температуры, — происходит обесточивание контрольного реле.

Как защитить свои микросхемы от этой надвигающейся угрозы?

Как вы понимаете, здесь настолько много вариантов, что простое решение не может быть применено ко всем вероятным ситуациям. Ниже приведен список факторов, которые будут определять, выдержит компонент РЭА событие в виде электрического перенапряжения или нет. Список разделен на две группы: не зависящие от нас факторы, которые мы не можем контролировать, и факторы, которые мы не только можем, но и должны контролировать.

Факторы, которые мы не можем контролировать:

Форма испытательного сигнала, определенная МЭК. Все виды воздействий импульса разрядного тока испытательного генератора на проверку устойчивости к электростатическому контактному разряду, представление электрических быстрых переходных процессов (пачек) и импульс при испытании на устойчивость к выбросу напряжения имеют совершенно разные профили, поэтому они будут использовать определенные недостатки устройств, на которые они по­разному воздействуют.
Технологический процесс и сама технология рассматриваемого компонента. Некоторые технологии изготовления микросхем более уязвимы для блокировки, чем другие. Например, процессы КМОП (CMOS) наиболее подвержены блокировке, но существуют способы смягчения этой опасности посредством тщательного проектирования и технологии изоляции канавками с диэлектрическим материалом (структура ИС с щелевой изоляцией), используемые во многих современных процессах.
Внутренняя структура устройства. Существует так много способов разработки ИС, что схема защиты, пригодная для одной ИС, окажется бесполезной для другой. Например, многие устройства имеют схемы синхронизации, включающие защитные структуры при обнаружении достаточно быстрого сигнала. То есть устройство, которое «выживет» после разряда статического электричества, «погибнет», если вы добавите достаточную емкость к месту воздействия

Этот ответ нелогичен, но его очень важно понять: проблема в том, что общий метод защиты схемы путем использования RC­фильтра может здесь не решить, а лишь усугубить проблему.

Факторы, которые мы можем контролировать:

  • Компоновка элементов и разводка цепей подключения на печатной плате. Чем ближе радиоэлементы окажутся к месту воздействия перенапряжения, тем выше вероятность получения ими сигнала более высокой энергии. Это происходит потому, что, когда воздействующий сигнал (в виде тока или напряжения) распространяется по дорожке печатной платы, его энергия рассеивается в виде электромагнитного излучения по пути его распространения. Кроме того, энергия импульса перенапряжения переходит в тепло, обусловленное сопротивлением пути его распространения, поглощается паразитными емкостями, а часть энергии импульса через емкостную и индуктивную связь попадает на соседние проводники.
  • Схема защиты. Именно здесь мы можем оказать наиболее существенное влияние на обеспечение живучести нашего конечного устройства.

Понимание того, как максимально эффективно разработать схему защиты, даст нам вышеперечисленное — именно то, что мы не можем контролировать.

МЧС: как избежать пожара из-за перегрузки электросети?

Перегрузкой называется такое явление, когда по электрическим проводам и электрическим приборам идет ток больше допустимого. Опасность перегрузки объясняется тепловым действием тока. При двукратной и большей перегрузке сгораемая изоляция проводников воспламеняется. При небольших перегрузках происходит быстрое старение изоляции и срок ее диэлектрических свойств сокращается.

Так, перегрузка проводов на 25% сокращает срок службы их примерно до 3-5 месяцев вместо 20 лет, а перегрузка на 50% приводит в негодность провода в течение нескольких часов.

Содержание

  • 1 Емкость сети
  • 2 Застойный коллапс
  • 3 Контроль перегрузки 3.1 Теория контроля перегрузки
  • 3.2 Классификация алгоритмов управления перегрузкой
    4.1 Практическое предотвращение перегрузки сети
    5.1 Радиосвязь

Емкость сети

Сетевые ресурсы ограничены, включая время обработки маршрутизатора и пропускную способность канала . Конкуренция за ресурсы может происходить в сетях при ряде общих обстоятельств. Беспроводная локальная сеть легко заполняются один персональным компьютером. Даже в быстрых компьютерных сетях магистраль может быть легко перегружена несколькими серверами и клиентскими ПК. Атаки типа «отказ в обслуживании» со стороны ботнетов способны заполнять даже самые большие магистральные сетевые каналы Интернета, создавая масштабную перегрузку сети. В телефонных сетях массовые вызовы могут перегрузить цифровые телефонные сети.

Не перегружайте электросеть!

Comment are off

Основные угрозы для человека при воздействии электрического тока.

Знайте, что электрический ток повреждает ткани не толь­ко в месте его приложения, но и на всем пути прохожде­ния через тело человека. Основные пути прохождения электрического тока через тело человека: рука-рука, рука-нога, рука-голова, голова-нога. Человек после такого воздействия может находиться в состоянии «мнимой смерти»: очень бледен, дыхания не слышно, пульс еле прощупывается, он очень слабый и редкий. ПОМНИТЕ! При наличии даже слабого и редкого пуль­са нельзя проводить непрямой массаж сердца. Электротравма может возникнуть при попадании под ша­говое напряжение, возникающее при обрыве и падении на землю провода, действующей воздушной линии 0,38 кВ и выше. При этом путь тока не прерывается. Земля является проводником тока. Поражение электрическим током происходит, когда ноги человека касаются двух точек земли, имеющих различ­ные электрические потенциалы. Вокруг оборванного и лежащего на земле провода обра­зуется опасная зона радиусом 5-8 м. При входе в эту зону человеку грозит смертельная опасность, если он даже не коснулся провода. Безопасное обращение с бытовыми электроприборами.

Для исключения поражения электрическим током запом­ните следующие меры предосторожности: Не перегружайте электросеть. Технические средства защиты от коротких замыканий (ав­томатические выключатели, пробочные предохранители) в квартирной сети должны быть всегда исправны. При этом не пользуйтесь так называемыми «жучками». Не ремонтируйте и не заменяйте под напряжением по­врежденные выключатели, розетки, ламповые патроны, приборы и светильники. Выполняйте эти работы только по­сле отключения сети. Следите за исправным состоянием изоляции электропро­водки, электроприборов, а также шнуров, с помощью кото­рых они включаются в сеть. При обнаружении повреждения изоляции шнура или провода его следует отключить от элек­тросети и оголенное место аккуратно и плотно обмотать 2-3 слоями изоляционной ленты. Неукоснительно соблюдайте порядок включения электро­прибора в электросеть — сначала подключается шнур к при­бору, а затем к сети. Отключение прибора производится в обратном порядке. Не пользуйтесь неисправными электроприборами, оголен­ными концами провода вместо штепсельных вилок, а также самодельными электропечами, нагревателями и т. п. Отключайте электроприборы, когда выходите из дома даже на 5 минут.

Источник: www.13.mchs.gov.ru
24.05.2014 11:53

Застойный коллапс

Застойный коллапс (или застойный коллапс) — это состояние, при котором застой препятствует или ограничивает полезное общение. Коллапс перегрузки обычно происходит в узких точках сети, где входящий трафик превышает исходящую пропускную способность. Точки соединения между локальной сетью и глобальной сетью являются общими узкими местами. Когда сеть находится в этом состоянии, она переходит в стабильное состояние, когда потребность в трафике высока, но доступна небольшая полезная пропускная способность, во время которого происходят задержки и потери пакетов, а качество обслуживания крайне низкое.

К 1984 году застойный коллапс был идентифицирован как возможная проблема. Впервые он был замечен в раннем Интернете в октябре 1986 года, когда пропускная способность магистральной сети фазы I NSFnet упала на три порядка с 32 кбит / с до 40 бит / с, что продолжался до тех пор , конечные узлы не приступили к реализации Ван Якобсону и Салли Floyd «ы контроль перегрузки между 1987 и 1988. Когда больше пакетов были отправлены , чем может быть обработаны с помощью промежуточных маршрутизаторов, промежуточные маршрутизаторы отбрасывали много пакетов, ожидая конечные точки сети , чтобы повторно передать Информация. Однако ранние реализации TCP имели плохое поведение при повторной передаче. Когда произошла эта потеря пакета, конечные точки отправили дополнительные пакеты, которые повторяли потерянную информацию, удваивая входящую скорость.

Основные причины перегрузки электросети

Прежде, чем рассматривать способы защиты домашней электросети от перегрузки, необходимо установить причину ее возникновения. В противном случае предпринятые меры могут оказаться неэффективными. Как показывает практика, чаще всего нештатный режим работы локального участка цепи может быть вызван следующими причинами:

  • Подключение к электросети неисправных бытовых электроприборов.
  • Неправильное распределение нагрузки между линиями электрической сети.
  • Проблемы с проводкой (несвоевременная замена, неправильный монтаж, ошибки в расчетах сечения кабеля, неправильный выбор номинала автоматических выключателей и т.д.).
  • Превышение мощности групп освещения.
  • Низкое качество энергоснабжения.

Рассмотрим детально каждую из названных выше причин.

Включение в сеть неисправного электроприбора

Неисправные бытовые приборы включать в сеть категорически противопоказано. Это может привести к короткому замыканию и срабатыванию электромагнитного расцепителя автомата защиты. Вполне может случиться так, что несправная электротехника не вызывает КЗ, но начинает потреблять существенно больше допустимого тока. В такой ситуации срабатывает тепловая защита АВ.

И в первом, и во втором случае возникает перегрузка электропроводки, поэтому при первых признаках неисправности бытовых электроприборов их необходимо отключить от сети и отнести в ремонтную мастерскую. Помните, что несправные устройства могут стать причиной пожара.

Неправильное распределение нагрузки

Это наиболее распространенная причина, по которой происходит перегрузка электропроводки, поэтому имеет смысл привести наглядный пример.

Контроль перегрузки

Контроль перегрузки модулирует вход трафика в телекоммуникационную сеть, чтобы избежать перегрузки в результате переподписки. Обычно это достигается за счет снижения скорости передачи пакетов. В то время как управление перегрузкой не позволяет отправителям перегружать сеть

, управление потоком не позволяет отправителю перегружать
получателя
.

Теория контроля перегрузки

Теория управления перегрузками была впервые предложена Фрэнком Келли , который применил микроэкономическую теорию и теорию выпуклой оптимизации, чтобы описать, как люди, контролирующие свои собственные ставки, могут взаимодействовать для достижения оптимального

распределения ставок в масштабах всей сети. Примерами
оптимального
распределения скорости являются максимальное и минимальное справедливое распределение и предложение Келли о пропорционально справедливом распределении, хотя возможны многие другие.

Максимум Икс ∑ я U ( Икс я ) <\ displaystyle \ max \ limits _ \ sum _ U (x_ )> такой, что р Икс ≤ c

Лагранж двойного этой проблема разъединяет, так что каждый поток устанавливает свой курс, основанный только на цене

Тогда контроль перегрузки становится распределенным алгоритмом оптимизации. Многие современные алгоритмы управления перегрузкой могут быть смоделированы в этой структуре с использованием либо вероятности потери, либо задержки очереди в канале связи . Основным недостатком является то, что он назначает одну и ту же цену для всех потоков, в то время как управление потоком со скользящим окном вызывает прерывистость, которая заставляет разные потоки наблюдать разные потери или задержки на данном канале. п л <\ displaystyle p_ > л

Классификация алгоритмов управления перегрузками

См. Также: Контроль перегрузки TCP

К способам классификации алгоритмов управления перегрузками относятся:

  • По типу и количеству отзывов, полученных от сети: Убыток; задержка; однобитовые или многобитовые явные сигналы
  • За счет инкрементального развертывания: модификация требует только отправителя; отправитель и получатель нуждаются в модификации; доработка требует только роутер; отправитель, получатель и маршрутизаторы нуждаются в модификации.
  • По характеристикам: продуктовые сети с высокой пропускной способностью и задержкой; ссылки с потерями; справедливость; преимущество перед короткими потоками; ссылки с переменной ставкой
  • По критерию справедливости: Макс-мин честность; пропорционально справедливо; контролируемая задержка

Основными причинами перегрузки являются:

  • несоответствие сечения проводников рабочему току (например, когда электропроводка к звонку выполняется телефонным проводом)
  • параллельное включение в сеть не предусмотренных расчетом токоприемников без увеличения сечения проводников (например, подключение удлинителя с 3-4 розетками в одну рабочую)
  • попадание на проводники токов утечки, молнии
  • повышение температуры окружающей среды

Кроме того, при перегрузке электросети приборы и аппараты, подключенные к ней, постоянно испытывают нехватку тока, что может привести к их аварийному выходу из строя. В связи с этим, обратите внимание на паспортные данные электроприборов: силу тока и напряжение. Желательно, чтобы напряжение питания электроприборов отклонялось на максимально допустимую величину от 220 В (например, от 90 до 260 В).

Коротким замыканием называется всякое замыкание между проводами, или между проводом и землей. Причиной возникновения короткого замыкания является нарушение изоляции в электрических проводах и кабелях, которое вызывается: перенапряжениями; старением изоляции; механическими повреждениями изоляции. При возникновении замыкания в цепи ее общее сопротивление уменьшается, что приводит к увеличению токов в ее ветвях по сравнению с токами нормального режима.

Переходным сопротивлением называется сопротивление, возникающее в местах перехода тока с одного провода на другой или с провода на какой-либо электроаппарат при наличии плохого контакта в местах соединений и оконцеваний (при скрутке, например). При прохождении тока в таких местах за единицу времени выделяется большое количество теплоты. Если нагретые контакты соприкасаются с горючими материалами, то возможно их воспламенение, а при наличии взрывоопасных смесей взрыв. В этом и заключается опасность ПС, которая усугубляется тем, что места с наличием переходных сопротивлений трудно обнаружить, а защитные аппараты сетей и установок, даже правильно выбранные, не могут предупредить возникновение пожара, так как электрический ток в цепи не возрастает, а нагрев участка с ПС происходит только вследствие увеличения сопротивления.

Искрение и электродуга — результат прохождения тока через воздух. Искрение наблюдается при размыкании электрических цепей под нагрузкой (например, когда вынимается электровилка из электророзетки), при пробое изоляции между проводниками, а также во всех случаях при наличии плохих контактов в местах соединения и оконцевания проводов и кабелей. Под действием электрического поля воздух между контактами ионизируется и, при достаточной величине напряжения, происходит разряд, сопровождающийся свечением воздуха и треском (тлеющий разряд). С увеличением напряжения тлеющий разряд переходит в искровой, а при достаточной мощности искровой разряд может быть в виде электрической дуги. Искры и электродуги при наличии в помещении горючих веществ или взрывоопасных смесей могут быть причиной пожара и взрыва.

Общие принципы пожарной безопасности от искр, дуг, перегрузок, коротких замыканий и переходных сопротивлений.

Эти явления невозможны, если:

  • правильно производить соединение и оконцевание проводников
  • тщательно соединять провода и кабели (пайкой, сваркой, опрессовкой, специальными сжимами)
  • правильно выбирать сечение проводников по нагреву электрическим током
  • ограничить параллельное включение токоприемников в сеть
  • создавать условия для охлаждения проводов электроприборов и аппаратов
  • применять только калиброванные плавкие предохранители или автоматические выключатели
  • проводить планово-предупредительные осмотры и измерения сопротивления изоляции проводов и кабелей
  • устанавливать быстродействующие аппараты защиты
  • защищать от окисления разъединяемые контакты

Для 220 В или разноименных фаз между собой или с нулем не предусмотренные конструкцией электрической цепи или электроприборов, которое нарушает нормальную работу электросети.

Короткое замыкание возникает по причине нарушения изоляции электрических проводов, кабелей или токоведущих элементов в электроприборах, а также при механическом касании не изолированных элементов, поэтому важно всегда оголенные концы электропроводки изолировать отдельно друг от друга с использованием изоленты или электрических с электроизоляционным корпусом, т.е не проводящим электрический ток.

При возникновении короткого замыкания в электрической цепи мгновенно и многократно вырастает значение сила тока, приводящее к высокому тепловыделению, в результате которого происходит плавление электрических проводов с возникновением возгорания электропроводки и распространением пожара в помещении, где произошло КЗ. В результате короткого замыкания нарушается нормальное функционирование не только в вашей квартире, но и у соседей- из-за падения питающего напряжения, что часто приводит к поломке электроприборов и бытовых техники.

В квартирах с 220 В возникает только однофазное замыкание (замыкание фазы на нулевой проводник или на ), а в некоторых частных домах или гаражах с трехфазным вводом на 380 Вольт- могут возникнуть гораздо более опасное двухфазное (замыкание двух фаз между собой+ на «Землю») или трёхфазное (замыкание трех фаз между собой + на «Землю»)

В электрических двигателях и аппаратах в случае поломки также возможны внутренние короткие замыкания: Например межвитковые, которые возникают при замыкании между собой витков обмоток в статоре или ротора электродвигателя или между витками в обмотке трансформатора.

А если электроприбор имеет металлический корпус, то возможен пробой изоляции и замыкании на металлический корпус. В этом случае человека защитит от удара электрическим током только корпуса.

Внимание провода в полиэтиленовой и, особенно в резиновой оболочке больше склоны к возгоранию. Поэтому Я как профессиональный электрик много лет, занимающийся электромонтажом в Минске настоятельно рекомендую использовать в квартирах, домах, гаражах и т. для прокладки скрыто под штукатуркой кабель марки ВВГ Нг, с не горючей изоляцией, а открыто по несгораемому основанию более дорогой кабель- ВВГ Нг Ls, который даже не дымит при КЗ.

Перегрузка электросети в доме гараже или квартире нередко встречается в быту и также очень опасна и является аварийным случаем. И как показала практика более опасна, чем токи КЗ. Потому что электропроводка надежно защищена или .

Причиной возникновения перегрузки служит подключение, включение большого количества электроприборов на одну группу электрических розеток или повреждения потребителей электричества, при и котором суммарный ток, проходящий по электрическому кабелю или проводам превышает номинальное значение, на которое они рассчитаны. Для дома или квартиры, где в основном проложены кабеля или провода сечением 1.5 квадратных миллиметров номинальный ток должен быть не выше 16 Ампер

или не более
3.5 Киловатт.
Важно знать и применять в практике только выключатели или розетки для подключения электроосвещения или электрооборудования с не менее значениями напряжения и тока, указанными на корпусе электрической розетки или выключателя. Например, на розетке написано «10 А; 250 В» , что означает она рассчитана на однофазную сеть 220 Вольт, а максимальное значение тока, проходящего через розетку, не должно быть выше 10 Ампер или, примерно по мощности не более 2 Киловатт. В такую розетку нельзя включать мощный электроприбор например с мощностью 2.5-3 Киловатта, что приведет к выгоранию контактов розетки.

Возникновение перегрузки сети способно привести как к небольшим пустяковым проблемам, в числе которых может быть, например, мерцание светотехники в квартире или слабые перебои в работе электрических устройств, так и к очень серьезным — возгоранию электросети в частности и всего помещения в целом. Последствия такого исхода печальны, особенно учитывая, что от данного явления избавиться достаточно просто. В статье рассмотрены различные причины перегрузки электросети, а также методы защиты от этой неприятности.

Смягчение

Были изобретены механизмы для предотвращения перегрузки сети или борьбы с ее коллапсом:

  • Сетевой планировщик — активное управление очередью, которое переупорядочивает или выборочно отбрасывает сетевые пакеты при наличии перегрузки
  • Явное уведомление о перегрузке — расширение протоколов связи IP и TCP, которое добавляет механизм управления потоком
  • Контроль перегрузки TCP — различные реализации усилий по борьбе с перегрузкой сети

Правильное поведение конечной точки обычно состоит в том, чтобы повторять потерянную информацию, но постепенно снижать частоту повторения. Если все конечные точки делают это, перегрузка снимается, и сеть возобновляет нормальное поведение. Другие стратегии, такие как медленный старт, гарантируют, что новые соединения не перегрузят маршрутизатор до того, как начнется обнаружение перегрузки.

Общие механизмы предотвращения перегрузки маршрутизатора включают справедливую организацию очередей и другие алгоритмы планирования , а также случайное раннее обнаружение (RED), при котором пакеты случайно отбрасываются при обнаружении перегрузки. Это превентивно запускает конечные точки для замедления передачи до того, как произойдет коллапс перегрузки.

Некоторые сквозные протоколы хорошо работают в условиях перегрузки; TCP — хорошо известный пример. Первые реализации TCP для обработки перегрузок были описаны в 1984 году, но включение Ван Якобсоном решения с открытым исходным кодом в стандартный дистрибутив Berkeley UNIX ( BSD ) в 1988 году впервые обеспечило хорошее поведение.

UDP не контролирует перегрузку. Протоколы, построенные на основе UDP, должны обрабатывать перегрузки независимо. Протоколы, которые передают с фиксированной скоростью, независимо от перегрузки, могут быть проблематичными. Протоколы потоковой передачи в реальном времени, в том числе многие протоколы передачи голоса по IP , обладают этим свойством. Таким образом, должны быть приняты специальные меры, такие как качество обслуживания , чтобы пакеты не отбрасывались при перегрузке.

Практическое предотвращение перегрузки сети

Протоколы , ориентированные на установление соединения , такие как широко используемый протокол TCP , отслеживают потерю пакетов или задержку в очереди для корректировки скорости передачи. Различные процессы предотвращения перегрузки сети поддерживают разные компромиссы.

Избежание перегрузки TCP / IP

Алгоритм предотвращения перегрузки TCP является первичной основой для управления перегрузками в сети Интернет.

Проблемы возникают, когда параллельные потоки TCP испытывают отбрасывание хвоста , особенно при наличии буферного разряда . Эта отложенная потеря пакетов препятствует автоматическому предотвращению перегрузки TCP. Все потоки, которые испытывают эту потерю пакетов, начинают повторное обучение TCP в один и тот же момент — это называется глобальной синхронизацией TCP .

Активное управление очередью

Активное управление очередью (AQM) — это переупорядочивание или отбрасывание сетевых пакетов внутри буфера передачи, связанного с контроллером сетевого интерфейса (NIC). Эту задачу выполняет сетевой планировщик .

Случайное раннее обнаружение

Одним из решений является использование случайного раннего обнаружения (RED) в выходной очереди сетевого оборудования. На сетевых аппаратных портах с более чем одной исходящей очередью можно использовать взвешенное случайное раннее обнаружение (WRED).

RED косвенно сигнализирует TCP-отправителю и получателю, отбрасывая некоторые пакеты, например, когда средняя длина очереди превышает пороговое значение (например, 50%), и удаляет линейно или кубически больше пакетов, например, до 100%, по мере дальнейшего заполнения очереди.

Надежное случайное раннее обнаружение

Надежный случайное раннее обнаружение алгоритма (RRED) было предложено , чтобы улучшить пропускную способность TCP против отказа в обслуживании (DoS) атак, в частности низкоскоростных (ЛПС) атак отказа в обслуживании. Эксперименты подтвердили, что алгоритмы, подобные RED, были уязвимы для LDoS-атак из-за колеблющегося размера очереди TCP, вызванного атаками.

WRED на основе потока

Некоторое сетевое оборудование оснащено портами, которые могут отслеживать и измерять каждый поток и, таким образом, могут сигнализировать о потоке слишком большой полосы пропускания в соответствии с некоторой политикой качества обслуживания. Затем политика может разделить полосу пропускания между всеми потоками по некоторым критериям.

Явное уведомление о перегрузке

Другой подход — использовать явное уведомление о перегрузке (ECN). ECN используется только тогда, когда два хоста сигнализируют о своем желании его использовать. В этом методе бит протокола используется для сигнализации явной перегрузки. Это лучше, чем косвенное уведомление о перегрузке, о котором сигнализирует потеря пакета алгоритмами RED / WRED, но для этого требуется поддержка обоих хостов.

Когда маршрутизатор получает пакет, помеченный как поддерживающий ECN, и маршрутизатор ожидает перегрузки, он устанавливает флаг ECN, уведомляя отправителя о перегрузке. Отправитель должен ответить уменьшением полосы пропускания передачи, например, уменьшением скорости передачи путем уменьшения размера окна TCP или другими способами.

Формирование окна TCP

См. Также: параметр масштабирования окна TCP

Избежать перегрузок можно эффективно за счет уменьшения трафика. Когда приложение запрашивает большой файл, графику или веб-страницу, оно обычно объявляет окно

размером от 32 до 64 КБ. Это приводит к тому, что сервер отправляет полное окно данных (при условии, что файл больше окна). Когда несколько приложений одновременно запрашивают загрузки, эти данные могут создать точку перегрузки у вышестоящего провайдера. Уменьшая количество оконной рекламы, удаленные серверы отправляют меньше данных, тем самым уменьшая перегрузку.

Обратный ECN

Обратный ECN (BECN) — еще один предлагаемый механизм перегрузки. Он использует сообщения блокировки источника ICMP в качестве механизма сигнализации IP для реализации базового механизма ECN для IP-сетей, сохраняя уведомления о перегрузке на уровне IP и не требуя согласования между конечными точками сети. Эффективные уведомления о перегрузке могут быть переданы протоколам транспортного уровня, таким как TCP и UDP, для соответствующих корректировок.

Причины и решения

Главными тремя причинами перегрузки электрической сети назовем:

  • излишняя нагрузка на конкретное питающее ответвление электросети;
  • использование электроприборов, реальная мощность которых превышает номинал ввиду поломки электрической начинки;
  • несвоевременная замена электропроводки ввиду ее физического износа.

Излишняя нагрузка

К первому случаю можно отнести ситуацию, когда из-за включения нескольких приборов в одну розетку начинаются проблемы. Если не обратить на них внимание, последствия будут очень печальны (минимум как на фото ниже).

Итак, приводим конкретный пример: есть у нас розетка на два гнезда и мы в нее желаем подключить одновременно стиральную машину и микроволновую печь. В сумме они потребляют, допустим, 3,5 киловатта. Включаем оба прибора, раздается щелчок в коридоре — погас свет. Сработал автоматический выключатель. Мы подходим к нему и читаем — 10 ампер. Это означает, что данный автомат отсекает нагрузку свыше этого предела, а в переводе на мощность (амперы умножаем на стандартное напряжение сети 220 вольт) это составляет 2,2 киловатта. Тут уже можно совершить страшную ошибку — заменить автомат на другой, с пределом уже 16 ампер и выше. Снова включив два мощных прибора в розетку, мы ощущаем неприятный запах паленой электропроводки (это потенциально является причиной пожара, потому-то ошибка и страшная). Выключаем, смотрим на розетку, а на ней тоже выгравировано 10 ампер. И снова мы бежим в строительный магазин за новой, более стойкой к перегрузке розетке, на 16 ампер. Уж она-то точно выдержит мощность в 3500 ватт.

Вот только установив ее на место старой ситуация не улучшилась — мы все еще задыхаемся от пластмассового амбре. Как же так? Уже и автомат поменян, и розетка. Подводит теперь провод. Правда, подводит не он нас, а мы его. Провод — тоже элемент электросети, и при строительстве был, также как и автомат с розеткой, уложен с расчетом нагрузки на силу тока в 10 ампер.

Чтобы заменить провод, придется туго — это уже очень кропотливая работа, заключающаяся в демонтаже отделки стен в местах, где он проложен. Потому мы вынуждены с болью в сердце признать — приборы придется включать по отдельности, а деньги на более мощную электротехнику потрачены зря. Правда, не совсем зря. Мы таки купим мощный провод сечением на 2,5 квадратных миллиметра и проведем его от щитка с новым автоматом через к свежей 16-амперной розетке. Вот только внешний вид будет безнадежно испорчен.

Мораль такова — чтобы обеспечить защиту от перегрузки электросети, нужно убедиться, что абсолютно все ее элементы не подвергались нагрузкам свыше их номинала на конкретном участке.

Для этого еще на этапе строительства или капитального ремонта необходимо тщательно спланировать, какое количество электроприборов будет использовано, как они будут расположены и какую мощность станут потреблять. Подобрать согласно имеющимся в свободном доступе таблицам необходимую электротехнику, причем взять с запасом. Например, нам хватило бы провода 3×2,5 мм2, а мы переплатим и возьмем 3×4 мм2, более мощную розетку и подберем нужный автомат — и тогда проблем с проводкой не будет многие десятилетия — добиться перегрузки такой электросети будет крайне сложно. О том, мы рассказывали в отдельной статье. Также рекомендуем изучить информацию о том, что является не менее эффективным методом защиты от перегрузки электросети в квартире и доме.

Неисправность электроприбора

Разберемся, что это такое и чем грозит. По сути — частный случай перегрузки электрической сети, только здесь номинально все по науке, а по факту мощность прибора превышена. Это может произойти по ряду причин, перечислять их не имеет смысла. Защита от ситуации одна — либо (сочетает в себе функции автомата и УЗО). Если при прочих равных у вас — прибор нужно отремонтировать или заменить.

Несвоевременная замена проводки

Тут тоже все ясно. Вот как возникает проблема — старые провода в местах контактов, изгибов и движения постепенно изламываются и стираются. В этих зонах сечение токоведущей части резко уменьшается, а вместе с ней становится меньше пропускная способность. Особенно касается алюминия, которым забиты все старые квартиры. Чтобы обеспечить защиту от возгорания, поражения электрическим током и короткого замыкания и, конечно, банальной перегрузки электросети капитальный ремонт проводки порой необходим. О том, мы подробно рассказывали в отдельной статье.

Побочные эффекты предотвращения застойного коллапса

Радио ссылки

Протоколы, предотвращающие застойный коллапс, часто основаны на идее, что потеря данных вызвана перегрузкой. Это верно почти во всех случаях; ошибки при передаче редки. Однако это приводит к тому, что в некоторых случаях Wi-Fi , или другие сети с радиоуровнем имеют низкую пропускную способность, поскольку беспроводные сети подвержены потере данных из-за помех. TCP-соединения, работающие на физическом уровне на основе радио, видят потерю данных и имеют тенденцию ошибочно полагать, что происходит перегрузка.

Кратковременные связи

Протокол медленного старта плохо работает при коротких соединениях. Старые веб-браузеры создавали много недолговечных соединений и открывали и закрывали соединение для каждого файла. Это оставило большинство соединений в режиме медленного запуска, что уменьшило время отклика.

Чтобы избежать этой проблемы, современные браузеры либо открывают несколько соединений одновременно, либо повторно используют одно соединение для всех файлов, запрашиваемых с определенного сервера. Начальная производительность может быть низкой, и многие соединения никогда не выходят из режима медленного запуска, что значительно увеличивает задержку.

МЧС: как избежать пожара из-за перегрузки электросети?

Распространенная причина пожаров в Новосибирской области — нарушение правил устройства и эксплуатации электрооборудования.

Чтобы из-за этого предотвратить возгорания, необходимо соблюдать правила пожарной безопасности.

В пресс-службе МЧС по Новосибирской области считают, что редкий день в нашей области обходится без пожаров из-за электрики.

В прошлом 2021 году в регионе произошло 3126 пожаров, из них 983 – по электротехническим причинам.

Уже в 2021 году зарегистрировано более ста пожаров.

4 января в Искитимском районе из-за перегрузки электросети произошел пожар в обувном цехе, в результате которого погибли 10 человек.

11 февраля в Дзержинском районе Новосибирска на ул. Трикотажная пожар возник в гаражном боксе, где находились 11 автомобилей. Дознаватель установил, что причиной пожара послужило нарушение правил монтажа электрооборудования. Дорогостоящие автомобили от огня не пострадали только потому, что возгорание оконного блока и обшивки было вовремя замечено.

13 февраля в Бердске на ул. Лелюха пожар возник в подвале жилого пятиэтажного дома. Произошло короткое замыкание электропроводки, загорелись хозяйственные кладовые.

Пожарными из подъезда с верхних этажей были эвакуированы 10 человек, в том числе один ребенок. К счастью, этот пожар обошелся без жертв.

Однако возгорания из-за электрики нередко происходят в ночное время, когда все спят.

Спасатели МЧС предупреждают, что от дыма, который образуется при пожаре, люди могут смертельно отравиться.

Главное управление МЧС России по Новосибирской области напоминает правила пожарной безопасности при устройстве и эксплуатации электрооборудования.

Помните, что запрещается эксплуатировать электропровода и кабели с нарушениями изоляции.

Нельзя пользоваться розетками, рубильниками, другими электроустановочными изделиями, имеющими повреждения и применять самодельные электронагревательные приборы.

Не храните в электрощитовых или около электрощитов горючие (в том числе легковоспламеняющиеся) вещества и материалы. При коротком замыкании они могут загореться и способствовать распространению пламени.

Правила запрещают пользоваться электроутюгами, электроплитками, электрочайниками и другими электронагревательными приборами, не имеющими устройств тепловой защиты или с неисправными терморегуляторами.

Не оставляйте включенные в электрическую сеть электронагревательные приборы без присмотра, в том числе находящиеся в режиме ожидания.

Не перегружайте электрическую сеть мощными энергопотребляющими приборами.

При обнаружении пожара, незамедлительно звоните по телефону пожарно-спасательной службы 101.

Помните, что тушить подключенное к электросети оборудование водой нельзя! Обесточьте электросеть, отключите электроприборы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *