Как определить напряжение на резисторе
Перейти к содержимому

Как определить напряжение на резисторе

  • автор:

Резисторы, ток и напряжение

В этой статье мы рассмотрим резистор и его взаимодействие с напряжением и током, проходящим через него. Вы узнаете, как рассчитать резистор с помощью специальных формул. В статье также показано, как специальные резисторы могут быть использованы в качестве датчика света и температуры.

Представление об электричестве

Новичок должен быть в состоянии представить себе электрический ток. Даже если вы поняли, что электричество состоит из электронов, движущихся по проводнику, это все еще очень трудно четко представить себе. Вот почему я предлагаю эту простую аналогию с водной системой, которую любой желающий может легко представить себе и понять, не вникая в законы.

Аналогия с гидравликой

Обратите внимание, как электрический ток похож на поток воды из полного резервуара (высокого напряжения) в пустой(низкое напряжение). В этой простой аналогии воды с электрическим током, клапан аналогичен токоограничительному резистору.
Из этой аналогии можно вывести некоторые правила, которые вы должны запомнить навсегда:
— Сколько тока втекает в узел, столько из него и вытекает
— Для того чтобы протекал ток, на концах проводника должны быть разные потенциалы.
— Количество воды в двух сосудах можно сравнить с зарядом батареи. Когда уровень воды в разных сосудах станет одинаковым, она перестанет течь, и при разряде аккумулятора, разницы между электродами не будет и ток перестанет течь.
— Электрический ток будет увеличиваться при уменьшении сопротивления, как и скорость потока воды будет увеличиваться с уменьшением сопротивления клапана.

Я мог бы написать гораздо больше умозаключений на основе этой простой аналогии, но они описаны в законе Ома ниже.

Резистор

Аналогия с гидравликой

Резисторы могут быть использованы для контроля и ограничения тока, следовательно, основным параметром резистора является его сопротивление, которое измеряется в Омах. Не следует забывать о мощности резистора, которая измеряется в ваттах (Вт), и показывает, какое количество энергии резистор может рассеять без перегрева и выгорания. Важно также отметить, что резисторы используются не только для ограничения тока, они также могут быть использованы в качестве делителя напряжения для получения низкого напряжения из большего. Некоторые датчики основаны на том, что сопротивление варьируется в зависимости от освещённости, температуры или механического воздействия, об этом подробно написано в конце статьи.

Закон Ома

Аналогия с гидравликой

Понятно, что эти 3 формулы выведены из основной формулы закона Ома, но их надо выучить для понимания более сложных формул и схем. Вы должны быть в состоянии понять и представить себе смысл любой из этих формул. Например, во второй формуле показано, что увеличение напряжения без изменения сопротивления приведет к росту тока. Тем не менее, увеличение тока не увеличит напряжение (хотя это математически верно), потому что напряжение — это разность потенциалов, которая будет создавать электрический ток, а не наоборот (см. аналогию с 2 емкостями для воды). Формула 3 может использоваться для вычисления сопротивления токоограничивающего резистора при известном напряжении и токе. Это лишь примеры, показывающие важность этого правила. Вы сами узнаете, как использовать их после прочтения статьи.

Последовательное и параллельное соединение резисторов

Понимание последствий параллельного или последовательного подключения резисторов очень важно и поможет вам понять и упростить схемы с помощью этих простых формул для последовательного и параллельного сопротивления:

Параллельное соединение

В этом примере схемы, R1 и R2 соединены параллельно, и могут быть заменены одним резистором R3 в соответствии с формулой:

В случае с 2-мя параллельно соединёнными резисторами, формулу можно записать так:

Кроме того, что эту формулу можно использовать для упрощения схем, она может быть использована для создания номиналов резисторов, которых у вас нет.
Отметим также, что значение R3 будет всегда меньше, чем у 2 других эквивалентных резисторов, так как добавление параллельных резисторов обеспечивает дополнительные пути
электрическому току, снижая общее сопротивление цепи.

Последовательное соединение

Последовательно соединённые резисторы могут быть заменены одним резистором, значение которого будет равно сумме этих двух, в связи с тем, что это соединение обеспечивает дополнительное сопротивление тока. Таким образом, эквивалентное сопротивление R3 очень просто вычисляется: R3=R1+R2

В интернете есть удобные он-лайн калькуляторы для расчета последовательного и параллельного соединения резисторов.

Токоограничивающий резистор

Цепь с лампой

Самая основная роль токоограничивающих резисторов — это контроль тока, который будет протекать через устройство или проводник. Для понимания их работы, давайте сначала разберём простую схему, где лампа непосредственно подключена к 9В батареи. Лампа, как и любое другое устройство, которое потребляет электроэнергию для выполнения определенной задачи (например, светоизлучение) имеет внутреннее сопротивление, которое определяет его текущее потребление. Таким образом, отныне, любое устройство может быть заменено на эквивалентное сопротивление.

Эквивалентная схема

Теперь, когда лампа будет рассматриваться как резистор, мы можем использовать закон Ома для расчета тока, проходящего через него. Закон Ома гласит, что ток, проходящий через резистор равен разности напряжений на нем, поделенное на сопротивление резистора: I=V/R или точнее так:
I=(V1-V2)/R
где (V1-V2) является разностью напряжений до и после резистора.

Добавляем токоограничивающий резистор

Теперь обратите внимание на рисунок выше, где добавлен токоограничительный резистор. Он будет ограничивать ток идущий к лампе, как это следует из названия. Вы можете контролировать, количество тока протекающего через лампу, просто выбрав правильное значение R1. Большой резистор будет сильно снижать ток, а небольшой резистор менее сильно (так же, как в нашей аналогии с водой).

Математически это запишется так:

Из формулы следует, что ток уменьшится, если значение R1 увеличится. Таким образом, дополнительное сопротивление может быть использовано для ограничения тока. Однако важно отметить, что это приводит к нагреву резистора, и вы должны правильно рассчитать его мощность, о чем будет написано дальше.

Вы можете воспользоваться он-лайн калькулятором для расчета токоограничительного резистора светодиода.

Резисторы как делитель напряжения

Делитель напряжения

Как следует из названия, резисторы могут быть использованы в качестве делителя напряжения, другими словами, они могут быть использованы для уменьшения напряжения путем деления его. Формула:

Если оба резистора имеют одинаковое значение (R1=R2=R), то формулу можно записать так:

Делитель напряжения

Другой распространенный тип делителя, когда один резистор подключен к земле (0В), как показано на рисунке 6B.
Заменив Vb на 0 в формуле 6А, получаем:

Узловой анализ

Теперь, когда вы начинаете работать с электронными схемами, важно уметь их анализировать и рассчитывать все необходимые напряжения, токи и сопротивления. Есть много способов для изучения электронных схем, и одним из наиболее распространенных методов является узловой, где вы просто применяете набор правил, и рассчитываете шаг за шагом все необходимые переменные.

Упрощенные правила узлового анализа

Определение узла

Узел

Узел – это любая точка соединения в цепи. Точки, которые связаны друг с другом, без других компонентов между ними рассматриваются как единый узел. Таким образом, бесконечное число проводников в одну точку считаются одним узлом. Все точки, которые сгруппированы в один узел, имеют одинаковые напряжения.

Определение ветви

Ветвь

Ветвь представляет собой набор из 1 и более компонентов, соединенных последовательно, и все компоненты, которые подсоединены последовательно к этой цепи, рассматриваются как одна ветвь.

Ветви

Все напряжения обычно измеряются относительно земли напряжение на которой всегда равно 0 вольт.

Ток всегда течет от узла с более высоким напряжением на узел с более низким.

Напряжение на узле может быть высчитано из напряжения около узла, с помощью формулы:
V1-V2=I1*(R1)
Перенесем:
V2=V1-(I1*R1)
Где V2 является искомым напряжением, V1 является опорным напряжением, которое известно, I1 ток, протекающий от узла 1 к узлу 2 и R1 представляет собой сопротивление между 2 узлами.

Точно так же, как и в законе Ома, ток ответвления можно определить, если напряжение 2х соседних узлах и сопротивление известно:
I 1=(V1-V2)/R1

Текущий входящий ток узла равен текущему выходящему току, таким образом, это можно записать так: I 1+ I3=I2

Важно, чтобы вы были в состоянии понимать смысл этих простых формул. Например, на рисунке выше, ток протекает от V1 до V2, и, следовательно, напряжение V2 должно быть меньше, чем V1.
Используя соответствующие правила в нужный момент, вы сможете быстро и легко проанализировать схему и понять её. Это умение достигается практикой и опытом.

Расчет необходимой мощности резистора

При покупке резистора вам могут задать вопрос: «Резисторы какой мощности вы хотите?» или могут просто дать 0.25Вт резисторы, поскольку они являются наиболее популярными.
Пока вы работаете с сопротивлением больше 220 Ом, и ваш блок питания обеспечивает 9В или меньше, можно работать с 0.125Вт или 0.25Вт резисторами. Но если напряжение более 10В или значение сопротивления менее 220 Ом, вы должны рассчитать мощность резистора, или он может сгореть и испортить прибор. Чтобы вычислить необходимую мощность резистора, вы должны знать напряжение через резистор (V) и ток, протекающий через него (I):
P=I*V
где ток измеряется в амперах (А), напряжение в вольтах (В) и Р — рассеиваемая мощность в ваттах (Вт)

На фото предоставлены резисторы различной мощности, в основном они отличаются размером.

Резисторы

Разновидности резисторов

Резисторы могут быть разными, начиная от простых переменных резисторов (потенциометров) до реагирующих на температуру, свет и давление. Некоторые из них будут обсуждаться в этом разделе.

Переменный резистор (потенциометр)

ПотенциометрПотенциометр

На рисунке выше показано схематическое изображение переменного резистора. Он часто упоминается как потенциометр, потому что он может быть использован в качестве делителя напряжения.

Потенциометры

Они различаются по размеру и форме, но все работают одинаково. Выводы справа и слева эквивалентны фиксированной точке (например, Va и Vb на рисунке выше слева), а средний вывод является подвижной частью потенциометра, а также используется для изменения соотношения сопротивления на левом и правом выводах. Следовательно, потенциометр относится к делителям напряжения, которым можно выставить любое напряжение от Va к Vb.
Кроме того, переменный резистор может быть использован как тока ограничивающий путем соединения выводов Vout и Vb, как на рисунке выше (справа). Представьте себе, как ток будет течь через сопротивление от левого вывода к правому, пока не достигнет подвижной части, и пойдет по ней, при этом, на вторую часть пойдет очень мало тока. Таким образом, вы можете использовать потенциометр для регулировки тока любых электронных компонентов, например лампы.

LDR (светочувствительные резисторы) и термисторы

Есть много датчиков основанных на резисторах, которые реагируют на свет, температуру или давление. Большинство из них включаются как часть делителя напряжения, которое изменяется в зависимости от сопротивления резисторов, изменяющегося под воздействием внешних факторов.

Терморезисторы
Терморезисторы

Фоторезистор
Фоторезистор (LDR)

Как вы можете видеть на рисунке 11A, фоторезисторы различаются по размеру, но все они являются резисторами, сопротивление которых уменьшается под воздействием света и увеличивается в темноте. К сожалению, фоторезисторы достаточно медленно реагируют на изменение уровня освещённости, имеют достаточно низкую точность, но очень просты в использовании и популярны. Как правило, сопротивление фоторезисторов может варьироваться от 50 Ом при солнце, до более чем 10МОм в абсолютной темноте.

Делитель напряжения

Как мы уже говорили, изменение сопротивления изменяет напряжение с делителя. Выходное напряжение можно рассчитать по формуле:

Если предположить, что сопротивление LDR изменяется от 10 МОм до 50 Ом, то Vout будет соответственно от 0.005В до 4.975В.

Термистор похож на фоторезистор, тем не менее, термисторы имею гораздо больше типов, чем фоторезисторы, например, термистор может быть либо с отрицательным температурным коэффициентом (NTC), сопротивление которого уменьшается с повышением температуры, или положительным температурным коэффициентом (PTC), сопротивление которого будет увеличиваться с повышением температуры. Сейчас термисторы реагируют на изменение параметров среды очень быстро и точно.

Схемотехническое обозначение резисторов

Схемотехническое обозначение резисторов

Про определение номинала резистора используя цветовую маркировку можно почитать здесь.

Шпакунов А. Опубликована: 2012 г. 0 2

Как найти напряжение на резисторе: пример нескольких подходов и проблем

В этой статье обсуждалось, как легко найти напряжение на резисторе, например, в последовательной комбинации, параллельной комбинации и других комбинациях цепей.

  • Различные законы или правила цепи, такие как закон Кирхгофа, правило деления тока или деления напряжения.
  • Эквивалентное сопротивление требуемой части схемы.
  • Путем определения характеристик или функций всей цепи или ее части.

Как найти напряжение на последовательном резисторе ?

Цепь последовательного резистора имеет только один путь или ветвь для протекания токов цепи. Все резисторы подключены к одному пути или ветви схемы в этом типе соединения схемы.

Падение напряжения на любом последовательное сочетание сопротивлений может варьироваться в зависимости от общего или отдельного номинала резистора.

Предполагая, что к последовательной комбинации подключено более одного резистора, вся комбинация сопротивлений может быть заменена одним резистором эквивалентного сопротивления. Предположим, резистор в последовательная схема имеет одинаковые значения. В этом случае падение напряжения (или падение электрического потенциала) на каждом резисторе можно определить, поскольку ток, протекающий через каждый резистор в цепи, одинаков.

Общее падение напряжения в любой цепи последовательного резистора равно сумме падений напряжения или потенциала на каждом отдельном резисторе в комбинации последовательных цепей.

В каком типе комбинации резисторов общее напряжение цепи делится между различными резисторами последовательная схема комбинация. Величина напряжения на каждом резисторе зависит от значения сопротивления соответствующего резистора, чтобы найти величину тока, протекающего через резистор.

Предположим, что имеется несколько резисторов, соединенных последовательно, и V1, V2, V3 … Вn человек падение напряжения на каждом резисторе в последовательной цепи комбинации, то общее падение напряжения в последовательной цепи можно обозначить как

Чтобы определить общее или общее эквивалентное сопротивление последовательной комбинации n резисторов, используйте формулу:

Где Re — эквивалентное или общее сопротивление комбинации последовательных сопротивлений

R1, R2, R3. . . . .Рn сопротивление отдельных резисторов, включенных в последовательную цепь из n резисторов.

Как найти напряжение на резисторе параллельно ?

Любая цепь может быть образована последовательно или параллельно комбинацией последовательного и параллельная цепь дизайн.

Компания падение напряжения (или электрического потенциала падение) на параллельном резисторе можно легко определить или рассчитать по формуле учитывая характеристики параллельной цепи сопротивления, поскольку падение напряжения или падение электрического потенциала на каждом пути или ветви в параллельной комбинации одинаково. Кредит изображения: Сопротивления находятся в параллельной комбинации. Омегатрон, Резисторы параллельно, CC BY-SA 3.0

Ток, протекающий через каждую ветвь в комбинации параллельных цепей, можно определить по общему сопротивлению на пути или ветви цепи. Общий ток в цепи равен сумме мгновенных токов, протекающих через отдельные ветви в комбинации параллельных цепей. Если к параллельной цепи подключено более одного резистора, то эти резисторы можно заменить только одним резистором эквивалентной величины.

Цепь называется комбинацией параллельных цепей резистора, когда несколько сопротивлений соединяют два узла цепи, обеспечивая несколько путей для протекания тока.

Ток через каждое сопротивление также можно определить по формуле текущее правило делителя поскольку ток во всей цепи разделяется на все ветви в любой параллельной цепи резистора. Общая мощность, рассеиваемая в параллельной комбинации, пропорциональна сумме отдельных мгновенных мощностей, рассеиваемых любым регистром в параллельной комбинации цепей.

Как известно, общее напряжение в комбинации параллельных цепей сопротивления имеет ту же величину, что и постоянное падение электрического потенциала на каждом пути или ветви параллельной цепи сопротивления.

Предположим, что если имеется несколько ветвей в параллельном соединении сопротивлений, то V1, V2, V3, … являются индивидуальным падением напряжения на общем сопротивлении каждой ветви в параллельном соединении.

Затем V1 + V2…. = Вн

Например, предположим, что более одного резистора соединены параллельно. Значения сопротивления могут быть одинаковыми или разными в любом параллельная цепь комбинация. Предположим, что два резистора одинакового сопротивления соединены параллельно друг с другом. В этом случае токи, протекающие через них, будут одинаковыми по величине и с эквивалентным сопротивлением и правилом деления тока. Применив закон Ома, мы можем получить напряжение на каждом сопротивлении параллельно.

Предположим, что два резистора R1 и R2 имеют разные сопротивления, соединенные параллельно. Ток, протекающий через каждое сопротивление, может быть независим друг от друга.

После расчета тока через каждую ветвь по правилу деления тока и нахождения значения эквивалентного сопротивления всей цепи можно рассчитать с помощью закона Ома, можно определить напряжение на каждом сопротивлении.

Уравнение эквивалентного сопротивления в параллельная комбинация с резистором:

Где Re Эквивалент сопротивление параллели Комбинация контуров.

R1, R2, R3… Различные резисторы, соединенные параллельно.

Когда два параллельно соединенных резистора (R) имеют одинаковое значение, эквивалентное сопротивление обоих резисторов составляет половину сопротивления одного резистора (R).

Как найти напряжение на резисторе в цепи RL?

Цепь RL содержит по крайней мере один резистор и катушку индуктивности в схеме параллельно или комбинация серий.

Падение напряжения на резисторе в цепи RL можно получить (или определить), применив закон Кирхгофа. Генерируется дифференциальное уравнение первого порядка, состоящее из падения напряжения на катушке индуктивности и резисторе. Изображение Фото: ea91b3dd, Серия-РЛ, CC BY-SA 3.0

Для любой RL-цепи падение напряжения на резисторе можно определить по протекающему через него току вместе с известным номиналом резистора с помощью закона Ома.

Для цепи серии RL

Для параллельной цепи RL

Как найти максимальное напряжение на резисторе?

Каждый резистор имеет максимальную номинальную мощность, что означает, что это максимальная мощность, которую можно передать конкретному резистору без его повреждения.

Из текущего соотношения мощностей P = I 2 R, где R в этом случае считается постоянным), и путем обеспечения максимальной мощности резистора с учетом максимальной номинальной мощности этого конкретного резистора можно измерить максимальное напряжение на резисторе.

Как найти напряжение на резисторе в комбинированной цепи?

  • Анализ комбинированной цепи возможен путем разрыва возможной комбинации параллельной и последовательной цепей.
  • И после разбивки всей комбинации на разные части анализ или эквивалент этих конкретных частей можно рассчитать отдельно.
  • Затем можно рассчитать общий эквивалент всей комбинации цепей после объединения эквивалентов всех частей (которые рассчитывались отдельно).
  • Применяя закон Ома, закон Кирхгофа, можно определить падение напряжения на любом компоненте цепи.

Как найти среднеквадратичное напряжение на резисторе?

Среднеквадратичное значение напряжения означает среднеквадратичное напряжение Цепь переменного тока, где среднеквадратичное значение обозначает эквивалентную рассеиваемую мощность цепи постоянного тока.

В одном из AC цепи, среднеквадратичное напряжение может быть рассчитано по размаху напряжения цепи переменного тока. Закон Ома, закон Кирхгофа и другие законы цепи могут быть применены к цепи переменного тока для расчета мгновенного напряжения или тока через резистор. Изображение Фото: АланМ1, Синусоидальные напряжения, CC0 1.0

Пусть Vr — мгновенное напряжение на резисторе, тогда Vr = Vp sin ωt.

Ir — мгновенный ток через резистор, тогда Ir = Vr/R = Vr / Sin ωt

Таким образом, напряжение на резисторе можно определить как Vr = Ir sin ωt.

Как найти напряжение на нагрузочном резисторе?

Нагрузочный резистор представляет собой пассивный элемент схемы с двумя выводами, которые имеют некоторое значение сопротивления.

Падение напряжения на сопротивлении нагрузки можно определить, определив комбинацию цепей и применив требуемые законы цепи, такие как закон Ома, закон Кирхгофа и т. д. При необходимости эквивалентную цепь можно создать с помощью простых расчетов.

Как узнать напряжение резисторов

Каждый уважающий себя радио-мастер обязан знать формулы для расчета различных электрических величин. Ведь при ремонте электронных устройств или сборке электронных самоделок очень часто приходится проводить подобные расчеты. Не зная таких формул очень сложно и трудоемко, а порой и невозможно справиться с подобного рода задачей!

Как рассчитать емкость конденсатора, как рассчитать сопротивление резистора или узнать мощность устройства – в этом помогут формулы для радиолюбительских расчетов.

Первое, что нужно усвоить – ВСЕ ВЕЛЕЧИНЫ В ФОРМУЛАХ УКАЗЫВАЮТЬСЯ В АМПЕРАХ, ВОЛЬТАХ, ОМАХ, МЕТРАХ И КИЛОГЕРЦАХ.

Закон Ома.

Известный из школьного курса физики ЗАКОН ОМА. На нем строится большинство расчетов в радиоэлектронике. Закон Ома выражается в трех формулах:

Где: I – сила тока (А), U – напряжение (В), R– сопротивление, имеющееся в цепи (Ом).

Теперь рассмотрим на практике применение формул в радиолюбительских расчетах.

Как рассчитать сопротивление гасящего резистора.

Сопротивление гасящего резистора рассчитывают по формуле: R= U /I

Где: U – излишек напряжения, который необходимо погасить (В), I – ток потребляемый цепью или устройством (А).

Как рассчитать мощность гасящего резистора.

Расчет мощности гасящего резистора проводят по формуле: P=I 2 R

Где I – ток потребляемый цепью или устройством (А), R– сопротивление резистора (Ом).

Как рассчитать напряжение падения на сопротивлении.

Напряжение падения на сопротивлении можно рассчитать по формуле: Uпад . =RI

Где R– сопротивление гасящего резистора (Ом), I– ток потребляемый устройством или цепью (А).

Как рассчитать ток потребляемый устройством или цепью.

Рассчитать ток потребляемый устройством или цепью можно по формуле: I=P/U

Где P– мощность устройства (Вт), U– напряжение питания устройства (В).

Как рассчитать мощность устройства в Вт.

Рассчитать мощность устройства в Вт. можно по формуле: P=IU

Где I– ток потребляемый устройством (А), U– напряжение питания устройства (В).

Как рассчитать длину радиоволны.

Рассчитать длину радиоволны можно по формуле: ƛ=300000/ƒ

Где ƒ-частота в килогерцах, ƛ- длинна волны в метрах.

Как рассчитать частоту радиосигнала.

Частоту радиосигнала можно рассчитать по формуле: ƒ=300000/ƛ

Где ƛ- длинна волны в метрах, ƒ – частота в килогерцах.

Как рассчитать номинальную выходную мощность звуковой частоты.

Рассчитать номинальную выходную мощность звуковоспроизводящего устройства (усилитель, проигрыватель и т.п.) можно по формуле: P=U 2 вых./ R ном .

Где U 2 – напряжение звуковой частоты на нагрузке, R– номинальное сопротивление нагрузки.

И в завершении еще несколько формул. По этим формулам, ведут расчет сопротивления и емкости резисторов и конденсаторов в тех случаях, когда возникает необходимость в параллельном или последовательном их соединении.

Как рассчитать сопротивление двух параллельно включенных резисторов.

Расчет соединенных параллельно двух резисторов производят по формуле: R=R1R2/(R1+R2)

Где R1 и R2 — сопротивление первого и второго резистора соответственно (Ом).

Как рассчитать сопротивление более двух включенных параллельно резисторов.

Расчет сопротивления включенных параллельно более чем двух резисторов проводят по формуле: 1/R=1/R1+1/R2+1/Rn…

Где R1, R2, Rn — сопротивление первого, второго и последующих резисторов соответственно (Ом).

Как рассчитать емкость включенных параллельно двух или более конденсаторов.

Расчет емкости соединенных параллельно нескольких конденсаторов проводят по формуле: C=C1+ C2+Cn

Где C1 , C2 и Cn– емкость первого, второго и последующих конденсаторов соответственно (мФ).

Как рассчитать емкость включенных последовательно двух конденсаторов.

Расчет емкости двух соединенных последовательно конденсаторов проводят по формуле: C=C1 C2/C1+C2

Где C1 и C2 – емкость первого и второго конденсаторов соответственно (мФ).

Как рассчитать емкость включенных последовательно более двух конденсаторов.

Расчет емкости включенных последовательно более чем двух конденсаторов проводят по формуле: 1/C=1/C1+1/C2+1/Cn

Где C1, C2 и Cn — емкость первого, второго и последующих конденсаторов (мФ).

Рекомендуем посмотреть:

Проверка резистора мультиметром

В разъем COM вставляется черный щуп, а в VΩ красный. VΩ — это измерение напряжения и сопротивления.

Переводим мультиметр в режим измерения сопротивления. Диодная прозвонка не поможет. Прозвонка измеряет только падение напряжения, но не сопротивление. Начинаем с малого значения в 200 Ом.

Точка на экране показывает предел измерения. Здесь выбран предел 20 кОм.

Мультиметр показывает 2,7 кОм. При измерениях нельзя касаться одновременно двух металлических оснований щупов. Ваше тело может шунтировать измеряемую деталь, и показания пробора будут ложными.

Неисправный резистор труднее всего диагностировать. Он может быть как пробитым (короткое замыкание) так и с обрывом. Проблема в том, что если вы не знаете маркировку или у вас нет схемы, определить неисправную деталь будет труднее.

Пробитый резистор мультиметр определит как с 0 сопротивлением. А в режиме диодной прозвонки, мультиметр начнет пищать. Однако, если реальное сопротивление резистора было 1 Ом, то прибор может пищать, а в режиме измерения сопротивления будет показывать погрешности.

Тоже самое с резисторами, чьи номиналы сопротивления выше, чем у измеряемого прибора. Можно его проверить и с помощью диодной прозвонки. При исправном резисторе диодная прозвонка не будет пищать, она покажет падение напряжения. Но и тут проблема.

Чем заменить неисправный

Учитывайте цепь, в которой надо поменять деталь. Если SMD резистор, то подойдет только такой же +-5% от номинала. Если это DIP резистор, который стоит в блоке питания, то можно обойтись с большей погрешностью. Проблема в том, что некоторые схемы могут быть рассчитаны на большую погрешность, а схемы для точны приборов нет. SMD компоненты обладают меньшей емкостью и индуктивностью, чем DIP. И в тоже время, SMD не предназначены для высокой мощности.

Еще можно объединить разные резисторы в один нужный, для временного ремонта. Например, резистор мощностью 2 Вт и сопротивлением 10 кОм чернеет и перегревается. Чем можно его заменить? Можно соединить два резистора по 20 кОм 2 Вт параллельно, и получим эквивалентную мощность 4 Вт и сопротивление 10 кОм. А можно и последовательно соединить два по 5 кОм 2 Вт. И получится резистор 10 кОм 4 Вт.

Маркировка резисторов

Не нужно учить или зубрить маркировку. Она пригодится в тех ситуациях, когда на плате резистор сгорел или повредился, а данных о его сопротивлении нет.

DIP маркируются кольцами. У них есть множители и проценты погрешности.

SMD в виду своих габаритов маркируются цифрами.

Как рассчитать падение напряжения на резисторах? Показываю на примерах

Простая электрическая цепь состоит из источника питания, проводников и сопротивлений. На практике же электроцепи редко бывают простыми и включают в себя несколько различных ответвлений и повторных соединений.

В больших масштабах в роли сопротивлений может выступать бытовая техника, осветительные приборы и другие потребители. Давайте разберемся, что происходит с током и напряжением на каждом таком потребителе или резисторе с точки зрения электротехники.

Основы электротехники

Закон Ома гласит, что напряжение равно силе тока умноженной на сопротивление. Это может относиться к цепи в целом, участку цепи или к конкретному резистору. Самая распространенная форма этого закона записывается:

Два типа схем в электротехнике

Последовательная цепь

Здесь ток протекает по одному проводнику. Независимо от того, какие сопротивления встречаются на его пути, просто суммируйте их, чтобы получить общее сопротивление цепи в целом:

Rобщй = R1 + R2 + … + RN (последовательная цепь)

Параллельная цепь

В этом случае проводник разветвляется на два или более других проводника, на каждом из которых имеется своё сопротивление. В этом случае полное сопротивление определяется как:

1/Rобщ = 1/R1 + 1/R2 + … + 1/R N (параллельная цепь)й

Если взглянуть на эту формулу, можно сделать вывод, что добавляя сопротивления одинаковой величины, вы уменьшаете сопротивление цепи в целом. Согласно закону Ома это фактически увеличивает ток!

Если это кажется нелогичным, представьте себе поток автомобилей, которые выезжают с парковки через один шлагбаум и тот же самый поток который выезжает со стоянки, которая имеет несколько выездов. Несколько выездов явно увеличит поток покидающих стоянку машин.

Падение напряжения в последовательной цепи

Если вы хотите найти падение напряжения на отдельных резисторах в цепи, выполните следующие действия:

  1. Рассчитайте общее сопротивление, сложив отдельные значения R.
  2. Рассчитайте ток в цепи, который одинаков для каждого резистора, поскольку в цепи только один проводник.
  3. Рассчитайте падение напряжения на каждом резисторе, используя закон Ома.

Пример : источник питания 24 В и три резистора подключены последовательно, где R1 = 4 Ом, R2 = 2 Ом и R3 = 6 Ом. Чему равно падение напряжения на каждом резисторе?

  • Сначала рассчитаем общее сопротивление: 4 + 2 + 6 = 12 Ом.
  • Далее рассчитываем ток: 24 В / 12 Ом = 2 А
  • Теперь используем ток, чтобы вычислить падение напряжения на каждом резисторе. Используя Закон Ома (U = IR) для каждого резистора, получим значения R1, R2 и R3 равными 8 В, 4 В и 12 В соответственно.

Падение напряжения в параллельной цепи

Пример : источник питания 24 В и три резистора подключены параллельно, где R1 = 4 Ом, R2 = 2 Ом и R3 = 6 Ом, как и в предыдущей схеме. Чему будет равно падение напряжения на каждом резисторе?

В этом случае все проще: независимо от значения сопротивления, падение напряжения на каждом резисторе одинаково. Это означает, что падение напряжения на каждом из них — это просто общее напряжение цепи, деленное на количество резисторов в цепи, или 24 В / 3 = 8 В.

Применяя эти несложные правила вы сможете рассчитать падение напряжения даже в сложной цепи, достаточно лишь разделить её на простые участки.

Как проверить резистор мультиметром

При работе с электрической схемой возникают ситуации, когда необходимо проверить сопротивление резистора. Это может понадобиться при проверке исправности или подгонке его величины под требуемое значение, которое отличается от номинального. Проверять сопротивление можно, не выпаивая резистор, или после его выпайки. В этой статье я расскажу, как правильно проверить резистор мультиметром.

Содержание статьи

Особенности измерения сопротивления резистора мультиметром

Для того, чтобы узнать сопротивление резистора, нужно воспользоваться обычным мультиметром. Принцип измерений основан на законе Ома, который гласит, что сила тока находится в прямой пропорциональной зависимости от напряжения и обратно пропорциональной от сопротивления. Определение сопротивления происходит косвенным путем по формуле R = U/I. То есть, при известных напряжении и силе тока легко определить сопротивление.

Если ранее применялись стрелочные тестеры, то сегодня радиолюбители для проверки исправности резисторов чаще всего используют цифровые мультиметры с круговым переключателем, с помощью которого выставляется тип рабочего режима и диапазон измерений.

Цифровой тестер для проверки резисторов

Для измерения величины R переключатель выставляют в диапазон Ω. В комплекте к такому прибору идет один комплект щупов, имеющих разную расцветку. Принято красный щуп вставлять в отверстие com, а черный – VΩCX+.

Как проверить резистор не выпаивая: визуальная проверка

Процесс проверки резистора на работоспособность непосредственно на плате без полной выпайки является довольно трудоемким занятием, поэтому предварительно можно определить сгоревшую деталь визуально. Прежде всего осматривают корпус на предмет повреждений и сколов, надежности закрепления выводов.

О неисправностях свидетельствуют:

  • Потемнение корпуса. Сгоревший резистор имеет потемневшую поверхность – полностью или частично в виде колечек. Слабое потемнение не свидетельствует о неисправности, а только о перегреве, который не привел к полному выходу детали из строя.
  • Появление характерного запаха.
  • Стирание маркировки.
  • Наличие на плате сгоревших дорожек

Если условия позволяют, то неисправный резистор выпаивают, а на его место впаивают новый с таким же номиналом.

Внимание! Осмотр не гарантирует точного определения исправности, резистор может выглядеть как новый даже при оборванном контакте.

Подготовка мультиметра к проведению измерений: какие установить настройки

Перед измерениями прибор готовят к работе. Для этого его включают и концы щупов закорачивают между собой. Если на дисплее появляются нули, то прибор исправен и в цепи нет обрыва. На дисплее могут отражаться не нули, а доли Ома.

Подготовка прибора к проверке

При разомкнутых щупах на исправном мультиметре отображается цифра 1 и диапазон измерений. Кабельные шнуры подключают в соответствии с тем режимом, который вам необходим, – «Прозвонка» или «Измерение».

Как прозвонить резистор

Режим «Прозвонка» (имеется не во всех тестерах) применяется, чтобы убедиться, что в цепях, идущих через резистор или параллельных ему, отсутствует короткое замыкание. Для его установки регулятор поворачивают к значку диода. Если между точками установки щупов есть токопроводящая цепь, то через динамик генерируется звуковой сигнал.

Этот режим применяют только для резисторов, номинал которых не превышает 70 Ом. Для деталей с большим номиналом его использовать не имеет смысла, поскольку сигнал настолько слаб, что его можно не услышать.

Как определить номинал резистора по маркировке

Для определения работоспособности желательно знать номинал. Как определить номинал резистора по цветовой маркировке, мы подробно рассказали в этой статье.

Немного дополним информацию о способах маркировки SMD резисторов. Из-за малого размера на них практически невозможно нанести традиционную цветовую маркировку, поэтому предусмотрена особая система идентификации. В обозначение входят: 3 или 4 цифры, 2 цифры и буква.

В первой системе первые две или три цифры характеризуют численное значение резистора, а последняя является показателем множителя, обозначающим степень, в которую возводят 10 для получения окончательного результата. Если сопротивление ниже 1 Ом, то для определения местонахождения запятой служит символ R. Например, сопротивление 0,05 Ом выглядит как 0R05.

Высокоточные (прецизионные) резисторы имеют очень малые размеры, поэтому нуждаются в компактной маркировке. Она состоит из трех цифр – первые две являются кодом, а третья – множителем. Каждому коду соответствует трехзначное значение сопротивления, определяемое по таблице. Такая маркировка выполняется в соответствии со стандартом EIA-96, разработанным для резисторов с допуском по сопротивлению не выше 1%.

Таблица кодов для прецизионных резисторов

Код Значение Код Значение Код Значение Код Значение Код Значение Код Значение
01 100 17 147 33 215 49 316 65 464 81 681
02 102 18 150 34 221 50 324 66 475 82 698
03 105 19 154 35 226 51 332 67 487 83 715
04 107 20 158 36 232 52 340 68 499 84 732
05 110 21 162 37 237 53 348 69 511 85 750
06 113 22 165 38 243 54 357 70 523 86 768
07 115 23 169 39 249 55 365 71 536 87 787
08 118 24 174 40 255 56 374 72 549 88 806
09 121 25 178 41 261 57 383 73 562 89 825
10 124 26 182 42 267 58 392 74 576 90 845
11 127 27 187 43 274 59 402 75 590 91 866
12 130 28 191 44 280 60 412 76 604 92 887
13 133 29 196 45 287 61 422 77 619 93 909
14 137 30 200 46 294 62 432 78 634 94 931
15 140 31 205 47 301 63 443 79 649 95 953
16 143 32 210 48 309 64 453 80 665 96 976

Проверка сопротивления постоянного резистора

После подготовки прибора к работе приступают к измерениям. Для этого выпаивают одну из ножек сопротивления. Один из щупов подсоединяется к запаянной ножке, второй – к свободной. Если резистор исправен, то на дисплее появится показание, соответствующее номинальному значению в пределах допуска.

Как проверяют сопротивление резистора

При обрыве цепи на экране горит «1».

Внимание! Регулятором перед измерением выставляют переключатель на ближайшее к номиналу значение большего достоинства. Если регулятором была выполнена настройка на значение, меньшее, чем номинал детали, то на дисплее результаты измерений отображаться не будут, поскольку срабатывает внутренняя блокировка тестера.

Если с одной стороны от резистора в схеме впаян конденсатор, то ножку с этой стороны условно можно считать свободно висящей. И в этом случае можно провести измерения, не выпаивая резистор.

СМД-резисторы – компоненты поверхностного монтажа, измерение сопротивления которых осложняется их малыми размерами. Их обычно проверяют, как и все постоянные резисторы, выпайкой одной ножки.

Проверка переменного резистора

Проверка без выпайки из схемы переменных резисторов, имеющих как минимум три ножки, более сложная, по сравнению с проверкой постоянного резистора.

Наиболее легким вариантом является положение резистора в самом начале схемы, поскольку одна из крайних «ножек» подключается через емкость. Поэтому по постоянному току приравнивается к свободно висящей. Такой способ измерения позволяет определить общее сопротивление, которое присутствует между крайними контактами.

Провести точные измерения сопротивления резистора позволяет его выпайка из схемы. Аналогично выпаянной, проверяется и новая деталь. Этапы измерений:

Падение напряжения

В книгах по электротехнике или описаниях радиосхем можно встретить фразу: «падение напряжения на резисторе или диоде». А почему резистор вообще вызывает падение напряжения и что это на самом деле означает? Давайте разбираться…

Электрические заряды не перемещаются по проводникам добровольно, им нужен какой-то стимул для создания электрического тока (потока). В мире электричества стимулом является напряжение – чем оно выше, тем большая сила толкает электроны, заставляя их двигаться быстрее и создавать больший ток. Но электрического напряжения как бы и нет. Это не физическое явление само по себе и не потенциальное. Напряжение и потенциал – это математические понятия, изобретенные людьми, которые не могли видеть энергию глазами, но хотели как-то ее описать.

Электрический ток – это не электроны, бесцельно перетекающие от одного полюса батареи к другому. Суть в энергии, которую они могут дать этим движением. И хотя в этом здесь важнее всего энергия, о напряжении и потенциале почему-то обычно пишут больше. Это просто отличное и очень четкое описание этой энергии. Зная о напряжении, сразу понимаем, с чем имеем дело и сколько из этого можно извлечь.

Можно предположить, что батарея на 1,5 вольта никогда не будет выделять такую энергию как удар молнии с напряжением в несколько миллионов вольт. Также знаем, что небольшой светодиод лучше не вставлять в электрическую розетку, потому что 220 В сразу его сожгет. Такое напряжение отлично подойдет для питания обычной лампочки, которая не загорится при подключении к обычному аккумулятору АА.

Это соотношение напряжения и энергии чрезвычайно простое – больше вольт означает больше энергии, которую несет с собой каждый отдельный электрон. Коэффициент преобразования прост – например, напряжение 220 В равно 220 Дж / Кл (джоуль в кулон), то есть один кулон несет энергию 220 джоулей. А поскольку мы знаем, что 1 кулон равен примерно 6 триллионам электронов, можем сказать, что при напряжении 220 В поток из 6 триллионов электронов через лампочку даст ей ровно 220 Дж энергии. Хотя конечно взаимосвязь между напряжением и энергией идет намного глубже, чем простое преобразование единиц.

Когда падает напряжение?

Казалось бы, раз в розетке 220 В, а батарея это 3 В, эти значения постоянные. А вот и нет. Напряжение падает, и попробуем понять, почему это происходит.

Существует три основных причины падения напряжения:

  1. Истощение источника – если имеем дело с источником напряжения, который может быть исчерпан (например, аккумулятор или батарейка), это истощение проявляется в падении напряжения. И неудивительно – напряжение описывает энергию элемента, поэтому при потреблении этой энергии уровень напряжения также должен падать. Это явление тесно связано с так называемым внутренним сопротивлением аккумулятора.
  2. Слишком большая нагрузка на источник – выключите все приборы в доме и измерьте мультиметром напряжение в розетке. Затем включите электродуховку, чайник и стиральную машину и снова измерьте напряжение – разница в обоих измерениях составит несколько вольт. Это связано с упомянутым ранее внутренним сопротивлением.
  3. Падение напряжения на потребителе – два предыдущих примера говорят о ситуации, когда источник напряжения «перестает работать». А вот падение напряжения на потребителе – это совсем другая тема. У нас может быть лучший в мире источник напряжения, который практически невозможно просадить, и все же каждый подключенный к нему потребитель вызовет так называемые «падение напряжения».

Объясним почему на основе электрических цепей. Например есть батарея, несколько резисторов, лампочка и описание: Напряжение батареи составляет 9 В. Падение напряжения на каждом резисторе составляет 2 В. Падение напряжения через лампочку 1 В. Но почему резистор и лампочка вообще вызывают падение напряжения?

Стрелки «падение напряжения» всегда указывают в направлении, противоположном напряжению аккумулятора.

Падение напряжения лампочки

Давайте возьмем 3-х вольтовую батарею и подключим ее к маленькой лампочке, которая точно соответствует этому напряжению. Лампочка будет светиться благодаря электричеству, идущему от батареи. Чтобы узнать, сколько тока проходит через него, можем либо подключить амперметр, либо измерить сопротивление лампочки. Предположим оно составляет 60 Ом, следовательно, применив закон Ома, получим значение тока 0,05 А.

То что в такой схеме светит лампочка, не должно удивлять. Есть напряжение, значит есть энергия. Электричество течет, поэтому энергия поступает в лампочку. Колба получает энергию, поэтому светит и нагревается.

Когда цепь замкнута, то есть создается проводящий путь между отрицательной и положительной клеммами батареи, именно здесь начинает течь ток. Электроны в цепи начинают ускоряться и толкать друг друга, поскольку каждый из них хочет достичь положительного полюса. Обычно они могут добраться туда за доли секунды, но есть что-то, что их останавливает. Речь идет о препятствии в виде лампочки.

Нить лампы накаливания – большое препятствие для ускорения электронов, несущих энергию. Не случайно она изготовлена из чрезвычайно тонкой и плохо проводящей вольфрамовой проволоки. Втекая в нить, электроны сжимаются и сталкиваются с ее атомами и даже друг с другом. Эти столкновения заставляют электроны на мгновение замедляться и терять энергию.

Атомы нити накала все больше и больше вибрируют, и нить нагревается до белизны. Вот так лампочка начинает светиться за счет маленьких электронов. Далее они с помощью остатка своих сил и их коллег, давящих сзади, наконец достигают положительного вывода батареи, где могут спокойно завершить свою миссию.

Весь процесс – это преобразование одного типа энергии в другой. Химическая энергия хранящаяся в батарее, преобразуется в электроны кинетической энергии, отправляемые в цепь. При столкновении с атомами нити та же кинетическая энергия преобразуется в тепловую энергию, количество которой настолько велико, что нить нагревается и светится – вылетают фотоны. Таким образом, лампочка светит потому что получает энергию от входящих электронов.

Когда у электронов много энергии, это высокое напряжение, а если мало энергии, напряжение низкое. Итак, поскольку нить накала – это место, где энергия электронов уменьшается, это означает что также должно быть место, где каким-то образом падает напряжение.

Напряжение батареи составляет 3 В. Электроны движутся от отрицательного полюса, потенциал которого обычно принимается равным 0 В, к положительному полюсу с потенциалом +3 В. Если подключим вольтметр на обе стороны батареи, он покажет разность потенциалов 3 В.

Если бы нить накала была достаточно большой, чтобы могли приложить один из щупов вольтметра посередине ее длины, оказалось бы что напряжение составляет только половину напряжения батареи, то есть 1,5 В. Поскольку электроны, протекающие через нить, отдают ей всю свою энергию, логично что преодолев половину ее длины, они отдадут ей ровно половину этой энергии. Половина энергии = половина напряжения, показанного на вольтметре.

Если продвигать щуп дальше, напряжение будет падать, пока не окажется за нитью накала, и измеритель покажет значение 0 В. То есть вначале напряжение составляло 3 В. Перемещая щуп вольтметра по нити накала, оно постепенно упало до 0 В. Таким образом можем сказать, что падение напряжения на лампочке составляет 3 В. На «физическом» уровне говорят, что количество энергии, подводимой к лампочке, составляет ровно 3 джоуля на кулон.

Падение напряжения на нескольких резисторах

Убедились, что одна лампочка может поглотить всю энергию, выделяемую электронами, что приводит к падению напряжения, равному напряжению батареи. Но что, если в цепи две или более лампочки одна за другой? Поскольку одна лампочка «съедает» всю энергию, останется ли что-нибудь для других?

Напряжение нити составляет 1,5 вольта. Что, если разрежем нить в этой точке и соединим обе части проволокой? Что-нибудь изменится?

Теоретически, вместо одной лампочки у нас теперь две с сопротивлением по 30 Ом. Но на практике ничего не изменилось. После прохождения половины исходной нити накала, то есть первых 30 Ом, напряжение составляет 1,5 В, и этот кусок вставленного провода не добавляет здесь ничего нового.

Конечно нить можно разделить на любое количество частей и ситуация останется прежней. Итак, давайте изменим подход. Оставьте нить накала целиком, чтобы она имела сопротивление 60 Ом, и положите рядом другую такую ??же. Как будет себя вести схема? Поскольку знаем, что 60 Ом может забрать всю энергию, останется ли от нее для второй нити накала? Измеряем напряжение между ними.

Хотя каждая нить имеет по 60 Ом, по какой-то причине они решили разделить энергию поровну. Как это возможно? Раньше одна 60-омная нить накала потребляла всю энергию, но теперь она отдает половину другой. Откуда такое сотрудничество?

Все происходит из-за того, что закон Ома действительно сложно обмануть. Он не влияет на сопротивление лампы или напряжение, подаваемое батареей, но может управлять током, протекающим в цепи. Когда была одна лампочка, она забирала всю энергию, а ток, протекающий в цепи, составлял 0,05 А. После вставки второй лампочки общее сопротивление цепи увеличивается в два раза, и снова применяя закон Ома находим, что текущее значение уменьшается до значения всего 0,025 А. Это в корне меняет ситуацию.

Во-первых, удвоение тока означает, что электроны текут в цепи вдвое медленнее. А поскольку они текут вдвое медленнее, сила столкновения с атомами нити в два раза меньше. В результате электроны больше не оставляют всю энергию в нити 60 Ом, а только ее половину. С одной стороны это хорошо, потому что на прохождение второй лампочки остается еще половина энергии. Обратной стороной этого является то, что обе лампочки будут светить заметно меньше.

Подтвердить слова можно измерив напряжение за первой лампочкой. Тогда заметим, что это всего лишь 1,5 В, а одна лампочка «забирала» полные 3 В.

Если бы было три лампочки, каждая из них получала бы 1 вольт, или 1/3 всей энергии. Четыре лампочки – это деление энергии на четыре и так далее. Такое идеально равномерное распределение энергии, конечно имеет место только тогда, когда лампочки имеют одинаковое сопротивление. Если бы в цепи были лампочки с сопротивлением 30 Ом и 60 Ом, то падение напряжения было бы пропорционально распределено – 1 В на первой и 2 В на второй.

Подведем итоги

В общем падение напряжения – одна из самых важных проблем в электротехнике, и ее следует хорошо понимать. Итак, давайте подытожим полученные знания в нескольких моментах:

  • Напряжение определяет количество энергии каждого электрона – чем выше напряжение, тем больше энергии будет обеспечивать каждый электрон. Но будьте осторожны, потому что хотя энергии может быть слишком мало, она также может быть слишком большой. Слишком высокое напряжение – основная сила, разрушающая хрупкую электронику.
  • Напряжение падает только тогда, когда течет электричество – падение напряжения отражает потребляемую энергию, и энергия может быть использована только тогда, когда ее физически доставляют электроны. Следовательно, падение напряжения происходит только тогда, когда цепь замкнута и течет ток.
  • Энергия распределяется между всеми приемниками тока – один резистор берет на себя все – два и более должны уже делиться. Их сопротивление определяет, сколько энергии они получают. Большее сопротивление означает большее падение напряжения, меньшее сопротивление означает меньшее потребление энергии.
  • Провода также вызывают падение напряжения – все кабели имеют определенное сопротивление, поэтому их правильный выбор так важен для электриков. Дело в том, что падение напряжения на кабелях должно быть как можно меньше, чтобы энергия могла доходить до потребителей без больших потерь.

Иногда люди не совсем понимают, что отвечает за движение электронов к батарее, так как напряжение между ней и нитью накала равно 0. Поскольку у электронов остаточная сила, это также означает, что у них осталась некоторая кинетическая энергия. Электроны, которые прижимаются к передним в цепной реакции, также должны иметь некоторую оставшуюся энергию. Значит ли это, что напряжение, которое потребляют нити, не будет равно напряжению аккумулятора?

Дело в том, что утверждения «Между лампочкой и аккумулятором напряжение 0 В» и «После выхода из лампочки у них еще есть энергия» немного спорны. Если есть энергия, почему напряжение 0 В? Объясняем: лампочка забирает энергию у электронов, потому что у нее есть сопротивление, но и провода от батареи к лампочке тоже. Анализируя всю схему выясняется, что лампочка забирает 99,8% энергии, провод с одной стороны – 0,1% энергии, а провод с другой стороны – тоже 0,1% энергии.

Теперь: электроны выходят из батареи. Дойдя до лампочки, они уже потеряли 0,1% из-за проводников. В лампочке они теряют еще 99,8% энергии, а оставив ее, у них остаются последние 0,1% энергии, чтобы покрыть другую половину цепи и достичь батареи. И хотя измеритель показывает что там уже 0 В, если бы он был очень точным, это означало бы, что на самом деле существует какое-то напряжение в 0,0001 В. Это остаточная энергия, которая осталась чтобы пересечь последний участок провода и достичь батареи.

Итак, подведем итог – лампочка никогда не будет потреблять ровно столько напряжения, сколько обеспечивает батарея, потому что это напряжение также съедается проводами. В действительности сопротивление проводов по сравнению с лампочкой настолько низкое, что для простоты предполагаем, что оно равно 0 В. Если лампочка не находится в нескольких километрах от батареи, когда сопротивление лампы провода будут играть важную роль.

Уверены, что теперь тема падения напряжения перестанет быть для вас малопонятной, а если что осталось неясным – вопросы как обычно на форум.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *