Стабилитроны и стабисторы. Устройство, принцип работы, основные параметры
Сразу хочу сказать, что здесь никакой воды про стабилитрон, и только нужная информация. Для того чтобы лучше понимать что такое стабилитрон, диод зенера,защитный диод,стабисторы,стабистор,презиционные стабилитроны , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база
Существуует большое многообразие полупроводниковых приборов, — Диоды Шоттки, диоды Ганна, стабилитрон ы, светодиоды, фотодиоды, туннельные диоды и еще много разных типов и областей применения.
Полупроводниковые диоды, для которых характерна слабая зависимость напряжения от тока в области электрического пробоя при обратном смещении, называют стабилитронами.
Стабилитроном называется полупроводниковый диод , напряжение на котором в области электрического пробоя при обратном смещении слабо зависит от тока в заданном его диапазоне, и который предназначен для стабилизации уровня напряжения в схеме. Стабилитроном — радиокомпонент, конструктивно напоминающий диод, но кардинально отличающийся от него характером функционирования. Ключевым элементом так же, как и в обычном полупроводниковом вентиле, является полупроводниковый p-n-переход. И реакции обоих элементов на подачу обратного напряжения схожи – они оба запираются. Разница заключается в том, что пробой p-n-переходной зоны, который наступает при достижении обратным смещением некоего критического значения и выводит диод из строя, для стабилитрона является рабочим режимом.
Исходным материалом служит кремний, обеспечивающий малые обратные токи, широкий диапазон температур, высокую крутизну ВАХ в области напряжения стабилизации. Принцип работы стабилитронов основан на использовании свойства p-n-перехода при электрическом пробое сохранять практически постоянную величину напряжения в определенном диапазоне изменения обратного тока. Механизм пробоя может быть туннельным, лавинным или смешанным.
Основа функциональности стабилитрона состоит в том, что при довольно больших изменениях обратного тока напряжение на элементе остается практически неизменным. Другими словами, насколько бы существенным ни было обратное смещение, радиокомпонент будет поддерживать постоянный уровень выходной разности потенциалов. Эта стабилизированное напряжение может использоваться в качестве опорного, что и находит применение в реальных радиоэлектронных устройствах, критичных к электрическим характеристикам сигнала.
У полупроводникового стабилитрона (рис. 11.4, а) — в рабочем режиме используется обратная ветвь его ВАХ (рис. 11.4, б), причем на участке, соответствующем электрическому пробою.
Рис. 11.4. Полупроводниковый стабилитрон:
а — условное изображение; б — ВАХ стабилитрона
Туннельный и лавинный пробой
Пробой p-n-перехода, при котором работают стабилитроны, может быть лавинным или туннельным. Они являются электрическими и носят обратимый характер. То есть при отключении обратного смещения физико-химические свойства полупроводников восстанавливаются, и диод продолжает исполнять свои функции. Однако в случае стабилитронов условия возникновения пробоя создаются и поддерживаются искусственно. В основе лавинного и туннельного пробоя лежат одноименные квантовые эффекты, наблюдаемые в кристаллической структуре полупроводника при возбуждении электрического поля. При разной природе и механизмах данных процессов их последствия одинаковы – электроны приобретают энергию, достаточную для прохождения через p-n-переход. Возникает пробой, и через диод начинает протекать обратный ток. Именно в этом режиме и работает стабилитрон. При этом существует различие между радиокомпонентами, в которых используются разные эффекты. Стабилитроны, функционирующие при лавинном пробое, оперируют разностями потенциалов свыше 7 Вольт. В элементах, рассчитанных на напряжение стабилизации 3-7 Вольт, провоцируется туннельный пробой. Для стабилизации более низких разностей потенциалов применяются стабистор ы , о которых мы расскажем ниже.
Классификация стабилитронов
В настоящее время выпускается широкая номенклатура стабилитронов, но вся их масса классифицируется по функциональным характеристикам и конструкции. В зависимости от параметров данные радиокомпоненты подразделяются на следующие классы:
- прецизионные;
- двуханодные;
- быстродействующие.
Прецизионные отличаются высокой точностью стабилизации напряжения . Об этом говорит сайт https://intellect.icu . Отклонения стабилизируемой разности потенциалов на выходе такой детали не превышают 0,0001%. Точность сильно зависит от времени жизни прецизионного стабилитрона и температуры полупроводника. В связи с этим в отношении этих радиокомпонентов введены эксплуатационные нормы, которые должны постоянно контролироваться в процессе использования аппаратуры. Двуханодный стабилитрон исполняет функцию двух стабилитронов, включенных встречно. Это позволяет элементу обрабатывать сигналы и с одинаковой эффективностью обрабатывать напряжения разной полярности. Такая радиодеталь изготавливается в едином технологическом цикле, когда на одном кристалле кремния выращивается два встречных p-n-перехода, но, в принципе, роль двуханодного радиокомпонента могут играть и два дискретных стабилитрона, взаимно соединенных катодами. И, наконец, стабилитроны третьего типа – быстродействующие – отличаются пониженной барьерной емкостью, вследствие чего сокращается продолжительность переходных процессов, протекающих в полупроводнике. Эти радиокомпоненты являются наилучшим решением для работы с импульсными сигналами. Конструктивная особенность данных элементов состоит в небольшой ширине p-n-перехода, которая обеспечивается применением особой технологии легирования полупроводника.
Стабистор
Немного по-другому функционируют радиокомпоненты, называемые стабисторами, о которых мы говорили выше. Они исполняют ту же функцию, то есть стабилизируют выходное напряжение, но являются низковольтными. Обычные стабилитроны не способны оперировать малыми разностями потенциалов. При напряжениях до 3 Вольт не возникает условий ни для лавинного, ни для туннельного пробоя p-n-перехода. Для стабилизации меньших напряжений прибегают к другому решению, а именно к использованию не обратного, а прямого смещения. Установлено, что в сильно легированном p-n-переходе дырки и электроны рекомбинируют таким образом, что при значительном прямом токе наблюдается эффект стабилизации выходного напряжения на уровне 2,5-3 Вольт. Это обуславливает ключевое технологическое различие стабилитронов и стабисторов. Вторые предназначены для работы только в низковольтных радиосхемах.
Устройство маломощного стабилитрона
с гибкими выводами в пластиковом (вверху) и стеклянном (внизу) корпусах
Рис Устройство маломощного стабилитрона с гибкими выводами в пластиковом корпусе
Рис. Устройство маломощного стабилитрона с гибкими выводами в стеклянном корпусе
У низковольтных стабилитронов (с низким сопротивлением базы) более вероятен туннельный пробой. У стабилитронов с высокоомной базой пробой носит лавинный характер. Для обеспечения электрического пробоя при относительно небольших обратных напряжениях напряженность электрического поля в p-n-переходе должна быть значительно выше, чем у обычных диодов, поэтому при изготовлении стабилитронов используют материалы с высокой концентрацией примесей.
Основные параметры стабилитронов
1. Uст 2. Дифференциальное сопротивление Rдиф = 0.5 – 200 Ом 3. Iст min ток стабилизации минимальный 4. Iст max ток стабилизации максимальный Imax≈ Pmax/Uст В качестве стабилитронов применяют кремниевые диоды, обладающие большой устойчивостью к тепловому пробою. Кремниевые стабилитроны используются для стабилизации напряжений источников питания, а также для фиксации уровней U в различных схемах Группы маломощных диодов в виде диодных матриц и диодных сборок используются в логических устройствах дешифраторах и других элементах ВТ. Стабилитрон в схему стабилизации обычно включают так, чтобы p-n-переход был смещен в обратном направлении. Для стабилизации малых напряжений U = 1 — 1.5B используют стабисторы
Стабистор принцип работы и основные характеристики
Стабистор, как и обычный диод, работает на прямой ветви вольт-амперной характеристики смотри рисунок ниже. Он открывается при незначительном прямом напряжении Uпр и через него начинает идти нарастающий ппрямой ток Iпр. Прямая ветвь ВАХ стабистора идетт почти параллельно оси прямому току; при значительном изменении этого значения через стабистор падение напряжения на нем изменяется не существенно. Это свойство стабистора применяется для стабилизации напряжения.
На второй части рисунка приведена схема возможного практического использования стабистора. Принципиально такое устройство работает так же, как со стабилитроном, только к стабистору прикладывается прямое напряжение.
Вот наиболее важные характеристики стабисторов: напряжение стабилизации Uст, ток стабилизации Iст, минимальный ток стабилизации Iст мин и максимальный ток стабилизации Iст.макс.
Параметр Uст — это то падение напряжения, которое образуется между выводами стабистора в рабочем режиме
Минимальный ток стабилизации Iст.мин — наименьший прямой ток, при котором крутизна ВАХ резко снижается. С уменьшением этого тока стабистор перестанет стабилизировать напряжение.
Максимально допустимый ток стабилизации Iст.макс — это максимальный ток идущий через стабистор (не путайте главное с током, идущем в электрической цепи, питающейся от стабилизатора напряжения), при котором температура его p-n перехода не превышает допустимой. Превышение этого параметра приведет к тепловому пробою p-n перехода прибора и, естественно, к выходу стабистора из строя.
Отечественные стабисторы: КС107А — Uст = 0,7 В; КС113А — Uст = 1,3 В; КС119А — Uст = 1,9 В; Д220С — Uст = 0,59 В
Презиционные и двунаправленные стабилитроны
В прецизионных стабилитронах используют три последовательно соединенных p-n-перехода, один из которых – стабилизирующий, два других – термокомпенсирующие. Если стабилизирующий переход работает в режиме лавинного пробоя, то с увеличением температуры напряжение на нем растет. Одновременно прямое напряжение на двух термокомпенсирующих переходах уменьшается, поэтому общее напряжение на стабилитроне меняется незначительно.
Для обеспечения стабилизации двуполярных напряжений стабилитроны общего назначения включают последовательно, а прецизионные – параллельно.
Двуханодные стабилитроны имеют структуру, формируемую диффузией примесей в пластину n-кремния одновременно с двух сторон. Образующиеся при этом два p-n-перехода включены встречно. Внешние выводы имеют только анодные p-области структуры. При подаче на стабилитрон напряжения любой полярности один переход работает в режиме электрического пробоя, а другой является термокомпенсирующим
Как проверить стабилитрон
Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.
Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.
Ну что же, настало время опытов. В схемах стабилитрон включается последовательно с резистором:
где Uвх — входное напряжение, Uвых.ст. — выходное стабилизированное напряжение
Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения. Здесь все элементарно и просто:
Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.
Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл
Итак, собираем схемку. Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем блок питания, а справа замеряем мультиметром полученное напряжение:
Теперь внимательно следим за показаниями мультиметра и блока питания:
Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт! Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.
Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне 5,17 Вольт! Изумительно!
Еще добавляем… Входное напряжение 20 Вольт, а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт — это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.
Области применения стабилитронов и стабисторов
Хорошие стабилизирующие свойства стабилитронов и стабисторов обуславливают основную сферу применения этих радиокомпонентов – создание фиксированного питающего и опорного напряжения в различных радиоэлектронных устройствах. На первом месте по распространенности стоят стабилитроны, используемые в источниках питания. Применение этих специализированных диодов обеспечивает стабильные выходные параметры питающего напряжения и одновременно упрощает схему. В блоках питания с повышенными требованиями по точности выходных характеристик находят применение прецизионные стабилитроны. Эти элементы устанавливаются в высокоточной измерительной аппаратуре и аналого-цифровых преобразователях. Двуханодные стабилитроны используются в подавителях импульсных помех. Данные радиокомпоненты в реальных схемах нередко сочетаются с импульсными диодами. Быстродействующие стабилитроны в сочетании с СВЧ-диодами применяются в аппаратуре, работающей на сверхвысоких частотах – передатчиках, радиолокаторах и так далее.
Защитные стабилитроны в «умном» МДП-транзисторе семейства Intelligent Power Switch компании International Rectifier
Основная область применения стабилитрона — стабилизация постоянного напряжения источников питания. В простейшей схеме линейного параметрического стабилизатора стабилитрон выступает одновременно и источником опорного напряжения, и силовым регулирующим элементом. В более сложных схемах стабилитрону отводится только функция источника опорного напряжения, а регулирующим элементом служит внешний силовой транзистор .
Прецизионные термокомпенсированные стабилитроны и стабилитроны со скрытой структурой широко применяются в качестве дискретных и интегральных источников опорного напряжения (ИОН), в том числе в наиболее требовательных к стабильности напряжения схемах измерительных аналого-цифровых преобразователей. C середины 1970-х годов и по сей день (2012 год) стабилитроны со скрытой структурой являются наиболее точными и стабильными твердотельными ИОН. Точностные показатели лабораторных эталонов напряжения на специально отобранных интегральных стабилитронах приближаются к показателям нормального элемента Вестона[38].
Особые импульсные лавинные стабилитроны («подавители переходных импульсных помех», «супрессоры», «TVS-диоды») применяются для защиты электроаппаратуры от перенапряжений, вызываемых разрядами молний и статического электричества, а также от выбросов напряжения на индуктивных нагрузках. Такие приборы номинальной мощностью 1 Вт выдерживают импульсы тока в десятки и сотни ампер намного лучше, чем «обычные» пятидесятиваттные силовые стабилитроны. Для защиты входов электроизмерительных приборов и затворов полевых транзисторов используются обычные маломощные стабилитроны. В современных «умных» МДП-транзисторах защитные стабилитроны выполняются на одном кристалле с силовым транзистором.
В прошлом стабилитроны выполняли и иные задачи, которые впоследствии потеряли прежнее значение:
- Ограничение, формирование, амплитудная селекция и детектирование импульсов. Еще в эпоху электронных ламп кремниевые стабилитроны широко применялись для ограничения размаха импульсов и преобразования сигналов произвольной формы в импульсы заданной полярности. С развитием интегральных технологий эту функцию взяли на себя устройства на быстродействующих компараторах, а затем цифровые процессоры обработки сигналов.
- Стабилизация напряжения переменного тока также сводилась к ограничению размаха синусоидального напряжения двусторонним стабилитроном. При изменении входного напряжении амплитуда выходного напряжения поддерживалась постоянной, а его действующее значение лишь незначительно отставало от действующего значения входного напряжения.
- Задание напряжений срабатывания реле . При необходимости установить нестандартный порог срабатывания реле последовательно с его обмоткой включали стабилитрон, доводивший порог срабатывания до требуемого значения. С развитием полупроводниковых переключательных схем сфера применения реле сузилась, а функцию управления реле взяли на себя транзисторные и интегральные пороговые схемы.
- Задание рабочих точек усилительных каскадов. В ламповых усилителях 1960-х годов стабилитроны использовались как замена RC-цепочек автоматического смещения. На нижних частотах звукового диапазона и на инфразвуковых частотах расчетные емкости конденсаторов таких цепей становились неприемлемо велики, поэтому стабилитрон стал экономичной альтернативой дорогому конденсатору.
- Межкаскадный сдвиг уровней. Сдвиг уровней в ламповых усилителях постоянного тока обычно осуществлялся с помощью газонаполненных стабилитронов или обычных неоновых ламп. C изобретением полупроводниковых стабилитронов они стали применяться вместо газонаполненных. Аналогичные решения применялись и в транзисторной аппаратуре, но были быстро вытеснены более совершенными схемами сдвига уровней на транзисторах.
- Стабилитроны с высоким ТКН использовались как датчики температуры в мостовых измерительных схемах. По мере снижения напряжений питания и потребляемых мощностей эту функцию приняли на себя прямо смещенные диоды, транзисторные PTAT-цепи и интегральные схемы на их основе.
В среде моделирования SPICE модель элементарного стабилитрона используется не только по прямому назначению, но и для описания режима пробоя в моделях «реальных» биполярных транзисторов. Стандартная для SPICE модель транзистора Эберса—Молла режим пробоя не рассматривает
Основные характеристики стабилитрона
Чтобы подобрать диод Зенера под существующие цели, надо знать несколько важных параметров. Эти характеристики определят пригодность выбранного прибора для решения поставленных задач.
Номинальное напряжение стабилизации
Первый параметр зенера, на который надо обратить внимание при выборе – напряжение стабилизации, определяемое точкой начала лавинного пробоя. С него начинают выбор прибора для использования в схеме. У разных экземпляров ординарных стабилитронов, даже одного типа, напряжение имеет разброс в районе нескольких процентов, у прецизионных разница ниже. Если номинальное напряжение неизвестно, его можно определить, собрав простую схему. Следует подготовить:
- балластный резистор в 1…3 кОм;
- регулируемый источник напряжения;
- вольтметр (можно использовать тестер).
Надо поднимать напряжение источника питания с нуля, контролируя по вольтметру рост напряжения на стабилитроне. В какой-то момент он остановится, несмотря на дальнейшее увеличение входного напряжения. Это и есть фактическое напряжение стабилизации. Если регулируемого источника нет, можно использовать блок питания с постоянным выходным напряжением заведомо выше Uстабилизации. Схема и принцип измерения остаются теми же. Но есть риск выхода полупроводникового прибора из строя из-за превышения рабочего тока.
Стабилитроны применяются для работы с напряжениями от 2…3 В до 200 В. Для формирования стабильного напряжения ниже данного диапазона, используются другие приборы – стабисторы, работающие на прямом участке ВАХ.
Полупроводниковые стабилитроны
Стабилитрон относится к одному из применяемых радиоэлектронных элементов. Каждый более-менее качественный блок питания содержит узел стабилизации напряжения, которое может изменяться при изменении сопротивления нагрузки либо при отклонении входного напряжения от номинального значения.
Стабилизация напряжения выполняется главным образом с целью обеспечения нормального режима работы остальных радиоэлементов устройства, например микросхем, транзисторов, микроконтроллеров и т.п.
Стабилитроны широко используются в маломощных блоках питания либо в отдельных его узлах, мощность которых редко превышает десятки ватт.
Главное преимущество стабилитронов – их малая стоимость и габариты, поэтому они до сих пор не могут вытисниться интегральными стабилизаторами напряжения типа LM7805 или 78L05 и т.п.
Стабилитрон очень похож на диод, поскольку его полупроводниковый кристалл помещен в аналогичный корпус.
Условное графическое обозначение стабилитрона на чертежах электрических схем также похоже на обозначение диода, только со стороны катода добавлена короткая горизонтальная черточка, направленная в сторону анода.
Принцип работы стабилитрона
Рассмотрим принцип работы стабилитрона на примере схемы его включения и вольт-амперной характеристике. Для выполнения своей основной функции стабилитрон VD соединяется последовательно с резистором Rб и вместе они подключаются к источнику входного нестабилизированного напряжения Uвх. Уже стабилизированное выходное напряжение Uвых снимается только с выводов 2, 3 VD. Поэтому нагрузка Rн подключается к соответствующим точкам 2 и 3. Как видно из схемы, VD и Rб образуют делитель напряжения. Только сопротивление стабилитрон имеет не постоянно значение и называется динамическим, поскольку зависит от величины электрического тока, протекающего через полупроводниковый прибор.
Величина напряжения Uвх, подаваемого на стабилитрон с резисторов должна быть выше на минимум на пару вольт выходного напряжения Uвых, в противном случае полупроводниковый прибор VD не откроется и не сможет выполнять свою основную функцию.
Допустим, в какой-то произвольный момент времени на выходах 1 и 3 значение Uвх начало возрастать. В схеме начнут протекать следующие процессы. С ростом напряжения согласно закону Ома начнет возрастать ток, назовем его входным током Iвх. С увеличением ток возрастет падение напряжения на резисторе Rб, а на VD она останется неизменным (это будет пояснено далее на характеристике), поэтому и Uвых останется на прежнем уровне. Следовательно, прирост входного напряжения упадет или погасится на резисторе Rб. Поэтому Rб называют гасящим или балластным.
Теперь, допустим, изменилась нагрузка, например, снизилось сопротивление Rн, соответственно возрастет и ток Iн. В этом случае снизится ток, протекающий стабилитрон Iст, а Iвх останется практически без изменений.
Работа схемы стабилизатора
Электрические устройства, которые не чувствительны небольшим перепадам напряжения питания могут обойтись обычным блоком питания. А более капризные приборы уже не смогут работать без стабильного питания, и могут попросту сгореть. Поэтому есть необходимость во вспомогательной схеме выравнивания напряжения на выходе.
Рассмотрим схему работы простого стабилизатора, выравнивающего постоянное напряжение, на транзисторе и стабилитроне, который играет роль основного элемента, определяет, выравнивает напряжение на выходе блока питания.
Перейдем к конкретному рассмотрению электрической схемы обычного стабилизатора для выравнивания постоянного напряжения.
- Имеется трансформатор для понижения напряжения с переменным напряжением на выходе 12 В.
- Такое напряжение поступает на вход схемы, а конкретнее, на диодный выпрямительный мост, а также фильтр, выполненный на конденсаторе.
- Выпрямитель, выполненный на основе диодного моста, преобразует переменный ток в постоянный, однако получается скачкообразная величина напряжения.
- Полупроводниковые диоды должны работать на наибольшей силе тока с резервом 25%. Такой ток может создавать блок питания.
- Обратное напряжение не должно снижаться меньше, чем выходное напряжение.
- Конденсатор, играющий роль своеобразного фильтра, выравнивает эти перепады питания, преобразуя форму напряжения в практически идеальную форму графика. Емкость конденсатора должна находиться в пределах 1-10 тысяч мкФ. Напряжение должно быть тоже выше входной величины.
Советуем изучить — Регулирование частоты в энергосистеме
Нельзя забывать о следующем эффекте, что после электролитического конденсатора (фильтра) и диодного выпрямительного моста переменное напряжение повышается на величину около 18%. А значит, что в результате получается не 12 В на выходе, а около 14,5 В.
Вольт-амперная характеристика стабилитрона
Вольт-амперная характеристика (ВАХ) стабилитрона аналогично ВАХ диода и имеет две ветви: прямую и обратную. Прямая ветвь является рабочей для диода, а обратная ветвь характеризует работу стабилитрона, поэтому он включается в электрическую цепь в обратном направлении (катодом к плюсу, а анодом к минусу) по сравнению с диодом. Поэтому стабилитрон называю опорным диодом, а источник питания с данным полупроводниковым элементом называют опорным источником напряжения. Такой терминологий будем пользоваться и мы.
На обратной ветви вольт-амперной характеристик опорного диода выделим две характерные точки 1 и 3. Точка 1 отвечает минимальному значению тока стабилизации, который находится в пределах единиц миллиампер. Если ток, протекающий через стабилитрон, будет ниже точки 1, то он не сможет выполнять свои функции (не откроется). В случае превышения тока выше точки 3 опорный диод перегреется и выйдет из строя. Поэтому оптимальной точкой в большинстве случае будет точка посредине обратной ветви ВАХ, то есть точка 2. Тогда при изменении тока в широких пределах (смотрите ось Y) точка 2 будет изменять свое положение, перемещаясь вверх или вниз по обратной ветви, а напряжение будет изменяться незначительно (смотрите ось X).
Что это такое
В литературе дается следующее определение:
Стабилитрон или диод Зенера это прибор, предназначенный для стабилизации напряжения в электрических цепях. Работает при обратном смещении в режиме пробоя. До наступления пробоя имеет высокое сопротивление перехода. Протекающие при этом токи незначительны. Широко используются в электронике и в электротехнике.
Если говорить простыми словами, то стабилитрон предназначен для стабилизации напряжения в электронных схемах. В цепь он включается в обратном направлении. При достижении напряжения, превышающего напряжение стабилизации, происходит обратимый электрический пробой pn-перехода. Как только оно понизится до номинала, пробой прекращается, и стабилитрон закрывается.
Советуем изучить — Защитные проводники в электроустановках (PE-проводники)
На нижеприведенном рисунке представлена графическая схема для чайников, позволяющая понять принцип действия диода Зенера.
Основными преимуществами является невысокая стоимость и небольшие габариты. Промышленность выпускает устройства с напряжением стабилизации о 1,8 — 400 В в металлических, керамических или корпусах из стекла. Это зависит от мощности, на которую рассчитан стабилитрон и других характеристик.
Для стабилизации высоковольтного напряжения от 0,4 до нескольких десятков кВ, применяются стабилитроны тлеющего разряда. Они имеют стеклянный корпус и до появления полупроводниковых приборов применялись в параметрических стабилизаторах.
Аналогичными свойствами обладают приборы, меняющие свое сопротивление в зависимости от приложенного напряжения – это варисторы. Между стабилитроном и варистором разница заключается в том, что последний обладает двунаправленными симметричными характеристиками. А это значит, что в отличие от диодов, он не имеет полярности. Кратко варистор предназначен для обеспечения защиты от перенапряжения электронных схем.
Для предохранения аппаратуры от скачков напряжения применяют супрессоры. Между стабилитроном и супрессором отличия заключаются в том, что первый постепенно изменяет свое внутреннее сопротивление в зависимости от приложенного напряжения. Второй при достижении определенного порога напряжения открывается сразу. Т.е. его внутреннее сопротивление стремится к нулю. Основное назначение супрессоров — защита аппаратуры от скачков питания.
На рисунке ниже представлено условно графическое обозначение (УГО по ГОСТ) полупроводника и его вольт-амперная характеристика.
На рисунке цифрами указан участок 1-2. Он является рабочим и предназначен для стабилизации напряжения в цепях. Если прибор включить в прямом направлении, то он будет работать как обычный диод.
Рекомендуем посмотреть следующий видеоролик, чтобы подробнее изучить принцип действия стабилитрона, обозначение элементов и область их применения.
Встречное, параллельное, последовательное соединение стабилитронов
Для повышения напряжения стабилизации можно последовательно соединять два и более стабилитрона. Например на нагрузке нужно получить 17 В, тогда, в случае отсутствия нужного номинала, применяют опорные диоды на 5,1 В и на 12 В.
Параллельное соединение применяется с целью повышения тока и мощности.
Также стабилитроны находят применение для стабилизации переменного напряжения. В этом случае они соединяются последовательно и встречно.
В один полупериод переменного напряжения работает один стабилитрон, а второй работает как обычный диод. Во второй полупериод полупроводниковые элементы выполняют противоположные функции. Однако в таком случае форма выходного напряжения будет отличается от входного и выглядит как трапеция. За счет того, что опорный диод будет отсекать напряжение, превышающее уровень стабилизации, верхушки синусоиды будут срезаться.
Маркировка стабилитронов
Маркировка наносится на корпус стабилитрона в виде цифр и букв (или буквы). Различают принципиально два разных типа маркировки. Стабилитрон в стеклянном корпусе имеет привычную для нас маркировку, непосредственно обозначающую номинальное напряжение стабилизации. Цифры могут быть разделены буквой V, выполняющую роль десятичной точки. Например, 5V1 означает 5,1 В.
Менее понятный способ маркировки состоит из четырех цифр и буквы в конце. Если вы не опытный радиолюбитель, то без даташита никак не обойтись. Для примера расшифруем параметры опорного диода серии 1N5349B. Больше всего нас интересует первый столбец, в котором приведено номинальное напряжение 12 В. Второй столбец – номинальное значения ток – 100 мА.
Катод стабилитрона любого типа обозначается кольцом черного или синего цвета, которое наносится на корпус со стороны соответствующего вывода.
Маркировка SMD стабилитронов
Наибольшее распространение получили опорные диоды в стеклянном корпусе и в пластмассовом корпусе с тремя выводами. Маркировка SMD стабилитрона в стеклянном корпусе состоит из цветного кольца, цвет которого обозначает параметры данного полупроводникового прибора.
Если вам встретился SMD стабилитрон с тремя выводами, то следует знать, что один вывод – это «пустышка», то есть он не задействован и применяется лишь для надежной фиксации элемента на печатной плате после пайки. Анод и катод такого экземпляра проще всего определить с помощью мультиметра.
Схема для проверки
Рассмотрим еще одну простейшую схему для определения напряжения стабилизации, которая состоит из:
- Регулируемого блока питания. Постоянное напряжение должно изменяться плавно потенциометром от 0 до 50 В (чем выше максимальное напряжение тем больший диапазон элементов вы сможете проверить). Это позволит проверить практически любой маломощный стабилитрон.
- Набор токоограничивающих резисторов. Обычно они имеют номинал 1 Ком, 2,2 Ком и 4,7 Ком, но их может быть и больше. Все зависит от напряжения и тока стабилизации.
- Вольтметр, можно использовать обыкновенный мультиметр.
- Колодка с подпружиненными контактами. Она должна иметь несколько ячеек, чтобы была возможность подключать полупроводники с различными корпусами.
Для проверки подключают стабилитрон по вышеприведенной схеме и постепенно поднимают напряжение на источнике питания от 0. При этом контролируют показания вольтметра. Как только напряжение на элементе перестанет расти, независимо от его увеличения на блоке питания, это и будет стабилизацией по напряжению.
Если на элементе есть маркировка, то полученные при измерении данные сверяют с таблицей в справочнике по параметрам.
Отметим, что стабилитроны могут выпускаться в различном исполнении. Например, КС162 производятся в керамических корпусах, КС133 в стеклянных, Д814 и Д818 в металлических.
Приведем характеристики некоторых распространенных отечественных стабилитронов:
- КС133а напряжение стабилизации равно 3,3 В, выпускаются в стеклянном корпусе;
- КС147а поддерживает напряжение на уровне 4,7 В, корпус стеклянный;
- КС162а– 6,2 В, корпус из керамики;
- КС175а – 7,5 В, имеет керамический корпус;
- КС433а – 3,3 В, выпускают в металлическом корпусе;
- КС515а – 15 В, корпус из металла;
- КС524г – в керамическом корпусе с напряжением 24 В;
- КС531в – 31 В, керамический корпус;
- КС210б – напряжение стабилизации 10 В, корпус из керамики;
- Д814а – 7-8,5 В, в металлическом корпусе;
- Д818б – 9 В, металлический корпус;
- Д817б – 68 В, в корпусе из металла.
Для проверки стабилитрона с большими напряжениями стабилизации применяется другая схема, которая представлена на рисунке снизу.
Проверка производится аналогично описанному способу. Похожие приборы выпускаются китайскими производителями.
Советуем изучить — Проверка и регулировка реле в процессе эксплуатации
Однако, можно собрать простейшую схему для проверки стабилитронов с применением мультиметра. Это хорошо показано на видео далее.
Следует предупредить, что показанную на видео электрическую схему применять не рекомендуется, т.к. она небезопасна и требует соблюдения техники безопасности. В противном случае можно получить травму (в лучшем случае).
Мощность рассеивания стабилитрона
Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения Rб и Iн:
Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.
Как проверить стабилитрон
Проверить стабилитрон на предмет исправности довольно просто и быстро можно с помощью простейшего мультиметра. Для этого мультиметр следует перевести в режим «прозвонка», как правило, обозначенный знаком диода. Затем, если положительным щупом мультиметра прикоснуться анода, а отрицательным – катода, то на дисплее измерительного прибора мы увидим некоторое значение падения напряжения на pn-переходе. Поскольку к полупроводниковому прибору приложено прямое напряжение (смотрите прямую ветвь вольт-амперной характеристики), то опорный диод откроется.
Теперь, если щупы мультиметра поменять местами, тем самым приложить к выводам полупроводникового прибора обратное напряжение (смотрите обратную ветвь ВАХ), то он окажется заперт и не будет проводить ток. На дисплее измерительного прибора отобразится единица, обозначающая бесконечно высокое сопротивление.
Если в обеих случаях мультиметр покажет единицу или будет звенеть, то стабилитрон непригоден.
Помогите проекту. Поделитесь с друзьями.
Стабилитрон. Принцип работы, вольт-амперная характеристика.
После изучения диодов, их принципа работы и устройства самым логичным шагом будет рассмотреть и еще один полезнейший элемент многих электрических схем – стабилитрон! Также его называют диодом Зенера, в честь физика Кларенса Зенера, которому и принадлежит гордое звание изобретателя стабилитрона. В 1930-х годах Зенер изучал явления электрического пробоя в диэлектриках, результаты его исследований и легли в основу работы диодов Зенера.
Стабилитрон – это диод, который предназначен для работы на обратной ветви вольт-амперной характеристики, в режиме пробоя. Как вы помните, рабочая область обычного диода находится наоборот на прямой ветви. Я уже упомянул термин “пробой”, так что давайте разберемся подробнее с этим явлением…
Итак, различают три типа или механизма пробоя:
- туннельный
- лавинный
- тепловой
Именно первый тип пробоя и открыл К. Зенер в своих работах. Туннельный пробой связан, в свою очередь, с туннельным эффектом, то есть явлением проникновения электронов через узкий потенциальный барьер на границе p-n перехода. Это приводит к тому, что электроны начинают проходить из p-области в область n-типа, что, в свою очередь, вызывает резкое возрастание обратного тока через p-n переход.
Лавинный пробой связан с тем, что движущиеся в сильном электрическом поле частицы могут приобретать кинетическую энергию, величины которой достаточно для ударной ионизации молекул или атомов материала. То есть электрон или дырка, разогнавшись, сталкиваются с атомом вещества, в результате чего образуется пара противоположно заряженных частиц. Все это становится возможным, если кинетическая энергия этих частиц до столкновения имела достаточную величину. Так вот, в итоге, образовавшиеся частицы (либо одна из них) также начинают разгоняться под действием сильного поля и также врезаются в атом материала
Стабилитрон | Принцип работы и маркировка стабилитронов
Стабилитрон относится к одному из применяемых радиоэлектронных элементов. Каждый более-менее качественный блок питания содержит узел стабилизации напряжения, которое может изменяться при изменении сопротивления нагрузки либо при отклонении входного напряжения от номинального значения.
Стабилизация напряжения выполняется главным образом с целью обеспечения нормального режима работы остальных радиоэлементов устройства, например микросхем, транзисторов, микроконтроллеров и т.п.
Стабилитроны широко используются в маломощных блоках питания либо в отдельных его узлах, мощность которых редко превышает десятки ватт.
Главное преимущество стабилитронов – их малая стоимость и габариты, поэтому они до сих пор не могут вытисниться интегральными стабилизаторами напряжения типа LM7805 или 78L05 и т.п.
Стабилитрон очень похож на диод, поскольку его полупроводниковый кристалл помещен в аналогичный корпус.
Условное графическое обозначение стабилитрона на чертежах электрических схем также похоже на обозначение диода, только со стороны катода добавлена короткая горизонтальная черточка, направленная в сторону анода.
Принцип работы стабилитрона
Рассмотрим принцип работы стабилитрона на примере схемы его включения и вольт-амперной характеристике. Для выполнения своей основной функции стабилитрон VD соединяется последовательно с резистором Rб и вместе они подключаются к источнику входного нестабилизированного напряжения Uвх. Уже стабилизированное выходное напряжение Uвых снимается только с выводов 2, 3 VD. Поэтому нагрузка Rн подключается к соответствующим точкам 2 и 3. Как видно из схемы, VD и Rб образуют делитель напряжения. Только сопротивление стабилитрон имеет не постоянно значение и называется динамическим, поскольку зависит от величины электрического тока, протекающего через полупроводниковый прибор.
Величина напряжения Uвх, подаваемого на стабилитрон с резисторов должна быть выше на минимум на пару вольт выходного напряжения Uвых, в противном случае полупроводниковый прибор VD не откроется и не сможет выполнять свою основную функцию.
Допустим, в какой-то произвольный момент времени на выходах 1 и 3 значение Uвх начало возрастать. В схеме начнут протекать следующие процессы. С ростом напряжения согласно закону Ома начнет возрастать ток, назовем его входным током Iвх. С увеличением ток возрастет падение напряжения на резисторе Rб, а на VD она останется неизменным (это будет пояснено далее на характеристике), поэтому и Uвых останется на прежнем уровне. Следовательно, прирост входного напряжения упадет или погасится на резисторе Rб. Поэтому Rб называют гасящим или балластным.
Теперь, допустим, изменилась нагрузка, например, снизилось сопротивление Rн, соответственно возрастет и ток Iн. В этом случае снизится ток, протекающий стабилитрон Iст, а Iвх останется практически без изменений.
Немного подробнее о модуле и принципе его работы
Это полупроводниковый диод, который имеет свойство выдавать определенное значение напряжения вне зависимости от подаваемого на него тока. Это утверждение не является до конца верным абсолютно для всех вариантов, потому что разные модели имеют разные характеристики. Если подать очень сильный ток на не рассчитанный для этого модуль SMD (или любой другой тип), он попросту сгорит. Поэтому подключение выполняется после установки токоограничивающего резистора в качестве предохранителя, значение выходного тока которого равняется максимально возможному значению входного тока на стабилизатор.
Схемы подключения стабилитрона и стабистора в схему
Он очень похож на обыкновенный полупроводниковый диод, но имеет отличительную черту – его подключение выполняется наоборот. То есть минус от источника питания подается на анод стабилитрона, а плюс – на катод. Таким образом, создается эффект обратной ветви, который и обеспечивает его свойства.
Похожим модулем является стабистор – он подключается напрямую, без предохранителя. Используется в тех случаях, когда параметры входного электричества точно известны и не колеблются, а на выходе получается тоже точное значение.
Вольт-амперная характеристика стабилитрона
Вольт-амперная характеристика (ВАХ) стабилитрона аналогично ВАХ диода и имеет две ветви: прямую и обратную. Прямая ветвь является рабочей для диода, а обратная ветвь характеризует работу стабилитрона, поэтому он включается в электрическую цепь в обратном направлении (катодом к плюсу, а анодом к минусу) по сравнению с диодом. Поэтому стабилитрон называю опорным диодом, а источник питания с данным полупроводниковым элементом называют опорным источником напряжения. Такой терминологий будем пользоваться и мы.
На обратной ветви вольт-амперной характеристик опорного диода выделим две характерные точки 1 и 3. Точка 1 отвечает минимальному значению тока стабилизации, который находится в пределах единиц миллиампер. Если ток, протекающий через стабилитрон, будет ниже точки 1, то он не сможет выполнять свои функции (не откроется). В случае превышения тока выше точки 3 опорный диод перегреется и выйдет из строя. Поэтому оптимальной точкой в большинстве случае будет точка посредине обратной ветви ВАХ, то есть точка 2. Тогда при изменении тока в широких пределах (смотрите ось Y) точка 2 будет изменять свое положение, перемещаясь вверх или вниз по обратной ветви, а напряжение будет изменяться незначительно (смотрите ось X).
Обозначения работы элемента электросхемы
Схематическое обозначение стабилитрона
Поскольку стабилитрон представляет собой специальный диод, то его обозначение не отличается от них. Схематически smd обозначается следующим образом:
Стабилитрон, как и диод, имеет в своем составе катодную и анодную часть. Из-за этого имеется прямое и обратное включение данного элемента.
На первый взгляд, включение такой диод имеет неправильное, ведь он должен подключаться «наоборот». В ситуации подачи на смд обратного напряжения наблюдается явление «пробоя». В результате чего напряжение между его выводами остается неизменным. Поэтому он должен быть последовательно подключен к резистору с целью ограничения проходящего через него тока, что будет обеспечивать падение «лишнего» напряжения от выпрямителя.
Обратите внимание! Каждый диод, предназначенный для стабилизации напряжения, обладает своим напряжением «пробоя» (стабилизации), а также имеет свой рабочий ток.
Из-за того, что каждый стабилитрон обладает такими характеристиками, для него можно рассчитать номинал резистора, который будет подключаться с ним последовательно. У импортных стабилитронов их напряжение стабилизации представлено в виде маркировки, нанесенной на корпусе (стеклянном или нет). Обозначение такого диода smd всегда начинается с BZY… или BZX…, а их напряжение пробоя (стабилизации) имеет маркировку V. Например, обозначение 3V9 расшифровывается как 3.9 вольта.
Обратите внимание! Минимальное напряжение для стабилизации у таких элементов составляет 2 В.
Встречное, параллельное, последовательное соединение стабилитронов
Для повышения напряжения стабилизации можно последовательно соединять два и более стабилитрона. Например на нагрузке нужно получить 17 В, тогда, в случае отсутствия нужного номинала, применяют опорные диоды на 5,1 В и на 12 В.
Параллельное соединение применяется с целью повышения тока и мощности.
Также стабилитроны находят применение для стабилизации переменного напряжения. В этом случае они соединяются последовательно и встречно.
В один полупериод переменного напряжения работает один стабилитрон, а второй работает как обычный диод. Во второй полупериод полупроводниковые элементы выполняют противоположные функции. Однако в таком случае форма выходного напряжения будет отличается от входного и выглядит как трапеция. За счет того, что опорный диод будет отсекать напряжение, превышающее уровень стабилизации, верхушки синусоиды будут срезаться.
Как отличить стабилизационный диод от обычного полупроводника
Очень часто люди задаются вопросом, как можно отличить стабилитрон от стандартного полупроводника, ведь, как мы выяснили раньше, оба этих элемента имеют практически идентичное обозначение на электросхеме и могут выполнять схожие функции. Самым простым способом отличить стабилизационный полупроводник от обычного является использование схемы приставки к мультиметру. С его помощью можно не только отличить оба элемента друг от друга, но и выявить напряжение стабилизации, которое характерно для данного смд (если оно, конечно, не превышает 35В). Схема приставки мультиметра является DC-DC преобразователем, в которой между входом и выходом имеется гальваническая развязка. Эта схема имеет следующий вид:
Схема приставки мультиметра
В ней генератор с широтно-импульсной модуляцией выполняется на специальной микросхеме МС34063, а для создания гальванической развязки между измерительной частью схемы и источником питания контрольное напряжение следует снимать с первичной обмотки трансформатора. Для этой цели имеется выпрямитель на VD2. При этом величина для выходного напряжения или тока стабилизации устанавливается путем подбора резистора R3. На конденсаторе С4 происходит выделение напряжения примерно в 40В. При этом проверяемый смд VDX и стабилизатор для тока А2 будут формировать параметрический стабилизатор. Мультиметр, который подключили к выводам Х1 и Х2, будет измерять на данном стабилитроне напряжение. При подключении катода к «-«, а анода к «+» диода, а также к несимметричному смд мультиметра, последний покажет незначительное напряжение. Если подключать в обратной полярности (как на схеме), то в ситуации с обычным полупроводником прибор будет регистрировать напряжение около 40В.
Обратите внимание! Для симметричного смд напряжение пробоя будет появляться при наличии любой полярности подключения.
Здесь трансформатор Т1 будет намотан на торообразном ферритовом сердечнике с внешним диаметром в 23 мм. Такая обмотка 1 будет содержать 20 витков, а вторая обмотка — 35 витков провода ПЭВ 0,43. При этом важно при намотке укладывать виток к витку. Следует помнить, что первичная обмотка идет на одной части кольца, а вторая – на другой. Проводя настройку прибора, подключите резистор вместо smd VDX. Этот резистор должен иметь номинал 10 кОм. А сопротивление R3 нужно подбирать для того, чтобы добиться напряжения в 40В на конденсаторе С4 Вот так можно выяснить, стабилитрон у вас или обычный диод.
Маркировка стабилитронов
Маркировка наносится на корпус стабилитрона в виде цифр и букв (или буквы). Различают принципиально два разных типа маркировки. Стабилитрон в стеклянном корпусе имеет привычную для нас маркировку, непосредственно обозначающую номинальное напряжение стабилизации. Цифры могут быть разделены буквой V, выполняющую роль десятичной точки. Например, 5V1 означает 5,1 В.
Менее понятный способ маркировки состоит из четырех цифр и буквы в конце. Если вы не опытный радиолюбитель, то без даташита никак не обойтись. Для примера расшифруем параметры опорного диода серии 1N5349B. Больше всего нас интересует первый столбец, в котором приведено номинальное напряжение 12 В. Второй столбец – номинальное значения ток – 100 мА.
Катод стабилитрона любого типа обозначается кольцом черного или синего цвета, которое наносится на корпус со стороны соответствующего вывода.
Общая часть
Коммутации обмоток реле в цепях постоянного тока релейной защиты и автоматики обычно сопровождается значительными перенапряжениями, которые могут представлять опасность для используемых в этих цепях полупроводниковых приборов. Для защиты транзисторов, работающих в режиме переключения, стали применяться защитные цепочки (рис.1), которые присоединяются параллельно обмотке коммутируемого реле (рис.2 – здесь обмотка коммутируемого реле представлена схемой замещения – индуктивностью L, активной составляющей сопротивления R и результирующей межвитковой емкостью С) и снижают перенапряжения, возникающие между зажимами обмотки 1 и 2.
Рис.1 — Защитные цепочки, применяемые для снижения коммутационных перенапряжений
Рис.2 — Защита транзистора VT с помощью защитной цепочки
Однако в настоящее время определению параметров защитных цепочек и оценке их влияния на работу устройств релейной защиты не удаляется достаточного внимания. Кроме того, при разработке и проектировании устройств релейной защиты с применением полупроводниковых диодов, подверженных воздействию коммутационных перенапряжений, защита диодов во многих случаях не предусматривается.
Это приводит к довольно частому выходу диодов из строя и отказу или неправильному действию устройства. Примером цепей, где на диод могут воздействовать перенапряжения, служит схема, изображенная на рис.3. Здесь разделяющий диод VD оказывается под воздействием коммутационного перенапряжения и может быть поврежден при размыкании контактов KI и замкнутом положении контактов K2.Для защиты этого диода к зажимам 1 и 2 обмотки реле К3 должна быть присоединена защитная цепочка. Для защиты диодов могут быть использованы те же защитные средства, которые применяется для защиты транзисторов (рис.1).
Рис.3 — Цепи, в которых разделяющий диод VD может подвергаться воздействию коммутационных перенапряжений
Маркировка SMD стабилитронов
Наибольшее распространение получили опорные диоды в стеклянном корпусе и в пластмассовом корпусе с тремя выводами. Маркировка SMD стабилитрона в стеклянном корпусе состоит из цветного кольца, цвет которого обозначает параметры данного полупроводникового прибора.
Если вам встретился SMD стабилитрон с тремя выводами, то следует знать, что один вывод – это «пустышка», то есть он не задействован и применяется лишь для надежной фиксации элемента на печатной плате после пайки. Анод и катод такого экземпляра проще всего определить с помощью мультиметра.
Что такое стабилитрон, где используется и какие бывают
Стабилитрон, или диод Зенера (по имени американского ученого, первым изучившим и описавшим свойства этого полупроводникового прибора), представляет собой обычный диод с p-n переходом. Его особенность – работа на участке характеристики с отрицательным смещением, то есть, когда напряжение прикладывается в обратной полярности. Используется такой диод в качестве самостоятельного стабилизатора, поддерживающего напряжение потребителя постоянным вне зависимости от изменения тока нагрузки и колебаний входного напряжения. Также узлы на стабилитронах применяются в качестве источников опорного напряжения для других стабилизаторов с развитой схемой. Реже диод с обратным включением используется в качестве элемента формирования импульсов или защитного ограничителя от перенапряжений.
Существуют обычные стабилитроны и двуханодные. Двуханодный стабилитрон — это два диода, включенные встречно в одном корпусе. Его можно заменить двумя отдельными приборами, включив их по соответствующей схеме.
Мощность рассеивания стабилитрона
Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения Rб и Iн:
Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.
Содержание
- 1. Общая часть
- 2. Определение параметров защитных цепочек
- 2.1 Диод-стабилитрон
- 2.2 Диод-резистор
- 2.3 Защитный диод
- 2.4 Выбор защитной RC – цепочки
- 2.5 Выбор диодов защитных цепочек
- 3. Влияние защитных цепочек на увеличение токовой нагрузки на коммутируемые контакты
- 4. Защитные цепочки, рекомендуемые для применения
- 5. Способ снижения коммутационных перенапряжений при использовании транзистора в качестве переключающего элемента
- 6. Примеры выбора защиты диодов от коммутационных перенапряжений
- 7. Выбор защитной цепочки
- 8. Выбор параметров защитных цепочек
- 8.1 Выбор диодов
- 8.2 Выбор резисторов
- 9. Список литературы
Как проверить стабилитрон
Проверить стабилитрон на предмет исправности довольно просто и быстро можно с помощью простейшего мультиметра. Для этого мультиметр следует перевести в режим «прозвонка», как правило, обозначенный знаком диода. Затем, если положительным щупом мультиметра прикоснуться анода, а отрицательным – катода, то на дисплее измерительного прибора мы увидим некоторое значение падения напряжения на pn-переходе. Поскольку к полупроводниковому прибору приложено прямое напряжение (смотрите прямую ветвь вольт-амперной характеристики), то опорный диод откроется.
Теперь, если щупы мультиметра поменять местами, тем самым приложить к выводам полупроводникового прибора обратное напряжение (смотрите обратную ветвь ВАХ), то он окажется заперт и не будет проводить ток. На дисплее измерительного прибора отобразится единица, обозначающая бесконечно высокое сопротивление.
Если в обеих случаях мультиметр покажет единицу или будет звенеть, то стабилитрон непригоден.
Увеличение мощности параметрического стабилизатора
Максимальная выходная мощность простейшего параметрического стабилизатора напряжения зависит от значений Iст.max и Pmax стабилитрона. Мощность параметрического стабилизатора может быть увеличена, если в качестве регулирующего компонента использовать транзистор, который будет выступать в качестве усилителя постоянного тока.
Параллельный стабилизатор
Схема ПСН с параллельным включением транзистора
Схема представляет собой эмиттерный повторитель, параллельно транзистору VT включено сопротивление нагрузки RH. Балластный резистор R1 может быть включён как в коллекторную, так ив эмиттерную цепи транзистора. Напряжение на нагрузке равно
Схема работает следующим образом. При увеличении тока через резистор RH, а соответственно и напряжения (U1 = UCT) на выходе стабилизатора, происходит увеличение напряжения база-эмиттер (UEB) и коллекторного тока IK, так как транзистор работает в области усиления. Возрастание коллекторного тока приводит к увеличению падения напряжения на балластном резисторе R1, что компенсирует рост напряжения на выходе стабилизатора (U1 = UCT). Поскольку ток IСТ стабилитрона является одновременно базовым током транзистора, очевидно, что ток нагрузки в этой схеме может быть в h21e раз больше, чем в простейшей схеме параметрического стабилизатора. Резистор R2 увеличивает ток через стабилитрон, обеспечивая его устойчивую работу при максимальном значении коэффициента h21e, минимальном напряжении питания U0 и максимальном токе нагрузки IН.
Коэффициент стабилизации будет равен
где RVT – входное сопротивление эмиттерного повторителя
где Re и Rb – сопротивления эмиттера и базы транзистора.
Сопротивление Re существенно зависит от эмиттерного тока. С уменьшением тока эмиттера сопротивление Re быстро возрастает и это приводит к увеличению RVT, что ухудшает стабилизирующие свойства. Уменьшить значение Re можно за счёт применения мощных транзисторов или составных транзисторов.
Определение параметров защитных цепочек
Значения параметров защитных цепочек определяются на основании условия снижения воздействия перенапряжений на защищаемый полупроводниковый прибор до допустимого уровня. Это достигается путем создания дополнительного контура для тока, проходящего в обмотке реле.
Коммутационное перенапряжение Uп, воздействующее на полупроводниковый прибор при переходном процессе, определяется как [Л1]:
- Е – напряжение источника питания оперативного тока;
- Uс – коммутационное перенапряжение на обмотке реле.
Перенапряжение Uп должно соответствовать условию [Л2]:
где: Uдоп – максимально допустимое значение напряжения полупроводникового прибора.
На основании равенства (1) максимально допустимое напряжение на обмотке коммутируемого реле в случае применения защитных цепочек:
Условие (3) является исходным для определения параметров защитных цепочек:
2.1 Диод-стабилитрон
При использовании защитной цепочки диод-стабилитрон напряжение стабилизации равного Uм, определяемому из равенства (3).
2.2 Диод-резистор
Значения сопротивления резистора при коммутации ряда распространенных в технике релейной защиты и автоматике реле определяются с помощью кривых, изображенных на рис.4, и соответствую точке пересечения кривой Uм=f(Rp) с прямой (0,7*Uдоп.-Е) параллельной оси Rр. Кривые получены путем измерения перенапряжений с помощью лучевого осциллографа с использованием высокоомного омического делителя напряжений. Мощностью резистора не играет существенной роли и может быть принята 1-2 Ватта.
Рис.4 а) — Зависимость Uм=f(Rp) для реле: РП-23/220 (кривая 1), РП-252/220 (кривая 2), реле серий ЭВ100 (без искрогасительного контура, (кривая 3)
Рис.4 б) — Зависимость Uм=f(Rp) для реле РУ21/220
Рис.4 в) — Зависимость Uм=f(Rp) для реле: РПУ-2/220 (кривая 1), РП222-У4/220 (кривая 2), РП255/220 (кривая 3), РП251/220 (кривая 4)
2.3 Защитный диод
При использовании защитного диода Uс=0 и напряжение на защищаемом полупроводниковом приборе согласно (1) Uп=Е.
2.4 Выбор защитной RC – цепочки
Значение сопротивления R (сопротивление резистора RC-цепочки) определяется из условия ограничения токовой нагрузки на коммутирующие контакты от тока заряда емкости Сз (емкость конденсатора RC-цепочки) допустимой нагрузкой, т.е.
Сопротивление резистора RC-цепочки, исходя из допустимой коммутирующей способности контактов наиболее распространенных в устройствах защиты и автоматики реле, с достаточным запасом может быть принято 2 кОм, а мощность – 1-2 Ватта.
Значение емкости Сз определяется графическим путем и соответствует точке пересечения кривой зависимости Uм=f(Сз) с прямой (0,7*Uдоп.-Е), параллельной оси Сз (см.рис.5).
Номинальное напряжение Uном. емкости Сз должно соответствовать условию Е < 0,7*Uном.
Рис.5 а) — Зависимость Uм=f(Сз) для реле: РП-252/220 (кривая 1), РУ21/220 (кривая 2)
Рис.5 б) — Зависимость Uм=f(Сз) для реле: РП-251/220 (кривая 1), РП222-У4/220 (кривая 2), РПУ-2/220 (кривая 3)
Рис.5 в) — Зависимость Uм=f(Сз) для реле: РП-23/220 (кривая 1), реле серий ЭВ100 (без искрогасительного контура, (кривая 2), РП-255/220 (кривая 3)
2.5 Выбор диодов защитных цепочек
Выбор диодов защитных цепочек производится по максимально допустимому напряжению диодов, исходя из условия:
Выбор параметров защитных цепочек
8.1 Выбор диодов
Диоды защитных цепочек выбираются на основании условия:
Учитывая, что Е=220 В, выбираем диод типа Д229Б, имеющий Uдоп=400В.
8.2 Выбор резисторов
Значения сопротивления резистора определяются с помощью кривых на рис.4 и соответствуют точке пересечения кривой Uм=f(Rp) с прямой 0,7*Uдоп.-Е=0,7*400-220=60В, параллельной оси Rр.
В схемах, представленных на рис.П-1б, П-2б, П-3б сопротивления резистора защитной цепочки определяется по кривым для реле РП-251, РПУ-2 и соответственно равны R=2,4 кОм, R5=4,2 кОм, R7=4,2 кОм.
Расчетным для схемы на рис.П-5в является случай отключения контактами К3 трех параллельно соединенных обмоток реле К6, К7, К8 при замкнутом положении контактов К1. При этом, если в схеме на рис.П-5в отсутствует защитная цепочка, то диоды VD1, VD2 подвергаются воздействию коммутационного перенапряжения. Сопротивление резистора защитной цепочки определяется как эквивалентное трем параллельно соединенным равным сопротивлениям, одно из которых (Rр) определяется по кривой рис.4 для реле РП-23:
В схеме, изображенной на рис.П-5в, заслуживает внимания рассмотрение вопроса о возможности срабатывания реле К8 при размыкании контактов К2. Ответ на этот вопрос в рассматриваемом случае можно получить, сравнив максимальное значение тока, проходящего, а обмотке реле К8 в переходном режиме, с минимальным током срабатывания этого реле. Ток I, проходящий в обмотке реле К8 при размыкании контактов К2, складывается из тока I1, представляющего часть суммы токов в обмотках реле К4, К5 и тока I2 – части суммы токов в обмотках реле К6, К7. максимальные значения токов I1, I2, I определяются следующим образом:
Здесь: Iк4, Iк5, Iк6, Iк7 – токи, проходящие соответственно в обмотках реле К4, К5, К6, К7.
- 220 – напряжение источника питания (В);
- 9300, 9250 – сопротивления постоянному току, соответственно, обмотки реле РП-23 и последовательно соединенной с добавочным резистором обмотки реле РП-223 (Ом).
Минимальный ток срабатывания реле К8 (РП-23):
Таким образом, величина тока, проходящего в обмотке реле К8 при размыкании контактов К2, недостаточна для срабатывания реле (Если Iм > Iср.к8, то реле К8 сработает при выполнении условия tб > tср, где:
Какая ветвь вах стабилитрона является рабочей
Полупроводниковый диод самый простой полупроводниковый прибор, состоящий из одного PN перехода. Основная его функция — это проводить электрический ток в одном направлении, и не пропускать его в обратном. Состоит диод из двух слоев полупроводника типов N и P (Рисунок 1.2.1)
Рисунок 1.2.1 Строение диода
На стыке соединения P и N образуется PN-переход. Электрод, подключенный к P, называется анод. Электрод, подключенный к N, называется катод. Диод проводит ток в направлении от анода к катоду, и не проводит обратно.
Диод в состоянии покоя.
Диод находится в состоянии покоя, когда ни к аноду, ни к катоду не подключено напряжения (Рисунок 1.2.2).
Рисунок 1.2.2 Диод в состоянии покоя
В части N имеются в наличии свободные электроны – отрицательно заряженные частицы. В части P находятся положительно заряженные ионы – дырки. В результате, в том месте, где есть частицы с зарядами разных знаков, возникает электрическое поле, притягивающее их друг к другу.
Под действием этого поля свободные электроны из части N дрейфуют через PN переход в часть P и заполняют некоторые дырки. В итоге получается очень слабый электрический ток, измеряемый в наноамперах. В результате, плотность вещества в P части повышается и возникает диффузия (стремление вещества к равномерной концентрации), толкающая частицы обратно на сторону N.
Обратное включение диода.
Теперь рассмотрим, как у полупроводникового диода получается выполнять свою основную функцию – проводить ток только в одном направлении. Подключим источник питания — плюс к катоду, минус к аноду (рисунок 1.2.3)
Рисунок 1.2.3 Обратное включение диода
В соответствии с силой притяжения, возникшей между зарядами разной полярности, электроны из N начнут движение к плюсу и отдалятся от PN перехода. Аналогично, дырки из P будут притягиваться к минусу, и также отдалятся от PN перехода. В результате, плотность вещества у электродов повышается. В действие приходит диффузия и начинает толкать частицы обратно, стремясь к равномерной плотности вещества.
Как мы видим, в этом состоянии диод не проводит ток. При повышении напряжения, в PN переходе будет все меньше и меньше заряженных частиц.
Прямое включение диода.
Меняем полярность источника питания – плюс к аноду, минус к катоду.
Рисунок 1.2.4 Прямое включения диода
В таком положении, между зарядами одинаковой полярности возникает сила отталкивания. Отрицательно заряженные электроны отдаляются от минуса и двигаются сторону pn перехода. В свою очередь, положительно заряженные дырки отталкиваются от плюса и направляются навстречу электронам. PN переход обогащается заряженными частицами с разной полярностью, между которыми возникает электрическое поле – внутреннее электрическое поле PN перехода. Под его действием электроны начинают дрейфовать на сторону P. Часть из них рекомбинируют с дырками (заполняют место в атомах, где не хватает электрона). Остальные электроны устремляются к плюсу батарейки. Через диод пошел ток ID.
1.2.1 Выпрямительные диоды
Выпрямительный диод — это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный.
В основе работы выпрямительных диодов лежит свойство односторонней проводимости рn-перехода, которое заключается в том, что последний хорошо проводит ток (имеет малое сопротивление) при прямом включении и практически не проводит ток (имеет очень высокое сопротивление) при обратном включении.
Основными параметрами выпрямительных полупроводниковых диодов являются:
- прямой ток диода Iпр, который нормируется при определенном прямом напряжении (обычно Uпр=1…2В);
- максимально допустимый прямой ток Iпр.мах диода;
- максимально допустимое обратное напряжение диода Uобр.мах, при котором диод еще может нормально работать длительное время;
- постоянный обратной ток Iобр, протекающий через диод при обратном напряжении, равном Uобр.мах;
- средний выпрямленный ток Iвп.ср, который может длительно проходить через диод при допустимой температуре его нагрева;
- максимально допустимая мощность Pмах, рассеиваемая диодом, при которой обеспечивается заданная надежность диода.
Для сохранения работоспособности германиевого диода его температура не должна превышать +85°С, кремниевые диоды могут работать при температуре до +150°С.
Вольт-амперная характеристика германиевого и кремниевого диода представлена на рисунке 1.2.1.1
Рисунок 1.2.1.1 Вольт-амперная характеристика германиевого и кремниевого диода: а−германиевый диод; б−кремниевый диод
Падение напряжения при пропускании прямого тока у германиевых диодов составляет Uпр=0,3…0,6В, у кремниевых диодов Uпр=0,8…1,2В.
Большие падения напряжения при прохождении прямого тока через кремниевые диоды по сравнению с прямым падение напряжения на германиевых диодах связаны с большей высотой потенциального барьера рn- переходов, сформированных в кремнии. С увеличением температуры прямое падение напряжения уменьшается, что связано с уменьшением высоты потенциального барьера. При подаче на полупроводниковый диод обратного напряжения в нем возникает незначительный обратный ток, обусловленный движением не основных носителей заряда через рn-переход. При повышении температуры рn-перехода число не основных носителей заряда увеличивается за счет перехода части электронов из валентной зоны в зону проводимости и образования пар носителей заряда электрон-дырка. Поэтому обратный ток диода возрастает. В случае приложения к диоду обратного напряжения в несколько сотен вольт внешнее электрическое поле в запирающем слое становится настолько сильным, что способно вырвать электроны из валентной зоны в зону проводимости (эффект Зенера). Обратный ток при этом резко увеличивается, что вызывает нагрев диода, дальнейшей рост тока и, наконец, тепловой пробой (разрушение) рn-перехода.
Большинство диодов может надежно работать при обратных напряжениях, не превышающих (0,7…0,8) Uпроб. Допустимое обратное напряжение германиевых диодов достигает − 100…400В, а кремниевых диодов − 1000…1500В.
Выпрямительные диоды применяются для выпрямления переменного тока (преобразования переменного тока в постоянный); используются в схемах управления и коммутации для ограничения паразитных выбросов напряжений, в качестве элементов электрической развязки цепей и т.д.
1.2.2 Полупроводниковый стабилитрон
Полупроводниковый стабилитрон — это полупроводниковый диод, напряжение на котором в области электрического пробоя слабо зависит от тока и который используется для стабилизации напряжения.
В полупроводниковых стабилитронах используется свойство незначительного изменения обратного напряжения на рn-переходе при электрическом (лавинном или туннельном) пробое. Это связано с тем, что небольшое увеличение напряжения на рn-переходе в режиме электрического пробоя вызывает более интенсивную генерацию носителей заряда и значительное увеличение обратного тока.
Низковольтные стабилитроны изготовляют на основе сильнолегированного (низкоомного) материала. В этом случае образуется узкий плоскостной переход, в котором при сравнительно низких обратных напряжениях (менее 6В) возникает туннельный электрический пробой. Высоковольтные стабилитроны изготавливают на основе слаболегированного (высокоомного) материала. Поэтому их принцип действия связан с лавинным электрическим пробоем.
Основные параметры стабилитронов:
- Напряжение стабилизации Uст (Uст=1…1000В);
- минимальный Iст.міn и максимальный Iст.мах токи стабилизации (Iст.міn»1,0…10мА, Iст.мах»0,05…2,0А);
- максимально допустимая рассеиваемая мощность Рмах;
- дифференциальное сопротивление на участке стабилизации
Рисунок 1.2.2.1 Условно графическое обозначение стабилитрона а) не симметричный стабилитрон б) симметричный стабилитрон
Вольт-амперная характеристика стабилитрона на рисунке 1.2.2.2
Рисунок 1.2.2.2 Вольт-амперная характеристика стабилитрона
Стабилитроны используют для стабилизации напряжений источников питания, а также для фиксации уровней напряжений в различных схемах.
Существуют также двухсторонние (симметричные) стабилитроны, имеющие симметричную ВАХ относительно начала координат. Стабилитроны допускают последовательное включение, при этом результирующее стабилизирующее напряжение равно сумме напряжений стабилитронов: Uст = Uст1 + Uст2 +…
1.2.3 Туннельный диод
Туннельный диод — это полупроводниковый диод на основе вырожденного полупроводника, в котором туннельный эффект приводит к появлению на вольт-амперной характеристике при прямом напряжении участка отрицательного дифференциального сопротивления.
Туннельный диод изготовляется из германия или арсенида галлия с очень большой концентрацией примесей, т.е. с очень малым удельным сопротивлением. Такие полупроводники с малым сопротивлением называют вырожденными. Это позволяет получить очень узкий рn-переход. В таких переходах возникают условия для относительно свободного туннельного прохождения электронов через потенциальный барьер (туннельный эффект). Туннельный эффект приводит к появлению на прямой ветви ВАХ диода участка с отрицательным дифференциальным сопротивлением.
Основные параметры туннельных диодов:
- Пиковый ток Iп – прямой ток в точке максимума ВАХ;
- ток впадины Iв − прямой ток в точке минимума ВАХ;
- отношение токов туннельного диода Iп/Iв;
- напряжение пика Uп – прямое напряжение, соответствующее пиковому току;
- напряжение впадины Uв − прямое напряжение, соответствующее току впадины;
Туннельные диоды используются для генерации и усиления электромагнитных колебаний, а также в быстродействующих переключающих и импульсных схемах.
Вольт-амперная характеристика туннельного диода и его УГО представлена на рисунке 1.2.3.1
Рисунок 1.2.3.1 Вольт-амперная характеристика туннельного диода и его УГО
1.2.4 Обращенный диод
Обращенный диод — диод на основе полупроводника с критической концентрацией примесей, в котором проводимость при обратном напряжении вследствие туннельного эффекта значительно больше, чем при прямом напряжении.
Принцип действия обращенного диода основан на использовании туннельного эффекта. Но в обращенных диодах концентрацию примесей делают меньше, чем в обычных туннельных. Поэтому контактная разность потенциалов у обращенных диодов меньше, а толщина рn-перехода больше. Это приводит к тому, что под действием прямого напряжения прямой туннельный ток не создается. Прямой ток в обращенных диодах создается инжекцией не основных носителей зарядов через рn-переход, т.е. прямой ток является диффузионным. При обратном напряжении через переход протекает значительный туннельный ток, создаваемый перемещение электронов сквозь потенциальный барьер из р-области в n-область. Рабочим участком ВАХ обращенного диода является обратная ветвь. Таким образом, обращенные диоды обладают выпрямляющим эффектом, но пропускное (проводящее) направление у них соответствует обратному включению, а запирающее (непроводящее) – прямому включению.
Вольт-амперная характеристика обращенного диода и его УГО представлена на рисунке 1.2.4.1
Рисунок 1.2.4.1 Вольт-амперная характеристика обращенного диода и УГО
Обращенные диоды применяют в импульсных устройствах, а также в качестве преобразователей сигналов (смесителей и детекторов) в радиотехнических устройствах.
1.2.5 Варикапы
Варикап — это полупроводниковый диод, в котором используется зависимость емкости от величины обратного напряжения и который предназначен для применения в качестве элемента с электрически управляемой емкостью. Полупроводниковым материалом для изготовления варикапов является кремний.
Основные параметры варикапов:
- номинальная емкость Св– емкость при заданном обратном напряжении (Св=10…500 пФ);
- коэффициент перекрытия по емкости (отношение емкостей варикапа при двух заданных значениях обратных напряжений.)
Варикапы широко применяются в различных схемах для автоматической подстройки частоты, в параметрических усилителях.
На рисунке 1.2.5.1 представлена вольт-амперная характеристика варикапа и его УГО
Рисунок 1.2.5.1 Вольт-амперная характеристика варикапа и УГО
1.2.6 Светоизлучающие диоды
Светодиодами называются маломощные полупроводниковые источники света, основой которых является излучающий рп—переход. Свечение рn-перехода вызвано рекомбинацией носителей заряда. При подаче прямого напряжения электроны из n-области проникают в p-область, где рекомбинируют с дырками и излучают освободившуюся энергию в виде света.
Светодиоды изготавливаются из карбида кремния, арсенида или фосфида галлия. Свечение может быть весьма интенсивным и лежит в инфракрасной, красной, зеленой и синей частях спектра. Светодиод начинает испускать свет, как только подается прямое напряжение, причем с ростом тока интенсивность свечения увеличивается.
Основными параметрами светодиодов являются:
- Ризлуч – полная мощность излучения (до 100 мВт).
- Unp – постоянное прямое напряжение (порядка единиц вольт) при — const.
- Iпр. – постоянный прямой ток (до 110 мА).
- Цвет свечения.
Прямая ветвь ВАХ светодиода и его условное обозначение показаны на рисунке 1.2.6.1
Рисунок 1.2.6.1 ВАХ светодиода и его УГО
Светодиоды применяют в устройствах визуального отображения информации.
1.2.7 Фотодиоды
Фотодиод — это полупроводниковые приборы, принцип действия которых основан на внутреннем фотоэффекте, состоящем в генерации под действием света электронно-дырочных пар в рп—переходе, в результате чего увеличивается концентрация основных и неосновных носителей заряда в его объеме. Обратный ток фотодиода определяется концентрацией неосновных носителей и, следовательно, интенсивностью облучения. Вольт-амперные характеристики фотодиода (рисунок 1.2.7.1 (см. стр.28)) показывает, что каждому значению светового потока Ф соответствует определенное значение обратного тока. Такой режим работы прибора называют фотодиодным.