Что такое силовые линии электрического поля
Перейти к содержимому

Что такое силовые линии электрического поля

  • автор:

 

Силовые линии электрического поля

Электрическое поле изображают с помощью силовых линий.

Силовые линии указывают направление силы, действующей на положительный заряд в данной точке поля.

Свойства силовых линий электрического поля

Силовые линии электрического поля имеют начало и конец. Они начинаются на положительных зарядах и заканчиваются на отрицательных.

Силовые линии электрического поля всегда перпендикулярны поверхности проводника.

Распределение силовых линий электрического поля определяет характер поля. Поле может быть радиальным (если силовые линии выходят из одной точки или сходятся в одной точке), однородным(если силовые линии параллельны) и неоднородным (если силовые линии не параллельны).

Плотность заряда — это количество заряда, приходящееся на единицу длины, площади или объёма, таким образом определяются линейная, поверхностная и объемная плотности заряда, которые измеряются в системе СИ: в Кулонах на метр (Кл/м), в Кулонах на квадратный метр (Кл/м²) и в Кулонах на кубический метр (Кл/м³), соответственно. В отличие от плотности вещества, плотность заряда может иметь как положительные, так и отрицательные значения, это связано с тем, что существуют положительные и отрицательные заряды.

Линейная, поверхностная и объемная плотности заряда, обозначаются обычно функциями ,и, соответственно, где— эторадиус-вектор. Зная эти функции мы можем определить полный заряд:

§5 Поток вектора напряженности

Определим поток вектора через произвольную поверхность dS,— нормаль к поверхности.α — угол между нормалью и силовой линией вектора. Можно ввести вектор площади.ПОТОКОМ ВЕКТОРА называется скалярная величина ФЕ равная скалярному произведению вектора напряженности на вектор площади

Для однородного поля

Для неоднородного поля

где — проекцияна,— проекцияна.

В случае криволинейной поверхности S ее нужно разбить на элементарные поверхности dS, рассчитать поток через элементарную поверхность, а общий поток будет равен сумме или в пределе интегралу от элементарных потоков

где — интеграл по замкнутой поверхности S (например, по сфере, цилиндру, кубу и т.д.)

Поток вектора является алгебраической величиной: зависит не только от конфигурации поля, но и от выбора направления. Для замкнутых поверхностей за положительное направление нормали принимается внешняя нормаль, т.е. нормаль, направленная наружу области, охватываемой поверхностью.

Для однородного поля поток через замкнутую поверхность равен нуля. В случае неоднородного поля

.

3. Напряженность электростатического поля, создаваемого равномерно заряженной сферической поверхностью.

Пусть сферическая поверхность радиуса R (рис. 13.7) несет на себе равномерно распределенный заряд q, т.е. поверхностная плотность заряда в любой точке сферы будет одинакова.

Заключим нашу сферическую поверхность в симметричную поверхность S с радиусом r>R. Поток вектора напряженности через поверхность S будет равен

По теореме Гаусса

Сравнивая это соотношение с формулой для напряженности поля точечного заряда, можно прийти к выводу, что напряженность поля вне заряженной сферы такова, как если бы весь заряд сферы был сосредоточен в ее центре.

Для точек, находящихся на поверхности заряженной сферы радиуса R, по аналогии с вышеприведенным уравнением, можно написать

Проведем через точку В, находящуюся внутри заряженной сферической поверхности, сферу S радиусом г<R. Внутри сферы S зарядов нет, т.к. все они расположены на внешней сферической поверхности, т.е. Следовательно, по теореме Гаусса,и напряженность электростатического поля внутри полой равномерно заряженной сферы будет равна нулю. Зависимость напряженности поля заряженной сферы от расстояния r приведена на рис. 13.8.

2. Электростатическое поле шара.

Пусть имеем шар радиуса R, равномерно заряженный с объемной плотностью .

В любой точке А, лежащей вне шара на расстоянии r от его центра (r>R), его поле аналогично полю точечного заряда , расположенного в центре шара. Тогда вне шара

а на его поверхности (r=R)

В точке В, лежащей внутри шара на расстояний r от его центра (r>R), поле определяется лишь зарядом , заключенным внутри сферы радиусом r. Поток вектора напряженности через эту сферу равен

с другой стороны, в соответствии с теоремой Гаусса

Из сопоставления последних выражений следует

где— диэлектрическая проницаемость внутри шара. Зависимость напряженности поля, создаваемого заряженной сферой, от расстояния до центра шара приведена на (рис.13.10)

3. Напряженность поля равномерно заряженной бесконечной прямолинейной нити (или цилиндра).

Предположим, что полая цилиндрическая поверхность радиуса R заряжена с постоянной линейной плотностью .

Проведем коаксиальную цилиндрическую поверхность радиуса Поток вектора напряженности через эту поверхность

По теореме Гаусса

 

Из последних двух выражений определяем напряженность поля, создаваемого равномерно заряженной нитью:

4. Напряженность поля, создаваемого, бесконечной равномерно заряженной плоскостью.

Пусть плоскость имеет бесконечную протяженность и заряд на единицу площади равен σ. Из законов симметрии следует, что поле направлено всюду перпендикулярно плоскости, и если не существует никаких других внешних зарядов, то поля по обе стороны плоскости должны быть одинаковы. Ограничим часть заряженной плоскости воображаемым цилиндрическим ящиком, таким образом, чтобы ящик рассекался пополам и его образующие были перпендикулярны, а два основания, имеющие площадь S каждое, параллельны заряженной плоскости (рис 1.10).

Суммарный поток вектора; напряженности равен вектору , умноженному на площадь S первого основания, плюс поток векторачерез противоположное основание. Поток напряженности через боковую поверхность цилиндра равен нулю, т.к. линии напряженности их не пересекают. Таким образом,С другой стороны по теореме Гаусса

но тогда напряженность поля бесконечной равномерно заряженной плоскости будет равна

В это выражение не входят координаты, следовательно электростатическое поле будет однородным, а напряженность его в любой точке поля одинакова.

5. Напряженность поля, создаваемого двумя бесконечными параллельными плоскостями, заряженными разноименно с одинаковыми плотностями.

Как видно из рисунка 13.13, напряженность поля между двумя бесконечными параллельными плоскостями, имеющими поверхностные плотности зарядов и, равны сумме напряженностей полей, создаваемых пластинами, т.е.

Вне пластины векторы от каждой из них направлены в противоположные стороны и взаимно уничтожаются. Поэтому напряженность поля в пространстве, окружающем пластины, будет равна нулю Е=0.

Что такое силовые линии электрического поля

Опытным путём установлен закон Кулона:

сила взаимодействия двух точечных неподвижных зарядов в вакууме пропорциональна произведению модулей зарядов, обратно пропорциональна квадрату расстояния между ними и направлена вдоль прямой, проходящей через эти заряды:

Здесь `F` — модуль силы, `k` — коэффициент пропорциональности, зависящий от выбора системы единиц, `q_1` и `q_2` — величины зарядов, `r` — расстояние между зарядами.

Обратите внимание, что нарушение в конкретных условиях опыта точечности зарядов, их неподвижности или нахождение зарядов не в вакууме может привести к невыполнению соотношения (2.1).

Основной единицей в любой системе единиц называется единица, для которой существует установленная по договорённости принципиальная возможность создания эталона этой единицы. Напомним, что основными единицами системы СИ являются единицы длины метр (м), массы килограмм (кг), времени секунда (с), силы электрического тока ампер (А), термодинамической температуры кельвин (К), количества вещества моль (моль), силы света кандела (кд). Остальные единицы в системе СИ производные, их размерность (выраженная через основные или другие единицы системы) даётся через определения и физические законы, устанавливающие связь между различными физическими величинами. Единицей заряда в системе СИ является кулон (Кл) – заряд, проходящий за `1` с через поперечное сечение проводника при силе тока `1` А.

Найдём размерность (обозначается квадратными скобками) коэффициента `k` в формуле (2.1) закона Кулона. Для размерностей физических величин в (2.1) выполняется соотношение, аналогичное соотношению (2.1) между самими величинами: $$ \left[F\right]=\left[k\right]<\displaystyle \frac<\left[_<1>\right]\left[_<2>\right]><\left[^<2>\right]>>$$.

Запоминать выражение для размерности `k` необязательно, но уметь выводить, используя (2.1), надо.

Приведём значение коэффициента `k` в (2.1) для системы СИ:

Заметим, что вместо выражения для размерности после численного значения можно писать «ед. СИ» (единицы СИ). Иногда в системе СИ коэффициент `k` в (2.1) записывают в форме $$ k=<\displaystyle \frac<1><4\pi <\epsilon >_<0>>>$$.

Здесь $$ <\epsilon >_<0>=\mathrm<8,85>·<10>^<-12>$$ ед. СИ называется электрической постоянной.

Найдём напряжённость электрического поля, созданного точечным зарядом `Q` на расстоянии `r` от заряда. Для этого поместим мысленно на расстоянии `r` от `Q` пробный заряд `q`. По закону Кулона на `q` действует сила $$ F=\left|\overrightarrow\right|=k\left|Q\right|\left|q\right|/^<2>$$. Напряжённость поля (созданного зарядом `Q`) в месте расположения `q` равна `vecE=vecF//q`. Отсюда `E=|vecE|=|vecF|//|q|`. С учётом выражения для `F` напряженность поля точечного заряда `Q` на расстоянии `r` от него

Рис. 2.1 Рис. 2.2

На рисунках 2.1 и 2.2 показаны случаи для `Q > 0` и `Q < 0`. Знак пробного заряда `q` выбран положительным из соображений удобства, т. к. при таком выборе направление силы, действующей на `q`, совпадает с направлением напряжённости.

Формулу (2.2) можно обобщить, избавившись от знака модуля:

Здесь $$ _$$ – проекция напряжённости на ось `x`, направленную от заряда `Q` и проходящую через исследуемую точку. Справедливость (2.3) при любом знаке `Q` проверяется непосредственно (см. рис. 2.1, 2.2).

Силовой линией (линией напряжённости) электрического поля называется непрерывная линия, касательная в каждой точке которой совпадает с направлением вектора напряжённости электрического поля в этой точке. Наглядно электрические поля изображают с помощью силовых линий.

На рис. 2.3 приведена картина силовых линий электрического поля положительного точечного заряда.

Рис. 2.3

Стрелкой на каждой силовой линии указывается её направление, т. е. направление вектора напряжённости в каждой точке силовой линии. Полезно посмотреть и нарисовать самим картины силовых линий полей из школьного учебника.

Все свойства силовых линий как электрического поля, так и электростатического поля, следуют из определения силовых линий и из законов электродинамики. Приведём некоторые свойства.

1. Силовые линии электрического поля не пересекаются. В противном случае в точках пересечения была бы неопределённость в направлении напряжённости поля.
2. Густота силовых линий электрического поля в пространстве пропорциональна напряжённости электрического поля.
3. Силовые линии электростатического поля не замкнуты. Они начинаются на положительных зарядах (или в бесконечности) и заканчиваются на отрицательных зарядах (или в бесконечности). При этом некоторая группа силовых линий (лучевая трубка) связывает равные по модулю заряды и число силовых линий, выходящих (входящих) из заряженного тела, не зависит от формы тела, а зависит только от величины заряда (пропорционально заряду).

Обратите внимание, что первые два свойства справедливы и для электростатического поля, как частного случая электрического. Третье же свойство справедливо только для электростатического поля, а для произвольного электрического поля выполняется не всегда.

Рис. 2.4

В двух вершинах равностороннего треугольника со стороной `a=1` м расположены точечные заряды $$ _<1>=Q=1.4·<10>^<-7>\mathrm<Кл>$$, $$ _<2>=-2Q$$. Найти напряжённость (модуль) электрического поля в третьей вершине треугольника.

Пусть напряженность полей, созданных зарядами `Q` и `-2Q` в третьей вершине треугольника $$ \overrightarrow<_<1>>, \overrightarrow<_<2>>$$ (рис. 2.4). По принципу суперпозиции полей напряжённость результирующего поля $$ \overrightarrow=\overrightarrow<_<1>>+\overrightarrow<_<2>>.$$ Используя теорему косинусов для треугольника, составленного из векторов $$ \overrightarrow, \overrightarrow<_<1>>, \overrightarrow<_<2>>$$, получаем $$ ^<2>=<^<2>>_<1>+<^<2>>_<2>-2_<1>_<2>\mathrm60°. $$ Поскольку `E_1=kQ//a^2`, `E_2=2kQ//a^2`, `cos60^@=1//2`, то `E=sqrt3k Q/q^2

Напряженность электрического поля

Напряженность электрического поля в данной точке пространства — это физическая величина равная отношению силы действующей на пробный заряд, помещённый в данную точку поля, к величине этого заряда. Напряжённость поля является векторной величиной.

напряженность электрического поля формула E = F/Q

E = F/Q
Где:
E — Напряжённость электрического поля
F — Сила, действующая на положительный точечный заряд
Q — Величина пробного заряда

Сила (F) измеряется в ньютонах (Н), заряд (Q) измеряется в кулонах (Кл), а напряжённость электрического поля (E) измеряется:

  • либо в ньютонах на кулон (Н/Кл),
  • либо в вольтах на метр (В/м).

Пример:

Какую силу (F) оказывает электрическое поле (E) равное 7,2 × 10^5 Н/Кл на точечный заряд −0,250 мкКл (микрокулонов)?

Формула: E = F/Q или F = Q × E

Q = −0,250 мкКл = − 0,250 ×10^(−6) Кл (отрицательное)

F = (0,250 ×10^(−6) Кл) × (7,2 × 10^5 Н/Кл) = 0,180 Н

Сила направлена противоположно направлению поля, т.к. Q является отрицательным.

Что такое электрическое поле?

Электрический заряд создаёт вокруг себя электрическое поле, оно действует с некой силой и на другие находящиеся вокруг него заряды. Электрическое поле может возникнуть и в веществе, и в вакууме, т.е. ему не нужна какая-либо специфическая среда.

Электростатическое поле можно изобразить в виде силовых линий (или линий напряжённости). Силовая линия — это воображаемая линия, проведённая таким образом, что касательная к ней в каждой точке поля указывает направление вектора напряжённости электрического поля в этой точке.

силовые линии или линии напряжённости

Изображение силовых линий

Что такое напряженность поля точечного заряда?

Напряженность поля точечного заряда определяется формулой:

E = (k × |Q|)/r²

k = 9×(10^9) (в единицах Н.м²/Кл²)

Q – заряд, создающий поле,

r – расстояние точки А от заряда Q

Пример:

Вычислите силу и направление электрического поля (E) от точечного заряда 2,00 нКл (нанокулонов) на расстоянии 5 мм от заряда.

Формула: E = (k × |Q|)/r²

Помним, что k = 9×(10^9) (в единицах Н.м²/ Кл²)

E = (9×(10^9) Н.м²/ Кл²) × (2 × 10^(−9) Кл) / ((5 × 10^(−3) м)²) ≈ 7,19 × 10^5 Н/Кл

Вектор напряжённости

Векторы напряженности поля точечного заряда

Векторы напряженности поля точечного заряда можно изобразить таким образом.

Вектор напряжённости в данной точке направлен вдоль прямой, соединяющей точку с зарядом, и важно учитывать, что:

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *