Что такое н кодер в лифтах
Перейти к содержимому

Что такое н кодер в лифтах

  • автор:

Энкодер: устройство и примеры работы

Нередко статьи у меня на блоге тесно связаны с промышленным оборудованием. На этот раз я подробно рассматриваю энкодер – очень важное устройство, без которого не обходится ни одна солидная производственная линия. А почему энкодер столь важен, будет понятно из моей статьи. Разберём подключение энкодера, его работу, устройство и монтаж. Как обычно в таких статьях, будут реальные примеры работы энкодеров в различных узлах оборудования. И, конечно же, будет много фотографий, сделанных мною лично.

Итак, для начала –

Что такое энкодер?

Энкодер – это электронный датчик, который механически крепится на какой-либо вращающейся детали. Обычно корпус энкодера остается неподвижным, а вращается только его вал. Это позволяет с необходимой точностью измерять разные параметры :

  • скорость вращения,
  • расстояние (длину),
  • направление вращения,
  • угловое положение по отношению к нулевой метке.

Энкодер является самым распространенным «измерительным инструментом» в современном промышленном оборудовании. Фактически энкодер является датчиком обратной связи, на выходе которого цифровой сигнал меняется в зависимости от его вращения или от угла его поворота. Этот сигнал обрабатывается в счетчике или контроллере, который выдает команды на устройство индикации или привод.

Encoder Sick

Этикетка инкрементного энкодера Sick, установленного на валу двигателя постоянного тока. Основной параметр – 1024 импульса на оборот

Энкодеру найдено множество применений, учитывая возможности последующей обработки его сигнала. Например – измерение погонной длины какого-либо материала, измерение угла открытия/закрытия задвижки, точное позиционирование деталей при перемещении и обработке. Конкретные примеры будут ниже.

Энкодеры, о которых идёт речь в статье, в некоторых источниках называются датчиками углового перемещения, датчиками угла поворота, и даже “N-кодером”.

А вообще энкодер – это любое устройство, которое преобразовывает или декодирует какой-то сигнал или информацию.

Принципы работы и устройство энкодеров

Существует два вида энкодеров по конструкции и виду выходного сигнала – инкрементальный (инкрементный) и абсолютный.

Инкрементальный энкодер устроен проще сравнению с абсолютным, и используется в большинстве случаев. Такой энкодер можно представить как диск с прорезями, который просвечивается оптическим датчиком. При вращении этого диска датчик будет активироваться или деактивироваться зависимости от своего положения над прорезью. В результате на выходе энкодера формируется последовательность дискретных импульсов, частота которых зависит от разрешения энкодера и его частоты вращения.

СамЭлектрик.ру в социальных сетях:

Подписывайтесь! Там тоже интересно!

Например, если энкодер закреплен на валу асинхронного двигателя, который вращается с частотой 1500 оборотов в минуту, то при разрешении энкодера 1000 импульсов на оборот частота выходных импульсов будет равна 25 кГц.

Разрешение и максимальная частота вращения обратнозависимы – на практике частота выходных импульсов не может исчисляться гигагерцами. Обычно выходная частота ограничена значением около 500 кГц. Да и не всякий контроллер “скушает” такую частоту. Делаем вывод: энкодер с разрешением 1000 имп/оборот (наиболее распространенный) не может крутиться с частотой выше 500 Гц или 30000 об/мин. Но такие скорости в механике я лично не встречал. Делаем второй вывод: высокое разрешение не всегда хорошо.

UPD 18 мая 2022: Вот, что написал по этому поводу читатель в группе ВК СамЭлектрик.ру: Если надо частоту меньше: энкодеры (не все) имеют выход нулевой точки Z – один короткий импульс на оборот. Если нужно разрешение больше – у энкодера два сигнала А и В, сдвинутых на четверть периода, по этому сдвигу определяется направление вращения. Многие ПЛК и некоторые приводы имеют квадратурные счетчики, позволяющие работать с обоими сигналами и даже по обоим фронтам, для тысячника это 2000 и 4000 отсчетов за оборот соответственно.

Пример, поясняющий работу энкодера:

Как работает энкодер

Конструкция, поясняющая работу оптического энкодера

На фото – не энкодер, но данная конструкция в первом приближении прекрасно иллюстрирует работу и устройство инкрементального оптического энкодера. Про щелевой оптический датчик я писал в статье про оптические датчики, там подробнее.

Бич подобных конструкций – при механической поломке, связанной со смещением диска (или другого активатора), датчик легко ломается… В энкодере такого не может быть – там всё надёжно закреплено и защищено.

Основной минус инкрементального энкодера – необходимость непрерывной обработки его выходного сигнала. Кроме того, чтобы узнать положение инкрементального энкодера после подачи на него питания, необходимо провести инициализацию для поиска нуль-метки (что это такое – расскажу позже) либо для поиска нулевого положения механизма.

Абсолютный энкодер имеет более сложное устройство, но он позволяет определить угол поворота в любой момент времени, даже в неподвижном состоянии механизма сразу после включения питания. Говоря простыми словами, выходной сигнал у него – это параллельный код (например, 8-разрядный, имеющий 256 значений), который соответствует углу поворота. Соответствующую конфигурацию имеют и прорези в диске энкодера.

Абсолютные энкодеры работают в сложном оборудовании – там, где в любой момент времени (в том числе, в момент подачи питания) нужно знать точное положение объекта. Но сейчас, с появлением дешевых контроллеров с энергонезависимой памятью, в 99% используются инкрементальные энкодеры. Тем более учитывая, что их цена в несколько раз ниже, чем у абсолютных. Да и обрабатывать последовательные импульсы гораздо проще, чем параллельный код.

Использовать абсолютный энкодер для определения скорости вращения – всё равно, что использовать мощный настольный компьютер только для прослушивания музыки в ВК.

Бывают энкодеры не оптического принципа работы. Но я про них ничего рассказывать не буду, поскольку не имел с ними дела..

Подключение энкодера

Энкодер никогда не работает сам по себе. Он всегда подключается к устройству обработки сигналов, с помощью которого можно переварить и проанализировать импульсы на его выходах. Подключить энкодер легко – ведь это фактически датчик с транзисторными выходами. В простейшем случае, выход энкодера можно подключить ко входу счетчика, и запрограммировать его на измерение скорости или длины.

Но чаще всего выходные сигналы энкодера обрабатываются в контроллере. А далее путем расчетов можно получить информацию о скорости, направлении вращения, ускорении, положении объекта.

Энкодеры подключают не только к контроллеру. Он также может подключаться к преобразователю частоты, питающему электродвигатель. Таким образом , появляется возможность точного позиционирования, а также поддержания нужной скорости и момента вращения двигателя без использования контроллера. Это называется векторным управлением.

Сигналы и выходы инкрементального энкодера

Импульсы 1 на выходе энкодера

Импульсы на выходе энкодера – один канал

Период Т – величина, обратная частоте, а про частоту мы говорили выше. Уровень “Н” – это напряжение, почти равное напряжению питания (обычно 5, 12, или 24 В). Уровень “L” – около нуля.

Само собой, реальные импульсы не столь идеальны – у них может гулять скважность и будут завалены фронты.

Что может рассказать нам такой энкодер? Только о скорости и погонных метрах. Например, его можно применять для определения частоты вращения двигателя, или длины материала после нажатия кнопки “Сброс”. Неплохо, но хочется большего!

Если будет два выхода, импульсы на которых (оптическим способом) сдвинуты на четверть периода, мы сможем узнать направление вращения:

Импульсы 2 с фазовым сдвигом

Импульсы каналов А и В с фазовым сдвигом

Такие выходы со сдвигом фаз на четверть периода называются квадратурными каналами. Этот приём широко применяется в радиотехнике и электронике не только для определения направления вращения, но и для определения знака рассогласования частот (больше или меньше опорной частоты?).

Если сдвиг фаз положительный (фаза В отстает), можно условиться о прямом вращении. Если отрицательный (фаза В опережает фазу А на четверть), значит, вращение в обратном направлении. Два этих сигнала с одной частотой и фазой ±90° подаются на триггер, выход которого однозначно указывает о направлении вращения.

Ничего это не напоминает? В энкодере – двухфазная система, со сдвигом фаз 90°, в электрощите – трехфазная система, со сдвигом фаз 120°. Для смены направления вращения трехфазного двигателя достаточно поменять местами любые две фазы.

Со скоростью, расстоянием и направлением разобрались, а что делать, если нужно узнать угол поворота? Для этого вводится сигнал “Z” (Zero) – опорный импульс, который также называют нуль-меткой или референсной меткой:

Выходы энкодера с нулевой меткой

Выходы энкодера А, В с нулевой меткой Z

Импульс “Z” имеет длительность Т (бывает и другая длительность – T/2, или 2Т) и проскакивает 1 раз за оборот вала энкодера. Иными словами, длительность нулевой метки может быть в тысячи раз короче периода вращения вала энкодера.

В современных датчиках каждая фаза (канал) обычно имеет ещё один, противофазный выход.

С теорией заканчиваем, плавно переходим к практике.

Монтаж энкодеров

По монтажу сразу скажу главное – вал энкодера по отношению к валу механизма должен быть надежно зафиксирован! Обычно это делается при помощи шестигранных винтов.

Бывали случаи, когда из-за проскальзывания самодельных и даже штатных муфт глючили производственные линии, и мы долго не могли найти причину – ведь всё остается исправным!

Монтироваться энкодер может и на валу двигателя, и на валу любого другого механизма – это не принципиально, и зависит лишь от конструкции и требований к точности выполнения поставленной задачи.

Вал энкодера никогда не будет соосным с вращающимся валом (вспомните, для чего нужен карданный вал). Поэтому используются специальные заводские переходные муфты, нужно надежно их крепить и периодически проверять качество монтажа.

Энкодер механически соединен с приводом через соединительную муфту для компенсации несоосности

Корпус любого энкодера всегда неподвижен. Вращается только его внутренняя подвижная часть.

Существуют энкодеры с полым валом, которые надеваются непосредственно на измеряемый вал и там фиксируются. Там даже нет такого понятия, как несоосность. Их гораздо проще монтировать, и они надежнее в эксплуатации. Чтобы энкодер при этом не прокручивался, используется лишь металлический поводок. На фото ниже показан энкодер с полым валом (обозначен В21.1), надетый на вал редуктора:

Энкодер с полым валом

Энкодер с полым валом, надет на вал редуктора

Обратите внимание – корпус энкодера целиком и полностью держится на валу редуктора. От проворачивания его держит металлический поводок. При работе энкодер обычно немного покачивается по овальной траектории, это нормально, поскольку идеал существует только на картинках в даташитах и учебниках.

Бывают сквозные полые валы, когда ось механизма проходит через энкодер насквозь.

Подключение и работа энкодеров. Реальные примеры.

Ниже я рассмотрю несколько примеров использования энкодеров в реальном оборудовании.

Измерение скорости полотна

В данном примере, инкрементальный энкодер ELCO используется для измерения скорости бумажного полотна при производстве бумаги. Энкодер закреплен на бумаговедущем валу через муфту, скорость вращения которого однозначно говорит о скорости бумаги.

При помощи системы «энкодер+контроллер» можно вычислить мгновенную скорость, а также погонную длину произведенной продукции.

Энкодер работает

Энкодер работает на бумаговедущем валу

или другой ракурс:

Энкодер работает на бумаговедущем валу

Энкодер ELCO работает на бумаговедущем валу. Корпус энкодера закреплен жестко, стыковка валов – через компенсирующую муфту

Минус такой установки – при механической поломке вала (а это бывало уже не раз, изнашиваются подшипники) ломается либо муфта, либо сам энкодер.

Положение деталей на конвейере

В этом случае энкодер насажен на вал двигателя, подключенного через преобразователь частоты. Двигатель через редуктор передает движение на конвейер, по которому движутся заготовки деталей.

Положение детали на конвейере

Положение детали на конвейере, позиционирование при помощи энкодера на двигателе

С помощью энкодера и оптических датчиков, фиксирующих просвет между образцами продукции, контроллер с большой точность может управлять обработкой деталей.

При этом направление знать не обязательно (оно всегда одно), и могут применяться энкодеры без ноль-метки:

Энкодер для определения только

Энкодер для определения только скорости вращения

По моему мнению, насаживание энкодера на вал двигателя – не очень хорошая идея в смысле того, что энкодер крутится на больших оборотах (до 3000 об/мин). Кроме повышенного механического износа, необходимо предусмотреть обработку сигналов со сравнительно высокой скоростью. Но сегодня, с развитием промышленной электроники, это не проблема.

Крепление энкодера на валу двигателя позволяет очень точно контролировать скорость привода. С появлением высокооборотистых энкодеров многие производители наладили выпуск двигателей со встроенным энкодером.

Если интересно применение ПЧ в конвейерах, вот моя статья на Дзене, где я подробно рассматриваю схему включения ПЧ для конвейера.

Ещё пример точного позиционирования при помощи энкодера для двигателя:

Энкодер для двигателя

Энкодер – работа на валу двигателя со стороны крыльчатки

В этом случае двигатель приводит в действие цепную передачу лифта, подающего заготовку на обработку. Точность позиционирования лифта – порядка 1 мм, длина пути – более 2 м.

Перемещение детали

Ещё большую точность, чем в предыдущем случае, можно получить, если вал энкодера закрепить на ходовой винт с резьбой.

Ходовой вал с резьбой

На фото сверху вниз – направляющая, ходовой винт, кабель к энкодеру

Если на ходовой винт закрепить гайку, которая механически скреплена с перемещаемой деталью (в реальном примере это – металлическая заготовка, которая рубится или гнётся по нужному размеру), то с помощью энкодера можно до долей миллиметра узнать её положение. Точность вычисления будет зависеть от шага резьбы и разрешающей способности энкодера.

Минус такого решения – при большой скорости возможен «промах», и нужно либо уменьшать скорость при приближении к цели, либо постоянно двигаться на низкой скорости. Кроме того, механика тоже должна быть точной, чтобы исключить любые люфты и перекосы.

Перемещение упора

Задача стоит в принципе такая же, как и в предыдущем случае. Но тут другой принцип перемещения – за счет зубчатой передачи:

Зубчатая передача

Зубчатая передача перемещения каретки

Плюс данной реализации в том, что энкодер насажен непосредственно на зубчатое колесо, которое осуществляет передачу вращения. При большом разрешении энкодера и отсутствии механических люфтов можно добиться очень высокой точности позиционирования.

Использование энкодера совместно с винтовой и зубчатой передачей позволяет достичь высокой точности обработки деталей в станках с ЧПУ.

Вычисление точной координаты

В производстве полиграфической продукции иногда нужно нанести клей (или краску) в точное место. Когда печатная продукция (например, коробки или конверты) движутся по ленточному конвейеру, при помощи оптического датчика определяется начало коробки, затем контроллер при помощи энкодера вычисляет нужную координату, и включает подачу клея.

Вычисление точной координаты

Вычисление точной координаты при помощи измерительного колеса

Формируется клеевая дорожка нужной длины, затем клей выключается. Далее коробка подается на фальцовочный узел, где складывается и склеивается. При этом скорость работы линии может достигать до 300 коробок в минуту.

Системы дозирования

Для точного открытия заслонки в системе дозирования жидкостей служит система, состоящая из двигателя с редуктором, на вал которого с одной стороны закреплена задвижка, с другой – энкодер.

Поворот на определенный угол

Поворот на определенный угол при помощи энкодера

Поворот вала редуктора на угол не более 180° ограничен индуктивными датчиками приближения, а точное положение определяется по сигналу от энкодера. В исходном состоянии задвижка закрыта, и датчик минимального положения активен. Это состояние принимается за ноль. Далее включается двигатель, и вал поворачивается. Точный угол поворота пропорционален количеству импульсов от энкодера обратной связи. В данном случае энкодер не делает полный оборот, его движение ограничено датчиками.

Датчики активируются кулачками, которые закреплены (и могут корректироваться шаловливыми ручками)) на том же валу, что и энкодер.

При выключении питания положение энкодера (а значит, и задвижки) запоминается в памяти контроллера. В случае необходимости оператор может провести инициализацию (установку нулевого и максимального положения) за счет индуктивных датчиков. Опорная “Z” – метка при этом не используется.

Защита двигателя

Даже при перегрузке двигателя его скорость понижается, скольжение есть всегда, даже на холостом ходу. Но изменение тока при этом ничтожно. Особенно (например), если двигатель работает на застрявшую продукцию через редуктор.

Поэтому, очень удобно использовать энкодер, закрепленный на валу двигателя, для определения повышенного скольжения. А значит – перегрузки двигателя.

У меня на Дзене есть статья, как энкодер защищает двигатель от перегрузки, там тема раскрыта подробнее.

Вот фото оттуда:

Энкодер поломка

Энкодер, механическая поломка из-за смещения двигателя

Энкодер перестал выдавать импульсы (перегрузки, правда, не было), и тут же контроллер выдал сообщение:

Сообщение о поломке

Сообщение на экране оператора о поломке энкодера

Запоминающие энкодеры

Энкодеры умнеют на глазах. В американской линии довелось иметь дело с серводвигателем, в состав которого входит энкодер с памятью.

Энкодер в составе серводвигателя

Энкодер в составе серводвигателя с памятью

Энкодер не простой – у него в памяти зашиты параметры серводвигателя (их более сотни), которые он каждый раз при включении питания передает к центральный контроллер. Из-за заводского брака энкодер был плохо закреплён, и начал тереться о корпус двигателя, что привело к нарушению синфазности вращения двигателя и энкодера. Американцы дистанционно заново программировали этот энкодер, чтобы можно было запустить линию. Но это уже совсем другая история…

Резольвер

Совсем коротко о резольвере. По сути он выполняет те же функции, что и энкодер – может вычислять скорость и направление вращения двигателя. Но резольвер – аналоговый измерительный прибор. В некоторых случаях он гораздо точнее говорит об угле поворота, поскольку фактически речь идет о вычислении сдвига фаз на его выходах.

Реальный японский резольвер SMARTSYN TAMAGAWA SEIKI MODEL: TS2651N141E78, довелось когда-то ремонтировать:

Разобранный резольвер

Тахогенератор

Не путайте энкодер и тахогенератор (его иногда ошибочно называют тахометром)!

У них схожие функции и область применения, но у тахо от скорости вращения двигателя зависит не частота выходных импульсов, а выходное напряжение.

Посмотрите, какая конструкция установлена у нас на заводе на двигателе постоянного тока мощностью 200 кВт:

Энкодер + тахометр

Энкодер + тахометр слиты в единое целое на валу двигателя

Тахогенераторы, как и двигатели постоянного тока, в современном оборудовании практически не используются.

Производители энкодеров

Среди российских производителей энкодеров мне известен лишь только Питерский СКБ ИС, который производит энкодеры марки ЛИР. К сожалению, российского промышленного оборудования сейчас почти не производится, и ЛИРы применяются лишь в военном и лабораторном оборудовании.

По этой причине я имею дело только с энкодерами зарубежного производства. Производителей энкодеров много – их производят почти все производители полупроводниковых датчиков. Чаще всего я встречаюсь с энкодерами Autonics – как и в случае с датчиками, в России представлен большой ассортимент. Другие известные мне производители энкодеров – немецкий Sick, японский Omron, и несколько китайских брендов.

Использование тех или иных марок энкодеров обусловлено часто не техническими причинами, поскольку их параметры, схемы подключения и надежность практически идентичны. Тут скорее политические мотивы – производители комплектующих любыми путями стараются, чтобы их продукция вошла в состав больших и массовых производственных линий, чтобы таким образом закрепиться на рынке.

Скачать

Статья, которую вы сейчас прочитали, недавно была в урезанном виде опубликована в бумажном журнале “Электротехнический рынок” под названием “Энкодер: мастхэв производственной линии”. Кому интересно, выкладываю для скачивания:

• Энкодер: мастхэв производственной линии / Статья в журнале «Электротехнический рынок» от СамЭлектрик.ру. Разновидности и примеры реального применения энкодеров. Приведены описания реальных узлов оборудования, в которых применяются энкодеры, pdf, 1.15 MB, скачан: 1342 раз./

Рекомендую скачать ещё одну интересную статью по энкодерам:

• Подключение инкрементного энкодера к ПЛК / Обобщены данные о типах выходного сигнала энкодера, способах его обработки, подсчёте измеряемой частоты вращения. Пример подключения и обработки сигналов энкодера в контроллере Siemens, pdf, 2.36 MB, скачан: 1435 раз./

Приглашаю коллег к обсуждению в комментариях, буду рад замечаниям и дополнениям к статье!

Энкодеры (Encoders): особенности и применение

Энкодер (заимствованное зарубежное слово encoder), означает преобразователь. Сегодня это название объединяет целый класс изделий, получивших широкое распространение в автоматизации промышленных процессов. В качестве устройства контроля положения выделяют две основные группы по назначению: угловые (rotary, angular) и линейные (linear encoder). В отечественной технической и конструкторской литературе чаще встречаются следующие названия: датчик обратной связи (ДОС), преобразователь угловых / линейных перемещений, датчик угла поворота (ДУП), датчик положения, шифратор, кодировщик. Также популярны названия на английском: transducer, sensor. В немецкой документации: drehgeber (если угловой), line geber (если линейный).

Объединив все эти понятия, можно сказать, что энкодером называют устройство, которое преобразовывает механическое перемещение (линейное движение или вращение) посредством изменения физических величин (проходящий свет, магнитное или индуктивное поле) в последовательность сигналов. Формируемый на выходе электрический сигнал может быть аналоговым или цифровым. Он несет в систему управления верхнего уровня информацию о величине, направлении, скорости, перемещения, положении объекта.

Принцип работы энкодера

Как обеспечивается работа устройства лучше всего видно, если заглянуть «внутрь». Рассмотрим типовую и самую распространенную схему построения преобразователя – оптоэлектронную с подшипниковым узлом. На рисунке ниже представлен оптический многооборотный абсолютный датчик с цельным валом.

Основные элементы энкодера

Здесь видны практически все основные узлы современного изделия:

  1. – вал энкодера
  2. – фланец (на данном рисунке представлен зажимной тип)
  3. – фотоприемник инфракрасного (ИК) света
  4. – оптический диск с растрами (метками, если инкрементный) или кодовыми дорожками (если абсолютный)
  5. – ИК осветитель (LED) с линзой на плате
  6. – механический редуктор с зубчатыми колесами (многооборотный модуль)
  7. – плата обработки сигнала с выходными формирователями и конверторами интерфейса.

Элементы 1, 2, 4 формируют оптико-механический подшипниковый узел. Оптический диск (лимб) 4 может быть стеклянным, металлическим, пластиковым. В зависимости от производителя бывают конструкции, где элементы 3 и 5 поменяны местами. Механический редуктор 6 встречается только у многооборотных абсолютных преобразователей.

Принцип работы оптоэлектронного энкодера

На рисунке выше показана работа энкодера:

  1. ИК свет от источника 5 проходит через кодовый диск 4, и попадает на приемник (фото матрицу) 3
  2. Фотоприёмник имеет нанесенную на чувствительном элементе или расположенную над ним маску (индикаторную пластину), которая также имеет «окошки», как на вращающемся диске
  3. Из-за поочередного перекрытия и открытия окошек маски в процессе вращения вала датчика, проходящий свет имеет аналоговую структуру. Нет света -> нарастает -> максимум света -> убывает -> нет света
  4. Это регистрирует фото сенсор
  5. Далее аналоговый сигнал с приемника преобразуется платой обработки 7 в необходимые для дальнейшей передачи информации импульсы.

Виды энкодера

Основные типы, которые на слуху у всех специалистов, занимающихся автоматизацией:

  • абсолютные (absolute) – всегда знают свое положение
  • инкрементные (incremental) – относительные, считают только при включенном питании и вращении.

С развитием технологии, абсолютные энкодеры занимают все более прочные позиции на рынке. Если раньше соотношение было 70 на 30 и даже 80 на 20 % в пользу икнрементальных, то теперь их позиции равны. А в некоторых отраслях абсолютные преобладают.

Отдельно здесь можно выделить многооборотные энкодеры. Которые не только «запоминают» позицию внутри оборота, но и знают на каком обороте находятся. Количество оборотов зависит от используемого многооборотного модуля. У редукторного механического модуля количество регистрируемых оборотов как правило ограничено 12 (4096) или 14 битами (16384). У модуля со встроенной в энкодер батарейкой – до 18 (262144) и более бит. Многооборотный модуль, построенный на сенсорах Виганда, считает до 31 (2147483648) бит оборотов.

Основные виды фланцев и валов

По конструкции выделяют угловые преобразователи следующих типов:

  • С полым валом (hollow shaft):
    • Сквозным (thru hollow)
    • Глухим (тупиковым)(blind hollow).
    • Cинхро фланцем (synchro flange)
    • Зажимным (clamping)
    • Квадратным (square)
    • Пилотным (pilot).

    Самое полное портфолио энкодеров на рынке вы найдете на сайте f-enco.ru

    Применение энкодера

    Области применений сегодня настолько обширны, что преобразователь перемещений можно встретить в принтере, метро, самолете, трамвае, строительном кране, лифте, даже на продвинутом дачном участке в качестве датчика открывания ворот. Ниже представлен далеко не полный список применений, где датчики обратной связи получили наибольшее распространение:

    1. Автоматизация производств
      • Упаковка
      • Текстильное производство
      • Производство продуктов питания и напитков
      • Промышленные роботы

    В чем разница между абсолютными и инкрементальными энкодерами?

    Согласно отчету Questale Market Research ожидается значительный рост использования энкодеров в области управления движением к 2022 году. Основными отраслями промышленности, в которых рост будет максимальным, будут – потребительская и промышленная электроника, системы автоматизации, химическая и аэрокосмическая промышленности.

    Энкодеры соединяются с валом, и, когда вал вращается, датчик выдает импульсы. Они используются для определения скорости наблюдаемого объекта. Подсчитав количество импульсов на один полный оборот вала, можно рассчитать перемещение. Энкодеры обычно подают сигналы прямоугольной формы в двух каналах, которые смещены друг относительно друга на 90 градусов или находятся в противофазе. Каждое приращение при вращении сдвигает выходной сигнал.

    Абсолютные энкодеры

    Преимущество абсолютных поворотных энкодеров заключается в том, что они дают
    возможность сразу определить положения объекта после включения питания устройства
    управления, не теряя драгоценного времени на выполнение поиска механизмами нулевых
    меток, то есть привязки объекта к системе отсчёта положения.

    Абсолютные энкодеры имеют диск, на котором кроме меток обычного инкрементального
    датчика имеются дополнительные метки или прорези, для вычисления абсолютного
    положения. Каждая позиция соответствует уникальному коду, и даже движения, которые происходят, когда нет питания, записываются в точные значения положения и могут быть восстановлены сразу после подключения питания.

    Существует два типа абсолютных датчиков: однооборотные и многооборотные энкодеры. Однооборотные датчики измеряют перемещения за один оборот или поворот на 360 градусов от начального положения. Процесс повторяется после каждого оборота. Многооборотные датчики измеряют то же самое, что и однооборотные, но также отслеживают количество полных оборотов вала, используя уникальное слово для каждой позиции и количества оборотов.

    Различие энкодеров и их преимущества и недостатки

    Абсолютные поворотные датчики предпочтительнее, когда актуальны вопросы безопасности, поскольку они «позиционируют» себя при включении машины. Однооборотные датчики более полезны для коротких перемещений. Многооборотные лучше подходят для более сложных или более длинных перемещений. Последние записывают данные позиции в электронном виде, как правило, в двоичном формате. Еще одним преимуществом является устойчивость к электронному шуму. Однако абсолютные поворотные датчики обычно стоят дороже, чем инкрементальные.

    Преимущества абсолютных энкодеров

    • Запоминает свое положение после отключения питания и предлагает постоянный контроль положения.
    • Обычно имеют функции измерения скорости, масштабирования, предустановки и полевой шины.
    • Позволяет определить точное положение машины и контролировать хранение электронных данных.
    • Имеют несколько опций интерфейса: аналоговый, Ethernet, Fieldbus, параллельный, последовательный.
    • Возможны однооборотные и многооборотные варианты.
    • Оптический или магнитный принцип измерения.
    • Абсолютные энкодеры имеют разрешение до 16 бит или 65536 импульсов на оборот (PPR).

    Инкрементальные энкодеры

    Выходной сигнал инкрементальных энкодеров генерируется каждый раз, когда вал проворачивается на определенный угол, а разрешение устройства определяется количеством сигналов на оборот. Каждый раз, когда на датчик подается питания, он начинает отсчет с нуля независимо от того, где находится вал и каково было его предыдущее положение. Необходима установка начальной точки отсчета как при настройке системы в первый раз, так и после отключения питания энкодера. Необходима полная перенастройка инкрементального датчика с начальной точки после отключения.

    Разница между инкрементальными и абсолютным энкодером

    Поворотные инкрементные энкодеры хранят данные во внешнем буфере или счетчике. Батарейные резервные копии могут помочь устранить необходимость повторной настройки после запланированных или незапланированных остановок. Инкрементальные датчики, как правило, проще в использовании и дешевле, чем абсолютные.

    Условные обозначения для лифтов | Что такое СПК, КВШ, МП лифта?

    В данной статье мы перечислили все известные на сегодняшний день условные обозначения используемые на лифтах, электросхемах лифтов, лифтовых чертежах, паспорте лифта, инструкции по эксплуатации лифтом. Данные условные обозначения приняты для лифтов изготовленных в России а также лифтах изготовленные на территории государств, входящих в состав членов Таможенного союза. Условные обозначения приведенные в данной статье

    Выключатели, переключатели, блокировочные контакты, кнопки.

    • ВУ — устройство вводное.
    • ВА1 — выключатель автоматический силовой цепи.
    • ВА2 — выключатель автоматический цепи электродвигателя привода дверей.
    • ВАЗ — выключатель автоматических цепей управления.
    • ВК — выключатель конечный пере прохода кабины лифта выше или ниже допустимого уровня.
    • ВЛ — выключатель ловителей.
    • СПК — выключатель блокировочный слабины тяговых канатов.
    • В2 — выключатель цепей управления из приямка.
    • ВНУ — выключатель блокировочный на натяжном устройстве ограничителя скорости лифта.
    • ВШ1 — выключатель освещения шахты.
    • ВВП — выключатель блокировочный подпольный.
    • ВКО, ВКЗ — выключатели открывания и закрывания дверей.
    • ВЕР — выключатель блокировочный реверса привода дверей,
    • ББГ-110 — выключатель блокировочный ограничителя грузоподъемности при 110 % нагрузке.
    • ВБГ-90 — выключатель блокировочный ограничителя грузоподъемности при 90 % нагрузке.
    • ВБГ-70 — выключатель блокировочный контроля загрузки кабины на 70 % номинальной грузоподъемности.
    • ВБГ-50 — выключатель блокировочный контроля загрузки кабины ниже или выше 50 % номинальной грузоподъемности.
    • ВБГ-30 -выключатель блокировочный контроля загрузки кабины до 30 % номинальной грузоподъемности.
    • А-В7, Б-В7, В-В7 — выключатели напряжения.
    • ВР1, ВР2 — переключатели режимов работы.
    • ВР7 — переключатель ремонтной телефонной связи.
    • 1ЭП-ЗЭП — этажный переключатель.
    • ДК — выключатель блокировочный дверей кабины.
    • ДШ — выключатель блокировочный дверей шахты.
    • ДЗ — выключатель блокировочный замков дверей шахты.
    • КБР — контакт блокировочной ревизии.
    • КнП — кнопки приказа.
    • КнВ — кнопки вызова.
    • М-Кн «вверх», М-Кн «вниз» , К-Кн «вверх» , К-Кн «вниз», Кн «Стоп», М-Кн «Стоп» — кнопки управления из машинного помещения, кнопки управления с крыши кабины лифта в режиме ревизии, кнопки экстренной остановки лифта.
    • КнВП — кнопки вызова обслуживающего персонала.

    Электродвигатели, трансформаторы, электромагниты.

    • M1 — электродвигатели главного привода лифта (лебедки).
    • М2 — электродвигатели привода дверей.
    • Tp1 — трансформаторы понижающие цепей управления.
    • Тр3 — трансформаторы понижающие цепей сигнализации.
    • ЭмТ — электромагниты тормоза.
    • Кн-КнП — удерживающие электромагниты кнопок вызова и приказа.

    Контакторы, реле, датчики, устройства релейно-электронные.

    • КБ — контакторы направления движения вверх.
    • КН — контакторы направления движения вниз,
    • КБ — контакторы большой скорости.
    • КМ — контакторы малой скорости.
    • РБ — реле движения на большой скорости.
    • РД — реле движения.
    • РЭ — реле этажное.
    • РЗ, Р31 — реле замедления.
    • РЗВ — реле замедления при движении кабины вверх.
    • РБЗ, РБ31 — реле блокировки замедления.
    • РИС — реле импульса селекции.
    • А- 1РС, Б-1РС7 В-1РС — реле селекции промежуточное.
    • РИТО — реле импульса точной остановки.
    • РТО — реле точной остановки.
    • РКД, РКД1, РКД2 — реле контроля дверей.
    • РПД — реле промежуточное диспетчеризации.
    • РПК — реле контроля пола кабины.
    • РОД — реле открывания дверей.
    • РЗД — реле закрывания дверей.
    • РН, РН1 — реле контроля нормального состояния блокировочных устройств.
    • РНР — реле нормальной работы.
    • РПВ1-РПВ4 — реле пуска лифта на вызов.
    • РБГ-90 — реле блокировки попутных остановок лифта при загрузке кабины на 90 % и выше грузоподъемности.
    • РБГ-110 — реле блокировки пуска лифта при загрузке кабины на 110 % и выше грузоподъемности.
    • РВ2 — реле времени вызывное.
    • РВ5 — реле контроля включения контакторов направления.
    • РПО, РП01 -реле режима «Пожарная опасность».
    • РРВ — реле регистрации вызовов.
    • РРП — реле регистрации приказов.
    • А-РОК, Б-РОК — реле определения кабины.
    • А-РОН, Б-РОН — реле отключения напряжения.
    • А-РПЗ, Б-РПЗ — реле пуска зональное.
    • ДчТО — датчики точной остановки.
    • ДчС — датчики селекции.
    • УВТЗ — устройство встроенной температурной защиты электродвигателей.
    • 1ПРВ, А-ПРВ, Б-ПРВ, В-ПРВ- приставки времени.
    • Выпрямители, диоды, резисторы, конденсаторы, предохранители:
    • ВП, ВШ, ВП2, ВПЗ — выпрямители диодные.
    • ВС,1ВС — выпрямители селеновые.
    • Д — диоды.
    • R — резисторы.
    • С, C1, C2 — конденсаторы.
    • Пр1-Пр4 — предохранители плавкие.

    Сигнальные устройства и другие приборы.

    • ЗвВП — звонок сигнальный вызова персонала.
    • ЛГ — световой сигнал «Перегрузка».
    • ЛС — лампы сигнальные регистрации приказов и вызовов.
    • ЛП — лампы положения местонахождения кабины.
    • ЛЗ — лампа сигнальная «Занято».
    • ЛИ1 — лампа искателя повреждений.
    • ЛСН1, ЛСН2 -лампы сигнальные о наличии напряжения на лифтовой установке.
    • Л01, Л02 — лампы основного освещения кабины.
    • ЛР1, ЛР2, ЛА1, ЛА2 — лампы резервного (аварийного) освещения кабины.
    • Ш1-ШЗ — штепсельные розетки.
    Что такое Kban?

    Какоек самое известное лифтовое сокращение которое знает каждый лифтовик?

    Самоке известное условное обозначение которое каждый лифтовик не раз наблюдал у себя в мониторе это конечно же абривиатура «Kban»

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *