Измерение параметров электромагнитных полей в быту
Сейчас в продаже имеются различные бытовые измерители электромагнитных полей — ВЕ-метры (Electromagnetic Radiation Tester, EMF Meter). Значит ли это, что мы имеем возможность самостоятельно оценить уровень воздействия электромагнитных полей? Что, собственно, можно измерить и насколько будут достоверны полученные данные?.
Эти приборы измеряют напряженность электрического поля в В/м (вольт на метр), а также магнитную индукцию (плотность магнитного потока) в мкТл (микротесла).
Вокруг проводника, по которому протекает ток, создаются магнитное поле с напряженностью H и электрическое поле с напряженностью E. Линии магнитного поля образуют концентрические окружности вокруг проводника и лежат в плоскости, перпендикулярной оси проводника. Линии электрического поля перпендикулярны линям магнитного поля и лежат в плоскости, проходящей через ось проводника.
Как известно, электромагнитные волны представляют собой совокупность электрического и магнитного полей, изменяющихся во времени. В электромагнитной волне электрическое и магнитное поля не разделены пространственно.
Магнитное поле
В пространстве, окружающем движущиеся электрические заряды, возникает магнитное поле. Магнитная индукция B— векторная величина, показывающая, с какой силой магнитное поле действует на движущийся заряд.
Магнитная индукция B в вакууме связана с напряженностью магнитного поля H (порожденного соответствующим током) следующим соотношением:
Магнитная проницаемость (мю) воздуха практически совпадает с магнитной проницаемостью вакуума (μ/μ0=1.00000037), поэтому для воздуха магнитная индукция B практически тождественна напряженности магнитного поля H.
Напряженность H магнитного поля измеряется в амперах на метр (А/м), причем 1 ампер/метр задается как напряженность магнитного поля соленоида бесконечной длины с единичной плотностью витков, при протекании по данному соленоиду тока в 1 ампер. Один ампер на метр можно определить и иначе: это напряженность магнитного поля в центре круглого витка с током в 1 ампер при диаметре витка в 1 метр.
Таким образом, несмотря на то, что прибор показывает значение магнитной индукции, мы может судить и о величине напряженности магнитного поля.
Электрическое поле
Каждое электрически заряженное тело создает вокруг себя электрическое поле.
Электрическое поле характеризуется векторной величиной, называемой напряженностью поля, которая численно равна механической силе, действующей на единичный положительный заряд, помещенный в данную точку поля, и имеет направление этой силы.
Простейший индикатор электромагнитного поля может собрать даже юный радиолюбитель.
Санитарные нормативы электромагнитных полей
СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания» устанавливает допустимые величины электромагнитных полей. В таблице 5.74 приведены предельно допустимые уровни электромагнитных полей, в том числе, в жилых помещениях.
Наименование фактора | Наименование параметра | Нормируемые уровни | |
---|---|---|---|
Рабочие места | Жилые, общественные помещения | ||
Постоянное магнитное поле (ПМП) | Напряженность магнитного поля (H), кА/м | 8,0 | — |
Магнитная индукция (B), мТл | 10,0 | — | |
Гипогеомагнитное поле | Коэффициент ослабления геомагнитного поля, Ко, условные единицы |
2,0 | — |
Электростатическое поле (ЭСП) | Напряженность ЭСП (E), кВ/м | 20,0 | 15,0 |
Электромагнитное поле (ЭМП) промышленной частоты | Напряженность электрического поля (E), кВ/м | 5,0 | 0,5 |
Напряженность магнитного поля (H), А/м | 80,0 | 8,0 | |
Магнитная индукция (B), мкТл | 100,0 | 10,0 | |
ЭМП диапазона частот от 0,01 до 0,03 МГц | Напряженность электрического поля (E), В/м | 500,0 | — |
Напряженность магнитного поля (H), А/м | 50,0 | — | |
ЭМП диапазона частот от 0,03 до 3 МГц | Напряженность электрического поля (E), В/м | 42,0 | 25,0 |
(максимально допустимая) | (500,0) | — | |
Напряженность магнитного поля (H), А/м | 4,0 | ||
(максимально допустимая) | (50,0) | — | |
ЭМП диапазона частот от 3 до 30 МГц | Напряженность электрического поля (E), В/м | 25,0 | 15,0 |
(максимально допустимая) | (300) | — | |
ЭМП диапазона частот от 30 до 50 МГц | Напряженность электрического поля (E), В/м | 8 | 10 |
(максимально допустимая) | (80,0) | — | |
Напряженность магнитного поля (H), А/м | 0,25 | — | |
(максимально допустимая) | (3,0) | ||
ЭМП диапазона частот от 50 до 300 МГц | Напряженность электрического поля (E), В/м | 8,5 | 3,0 |
(максимально допустимая) | (80,0) | — | |
ЭМП диапазона частот от 300 МГц до 300 ГГц | Плотность потока энергии (ППЭ), мкВт/см2 | 18,0 | 10,0 |
(максимально допустимый уровень) | (1000,0) | — |
Нормативы также установлены Решением Комиссии Таможенного союза от 28.05.2010 № 299 «О применении санитарных мер в Евразийском экономическом союзе». На территории населенных мест предельно допустимая напряженность переменного электрического поля с частотой 50 Гц на высоте 2 м составляет 1000 В/м, а в жилых помещениях предельно допустимая напряженность переменного электрического поля с частотой 50 Гц на высоте от 0,5 до 2 м от пола составляет 500 В/м.
В жилых помещениях допустимая напряженность магнитного поля частотой 50 Гц (действующие значения) не должна превышать 5 мкТл. Напряженность электрического поля не должна превышать 25 В/м в диапазоне частот 30 — 300 кГц. Такие же нормативы установлены в СанПиН 2.1.8./2.2.4.1383-03.
Полевые измерения
Измеритель имеет два датчика для измерения электрических полей. На фото виден соленоид (катушка индуктивности) и фольгированная пластинка. Возбуждаемая в соленоиде ЭДС измеряется, обрабатывается процессором и на дисплей выводится значение магнитной индукции.
Общие требования к измерителям напряженности электрического и магнитного полей установлены в ГОСТе Р 51070-97. Методы оценки электромагнитных полей бытовых приборов установлены в ГОСТ Р 54148-2010 (ЕН 50366:2003) «Воздействие на человека электромагнитных полей от бытовых и аналогичных электрических приборов. Методы оценки и измерений». Измерение магнитной индукции большинства приборов измеряется на расстоянии 30 см от их поверхности
Следует учитывать, что результаты измерений, произведенные с помощью рассматриваемых бытовых приборов, достаточно условны, т.е. достоверность их будет всегда под вопросом. Вероятно поэтому, многие подобные приборы называют не измеритель, а «тестер» или «индикатор».
Так, например, подобные приборы не оценивают электромагнитные поля в диапазонах частот. Мы не узнаем частоту электромагнитного излучения.
Если провести измерения возле работающего бытового фена, то мы получим некоторые результаты.
Напряженность электрического поля вблизи работающего фена составила 337 В/м, а магнитная индукция — 38,09 мкТл. Это «кошмарные» значения! Но это значения в непосредственной близости от источника полей. Уже на расстоянии примерно полуметра, прибор показывает нули.
И так. Ясно, что работающий бытовой электроприбор является источником электромагнитных полей, но их интенсивность убывает с увеличением расстояния и примерно пропорциональна 1/r.
Надо также учитывать, что датчик поля реагирует на поляризацию (направление вектора поля). Если прибор повернуть на 90 градусов — показания изменятся.
Один из наиболее «злых» источников электромагнитных полей — источник бесперебойного питания: 226 В/м и 27 мкТл соответственно. Плоский монитор показал всего 4 В/м перед экраном. Перед передней панелью системного блока — ноль, а вот сзади возле блока питания — 1.2 мкТл. Работающие звуковые колонки компьютера показали 9В/м и 0.08 мкТл.
Это все показания в непосредственной близости от источника, с удалением датчика на рекомендованные 30 см показания резко падают вплоть до нуля. Справедливости ради надо сказать, что ноль на приборе не означает, что поля нет совсем. Правильнее считать, что напряженность поля настолько мала, что не регистрируется прибором, т.е. меньше 1 В/м.
В итоге, если верить показаниям этих не сертифицированных и не калиброванных приборов, то положение достаточно хорошее.
Проверка работы ионизаторов воздуха
Суть работы ионизатора воздуха (люстры Чижевского) сводится к созданию на кончиках иголок отрицательных зарядов. Следовательно возле этих иголок должно возникать статическое электрическое поле.
Методы измерения описаны в ГОСТ Р 8.846-2013, однако нам они не пригодятся.
Измерение электромагнитного излучения
Электромагнитные поля окружают нас постоянно. От электромагнитного излучения Солнца, включающего спектр от видимого света (который также является электромагнитной волной) до рентгеновского излучения. Мощным источником также выступает техносфера Земли – вся совокупность приборов, машин, приспособлений, потребляющих электричество. Научное определение электромагнитного излучения таково – это распространение в пространстве колебаний электромагнитного поля, словно волн по поверхности воды.
В окружающем нас мире источников электромагнитного излучения огромное множество, вот некоторые примеры:
- линии электропередач (ЛЭП);
- любые провода под напряжением;
- трансформаторы, выпрямители;
- компьютеры и ноутбуки;
- телевизоры – особенно старых моделей, с кинескопом;
- мобильные телефоны;
- бытовые электроприборы – микроволновка, стиральная машина, холодильник и т.д.
Для чего измеряют электромагнитное излучение?
Большая часть электромагнитных полей, окружающих нас, безвредна. Это хорошая новость, а плохая в том, что даже вредные для здоровья и опасные для жизни излучения, в том числе ультрафиолетовое и рентгеновское, организм никак не регистрирует – мы можем воспринимать лишь узкий спектр видимого света, а также инфракрасное тепловое излучение. Но даже волны условно безопасного диапазона при высоком напряжении поля могут вызывать ухудшение общего самочувствия и головные боли.
Поэтому регулярный контроль и измерение уровня излучения на потенциально опасных в этом плане объектах необходим. К таковым относятся некоторые производства, медицинские учреждения, например, проводящие МРТ-диагностику. Они должны проверяться на соответствие установленным санитарным нормам и законодательству в сфере охраны труда.
Как измерить электромагнитное излучение?
Электромагнитное поле разделяют на ближнюю и дальнюю зоны индукции, поэтому при проведении обследования учитываются оба эти компонента. Специалисты проверяют отдельно электрическую и магнитную составляющую. Обычно проверка затрагивает промышленные и инфраструктурные объекты, на которых уровень напряженности поля потенциально может быть превышен.
Рассмотрим детальнее, каким прибором измеряют электромагнитное излучение. Интенсивность поля должна быть замерена приборами, которые прошли специальную сертификацию. Методика изложена подробно в технической документации. В общем случае выглядит это следующим образом. Специальные приборы – электромагнитные измерители – устанавливаются на высотах 0,5, 1 и 1,7 метров от поверхности – неважно, проводится ли замер в помещении или на открытой местности.
Расстояние от оборудования, которое выступает потенциальным источником электромагнитного поля, составляет 0,5 метра. В некоторых случаях замеры проводят на рабочем месте, если это необходимо согласно требованиям нормативных документов по охране труда.
Напряженность поля замеряется с помощью техники ненаправленного приема. Такие приборы оснащают трехкоординатными датчиками, которые позволяют, кроме количественных показателей, точно установить направление на источник излучения и расстояние до него (погрешность не должна превышать 20%).
В каких единицах можно измерить электромагнитное излучение?
Разберемся теперь, в чем измеряется электромагнитное излучение. У электромагнитного поля (и излучения) несколько показателей, в том числе и производных. Каждый показатель измеряется в своих единицах, например, частота волн излучения замеряется в герцах. Но в связи с высокой частотой волн целесообразнее использовать гигагерцы (Ггц) и тому подобные величины, так как частота от 20 герц – это слышимый ухом звук, который не имеет отношения к электромагнитным волнам. 1 герц – это одно колебание в секунду, то есть 1-1 секунда. Другой важный параметр – длина волн. В случае электромагнитного излучения она измеряется в микрометрах, или Мм – миллионных долях метра. От частоты и длины волны зависит, с каким видом излучения имеют дело специалисты. Например, для ультрафиолета эти показатели равны 0,75-30 ПГц (петагерц) и 10-400 нм.
Но волны также имеют определенную мощность, замер показателя которой очень важен при учете их антропогенного воздействия. Причем, важна не общая мощность, а ее показатель на единицу площади, или плотность мощности. Замеряется он в мкВт/см2, то есть в микроваттах на квадратный сантиметр. Предельные значения этого параметра указаны в нормативных документах, например, в России они равны 10 мкВт/см2.
Существуют и другие единицы измерения электромагнитного излучения. Так, иногда используются тесла – единицы измерения магнитной индукции, а также электрон-вольты – показатель энергии поля. Но наиболее важным показателем при замерах является плотность мощности.
Если вы не знаете, куда обратиться для измерения этих показателей, лучше всего позвоните по телефону +7-495-777-65-35 , напишите WhatsApp , или закажите обратный звонок — Заказать звонок . Мы занимаемся инженерно-экологическими изысканиями более 10 лет. Специалисты имеют все необходимые допуски для работы на промышленных объектах и оснащены современной измерительной аппаратурой. Стоимость и сроки работ являются условиями договора, так же, как и гарантия качества замеров.
Электромагнитное поле — основные понятия, формулы и определения с примерами
Сильное электромагнитное поле отрицательно действует на человеческий организм — повреждается центральная нервная система, может возникнуть рак головного мозга, уровень гемоглобина в крови понижается, нарушается память и понижается внимание.
Карта электромагнитного поля:
Электрический заряд и электромагнитное поле
При трении тел друг о друга на них возникают электрические заряды. В этом случае говорят, что тело наэлектризовано, оно получило электрический заряд, или оно потеряло электрический заряд.
Электрическое взаимодействие между наэлектризованными телами в зависимости от знаков их зарядов может носить характер притяжения или отталкивания:
- — тела, обладающие зарядами одинакового знака, отталкиваются друг от друга;
- — тела, обладающие зарядами противоположного знака, притягиваются друг к другу.
В природе существуют заряды двух видов: положительный электрический заряд (+) и отрицательный электрический заряд (-). Заряды одинакового знака отталкиваются друг от друга, а заряды разного знака притягиваются друг к другу. Тела, не обладающие избытком электрического заряда, называют электрически нейтральными, или незаряженными телами.
Электрический заряд обозначают буквой q. За единицу измерения электрического заряда в СИ принят 1 кулон, названный так в честь французского ученого Шарля Кулона: [q] = 1 Кл.
Электростатическое поле — вид материи, который создается неподвижными электрическими зарядами.
Напряженность электрического поля — силовая характеристика этого поля. Являясь векторной величиной, напряженность электрического поля направлена так же, как и электрическая сила, действующая на положительный заряд.
Вещества, продолжительное время сохраняющие свои магнитные свойства, называются постоянными магнитами или просто магнитами. Каждый магнит имеет два полюса: северный (N) и южный (S). Одноименные полюсы магнита отталкиваются, разноименные полюсы магнита притягиваются.
Магнитное поле — вид материи, который создается движущимися зарядами.
Индукция магнитного поля (или магнитная индукция) является силовой характеристикой этого поля. Направление вектора магнитной индукции в данной точке магнитного поля совпадает с направлением северного полюса магнитной стрелки, помещенной в эту точку поля.
Кстати:
Было выяснено, что при полете пчела заряжается положительно. А цветы обладают отрицательным зарядом. Поэтому, когда пчела садится на цветок, ее пыльца прилипает к пчеле. Самым интересным является то, что после контакта пчелы с цветком электромагнитное поле растения меняется. Это изменение как будто подает знаки другим пчелам, находящимся в воздухе: «На этом цветке нет пыльцы!».
Электрический заряд
Электрический заряд — это свойство тел и частиц создавать вокруг себя электромагнитное ноле. Электрический заряд принят также количественной мерой измерения этого свойства тел.
Взаимодействие между заряженными частицами называется электромагнитным взаимодействием. Например, когда говорят, что протон несет положительный заряд, а электрон несет отрицательный заряд, то можно с уверенностью говорить о наличии электромагнитного взаимодействия между ними. Между незаряженными (электрически нейтральными) частицами не существует электромагнитного взаимодействия. Поэтому говорят: Электрический заряд определяет интенсивность электромагнитного взаимодействия.
Электрический заряд обладает следующими особенностями:
1. Электрический заряд дискретен (не непрерывен, делим) — электрический заряд любого тела кратен целому числу элементарных зарядов:
Здесь N — число приобретенных или потерянных телом электронов.
Абсолютное значение наименьшего электрического заряда в природе называют элементарным зарядом. Элементарный заряд обозначают буквой е, численное его значение равно абсолютному значению заряда электрона или протона:
Кроме электрона и протона в природе существуют ещё несколько видов элементарных частиц. Однако только электроны и протоны могут существовать в свободном состоянии неограниченно долго. Время жизни остальных заряженных частиц очень мало — миллионные доли секунды. Они образуются в результате столкновений быстрых элементарных частиц, и через ничтожно малое время превращаются в другие частицы.
Дискретность заряда позволяет ему равномерно распределяться по поверхности проводника. Предположим, что заряд равномерно распределился по поверхности площадью S.
Величина, численно равная электрическому заряду, приходящемуся на единицу площади поверхности, называется поверхностной плотностью электрического заряда ():
Единицей поверхностной плотности электрического заряда в СИ является:
2. Для электрического заряда выполняется закон сохранения — алгебраическая сумма электрических зарядов частиц (или тел) замкнутой системы остается неизменной:
3. Электрический заряд является аддитивной величиной — электрический заряд системы равен алгебраической сумме электрических зарядов частиц (или тел) этой системы.
4. Электрический заряд является инвариантной величиной — электрический заряд частиц (или тел) одинаков во всех инерциальных системах отсчета.
Электромагнитное поле
Раздел физики, в котором изучаются электрические и магнитные явления, проявляющиеся при движении и взаимодействии электрических зарядов, называется электродинамикой.
Электродинамика — раздел физики, изучающий закономерности взаимодействия между электрическими зарядами посредством электромагнитного поля.
Электромагнитное поле — вид материи, осуществляющий взаимодействие между электрически заряженными частицами и телами.
Электрическое и магнитное поля являются особыми формами проявления электромагнитного поля. Поэтому состояние электромагнитного поля в произвольной точке пространства и в любой момент времени характеризуется двумя величинами — напряженностью электрического поля и индукцией магнитного поля
Эти величины являются силовыми характеристиками электромагнитного поля и определяют силы, с которыми оно действует на заряженные частицы. Под «определением силовых характеристик электромагнитного поля» имеется в виду определение сил, действующих на внесенный в поле пробный заряд (положительный точечный заряд). Отметим, что действие электромагнитного поля на заряд может быть различным, в зависимости от того, покоится заряд или движется.
Силу, с которой электромагнитное поле действует на заряд, покоящийся в данной инерциальной системе отсчета, называют электрической. Электрическая сила всегда прямо пропорциональна количественному значению заряда, помещенного в данную точку поля:
На электрический заряд, движущийся в данной инерциальной системе отсчета, электромагнитное поле действует, кроме электрической силы, ещё с силой, называемой магнитной силой. Магнитная сила прямо пропорциональна и значению движущегося заряда, и проекции скорости заряда, перпендикулярной вектору магнитной индукции:
Поэтому на электрический заряд, движущийся в электромагнитном поле, действует результирующая сила, равная сумме электрической и магнитной сил. Эту силу называют обобщенной силой Лоренца:
Напряженность электростатического поля
Поле, созданное неподвижными электрическими зарядами, называется электростатическим.
Напряженность электрического поля — векторная физическая величина, равная отношению электрической силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку поля, к величине этого заряда:
Единица измерения напряженности электрического поля в СИ:
Электрическая сила равна произведению напряженности электрического поля на величину помещенного в поле заряда:
Закон Кулона: сила взаимодействия двух неподвижных точечных электрических зарядов в вакууме прямо пропорциональна произведению модулей этих зарядов и обратно пропорциональна квадрату расстояния между ними:
Учитывая кулоновскую силу в формуле напряженности, выясняем, от каких величин зависит напряженность электрического поля.
Модуль напряженности электрического поля, создаваемого точечным зарядом в данной точке, прямо пропорционален величине этого заряда и обратно пропорционален квадрату расстояния до этой точки:
Одной из задач электродинамики является определение силовой характеристики электростатического поля, созданного данным электрическим зарядом. Одним из особых состояний электромагнитного поля является создаваемое неподвижным зарядом электростатическое поле.
Электрическое поле — это электромагнитное поле, в котором относительно данной системы отсчета. Электрическое поле, созданное покоящимися относительно данной системы отсчета электрическими зарядами, называется электростатическим. В дальнейшем для упрощения, называя поле электрическим, будем подразумевать, что это электростатическое поле.
Электрическое иоле может быть однородным и неоднородным.
Однородное электрическое поле — поле, в каждой точке которого численное значение и направление напряженности электрического поля одинаковы. В противном случае поле неоднородное.
Например, поле между двумя параллельными пластинами, одна из которых обладает положительным, а другая таким же но модулю отрицательным зарядом, является однородным (а), а электрическое поле, создаваемое точечным зарядом, является неоднородным (b).
Напряженность электрического поля, создаваемого точечным электрическим зарядом в вакууме и в среде. Известно, что при внесении пробного заряда в электрическое поле точечного заряда в вакууме между зарядами возникает кулоновское взаимодействие.
Силы взаимодействия двух точечных электрических зарядов прямо пропорциональны произведению модулей зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды (с).
Здесь — коэффициент пропорциональности, равный
Эта постоянная показывает, что два точечных заряда по 1 Кл каждый, находящиеся в вакууме на расстоянии 1 м друг от друга, взаимодействуют с силой 9•10 9 Н.
Здесь — электрическая постоянная:
Таким образом, на основе закона Кулона можно определить модуль напряженности электрического поля, созданного в вакууме зарядом в любой точке на расстоянии
от источника поля:
Напряженность в данной точке электрического поля, созданного точечным зарядом в вакууме, прямо пропорциональна величине этого заряда и обратно пропорциональна квадрату расстояния от источника поля до этой точки.
Если заряд alt=»Электромагнитное поле — основные понятия, формулы и определения с примерами» />положительный, то вектор напряженности в произвольной точке поля направлен радиально от источника поля (d), а если же заряд отрицательный — вектор напряженности направлен радиально к источнику поля (заряду alt=»Электромагнитное поле — основные понятия, формулы и определения с примерами» />).
Для электрических полей выполняется принцип суперпозиции.
Напряженность результирующего электрического поля в данной точке пространства, создаваемого несколькими электрическими зарядами, равна геометрической сумме напряженностей отдельных полей:
На рисунке изображена схема определения напряженности результирующего ноля в точке А, созданного двумя точечными зарядами (е).
В среде (внутри однородного диэлектрика) кулоновская сила взаимодействия зарядов слабее по сравнению с силой их взаимодействия в вакууме в раз:
Здесь — величина, называемая диэлектрической проницаемостью среды и показывающая, во сколько раз кулоновская сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме при неизменном расстоянии между ними:
Напряженность электрического поля в среде меньше, чем в вакууме, в раз:
Значит, диэлектрическая проницаемость среды также является физической величиной, показывающей, во сколько раз напряженность электрического поля, созданного электрическим зарядом в данной точке внутри однородного диэлектрика, меньше, чем в вакууме:
Диэлектрическая проницаемость различных сред различна. Например, для дистиллированной воды alt=»Электромагнитное поле — основные понятия, формулы и определения с примерами» />=81 (для вакуума alt=»Электромагнитное поле — основные понятия, формулы и определения с примерами» /> = 1).
Работа однородного электрического поля
Энергетическая характеристика электрического поля называется электрическим напряжением или просто напряжением.
Скалярная величина, показывающая, какую работу совершило электрическое поле при перемещении единичного заряда из одной точки поля в другую, называется электрическим напряжением между этими точками поля:
Единицей измерения напряжения в СИ является вольт:
Механическая работа — скалярная физическая величина, равная произведению модуля силы, действующей на тело, модуля перемещения тела и косинуса угла между векторами силы и перемещения:
Работа силы тяжести в гравитационном поле Земли:
Работа силы тяжести не зависит от формы траектории движения тела, она зависит от разности уровней начального и конечного положений центра тяжести тела.
Силы, работа которых не зависит от формы траектории движения тела, называются консервативными. Значит, сила тяжести — консервативная сила.
Это положение позволяет вывести понятие «потенциальной энергии» для системы тел, взаимодействующих с силами гравитационного взаимодействия. Так, выражение mgh в последней формуле является потенциальной энергией взаимодействия Земли и тела, находящегося на высоте h от поверхности Земли:
Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком:
Проведенные учеными исследования показали, что Земля обладает отрицательным электрическим зарядом, а слой ионосферы в её атмосфере — положительным зарядом. Слои атмосферы, лежащие между ними, играют роль изолятора.
Работа однородного электрического поля:
Работа однородного электрического поля, в котором положительный пробный заряд под действием постоянной электрической силы совершает перемещение
между двумя точками поля, равна (а):
Здесь — угол между силовой линией поля и вектором перемещения заряда.
Так как проекция вектора перемещения на силовую линию равна то работа поля будет равна:
Работа однородного электрического поля при перемещении пробного положительного заряда равна произведению модуля этого заряда на модуль напряженности электрического поля и на проекцию его перемещения на направление силовых линий.
Выражение (1) можно написать и так:
Здесь и
— соответственно расстояния от отрицательной пластины до точек 1 и 2. Вследствие пропорциональности работы электрического поля величине пробного заряда отношение
не зависит от величины пробного заряда и не зависит от траектории его движения. Это отношение зависит от электрического поля, а также от начального и конечного положений заряда в поле.
Так как работа электрической силы при переносе пробного заряда из одной точки электрического поля в другую не зависит от формы траектории, то электрическая сила является консервативной, а электрическое поле — потенциальным.
Скалярная физическая величина, равная отношению работы электрического поля при переносе электрического заряда из одной точки поля в другую к величине этого заряда, называется разностью потенциалов между этими точками, или напряжением между ними:
Здесь — разность потенциалов. Индексы 1 и 2 указывают на точки
поля, между которыми перемещается заряд. Единицей измерения разности потенциалов в СИ является вольт:
Из выражения (3) можно определить работу поля при перемещении заряда между двумя его точками:
Работа электрического поля при перемещении заряда между двумя его точками равна произведению заряда на разность потенциалов (напряжение) между ними :
Сравнивая (1) и (3), получим формулу, связывающую напряженность и напряжение:
Напряженность электрического поля направлена от точки поля с большим потенциалом к точке с меньшим потенциалом.
Потенциал электрического поля
Для выражения энергетической характеристики электрического ноля в произвольной точке используется физическая величина, называемая потенциалом. Разность потенциалов между любой точкой электрического поля и точкой, принятой за нулевой потенциал, называют потенциалом поля в этой точке. Обычно вычисление потенциала производится относительно бесконечности.
Потенциал — скалярная величина, численно равная работе поля по перемещению единичного положительного заряда в бесконечность при его отталкивании от положительного заряда q:
Потенциал обозначается символом . Единицей измерения потенциала в СИ
является вольт:
Потенциальная энергия заряда в электрическом поле. Так как электрическое поле является потенциальным, то к замкнутой системе заряд-электрическое поле можно применить теорему о потенциальной энергии.
Работа, совершенная в потенциальном поле, равна изменению потенциальной энергии системы, взятому с противоположным знаком:
Здесь и
— потенциальные энергии заряда в точках 1 и 2 ноля (b).
Сравнив выражения (4) и (7), получим:
Значит, величина, определяемая отношением потенциальной энергии пробного заряда в данной точке поля к величине заряда, равна потенциалу поля.
Эквипотенциальные поверхности
Поверхность, во всех точках которой потенциал поля принимает одинаковые значения, называется эквипотенциальной. Для точечного заряда эквипотенциальными являются концентрические сферы, центры которых совпадают с местонахождением заряда (с). Для однородного электрического поля — это поверхности, перпендикулярные силовым линиям поля (d).
Конденсатор и электрическая емкость
Конденсатор-устройство, используемое для накопления электрических зарядов. Его название происходит от латинского слова «kondensare», что означает сгущение.
Самый простой конденсатор — плоский конденсатор, состоит из двух близко расположенных параллельных металлических пластин с тонким слоем диэлектрика (например, воздуха) между ними (а). На схемах электрических цепей конденсатор обозначают как .
Пластины конденсатора электризуются равными по модулю зарядами противоположных знаков.
Способность конденсатора накапливать электрический заряд характеризуется физической величиной, называемой электрической ёмкостью.
Для разделения, накопления и передачи большого количества электрического заряда разных знаков используются устройства, называемые электрофорной машиной (b).
Быстро вращаясь, диски электрофорной машины трутся о воздух между ни-ми и электризуются зарядами разного знака. Заряды пластин снимаются с помощью металлических щеток и накапливаются в двух лейденских банках (1), а оттуда передаются на сферические металлические кондукторы (2). В результате на одном из кондукторов накапливается положительный, а на другом — отрицательный заряд.
Известный сербский ученый Никола Тесла (1856-1943) выдвинул идею о том, что система Земля — атмосфера представляет собой гигантский конденсатор, который является источником дешевой электрической энергии. Согласно этой идее, совпадение частоты слабого электромагнитного излучения, посылаемого в ионосферу Земли, с собственной частотой заряженных частиц ионосферы вызовет в ней резонанс. В результате возникнет очень сильное излучение, окружающее Землю. В это время достаточно будет в любой точке поверхности Земли воткнуть длинный металлический стержень, чтобы непрерывно получать из неба бесплатную электрическую энергию. Главной проблемой было построение башни для создания возбуждающих ионосферу импульсов — резонатора. Американский миллиардер Морган принял решение о финансировании постройки этой башни в Лонг-Айленде (США). Однако незадолго до завершения работы он приостановил и отменил этот проект в целях предотвращения возможной экологической катастрофы.
Известно, что простейшим конденсатором является плоский конденсатор, состоящий из двух параллельных пластин. Характеристикой конденсатора является электрическая ёмкость.
Электрическая ёмкость конденсатора (С) — скалярная физическая величина, равная отношению заряда конденсатора к разности потенциалов (напряжению) между его пластинами:
Единицей измерения электрической ёмкости в СИ является фарад (1Ф):
1 фарад — это электрическая емкость конденсатора, когда заряд пластин 1 Кл создает между ними напряжение 1В:
Фарад — очень большая ёмкость, поэтому на практике используются его дольные единицы (микрофарад, нанофарад, пикофарад и др.):
Заряд конденсатора равен модулю заряда одной из пластин конденсатора. Этот заряд прямо пропорционален напряжению на концах источника, подключенного к конденсатору:
Значит, электроёмкость является коэффициентом пропорциональности между зарядом и напряжением и не зависит ни от заряда, ни от напряжения. От чего же зависит электроёмкость?
Электрическая ёмкость плоского конденсатора зависит от площади его пластин, расстояния между пластинами и диэлектрической проницаемости вещества, находящегося между ними:
Здесь S — площадь одной из пластин конденсатора, d — расстояние между пластинами, alt=»Электромагнитное поле — основные понятия, формулы и определения с примерами» />— диэлектрическая проницаемость вещества, которое находится между его пластинами. Именно диэлектрик, находящийся между пластинами, дает конденсатору возможность длительное время сохранять заряд. Если диэлектриком между пластинами является только воздух ( alt=»Электромагнитное поле — основные понятия, формулы и определения с примерами» />= 1), то такой конденсатор называется воздушным и его электроёмкость:
Энергия электрического поля конденсатора
Энергия однородного электрического поля между пластинами плоского заряженного конденсатора определяется нижеприведенной формулой:
Примечание. Множитель в выражении (5) указывает на то, что при движении пластин конденсатора в отдельности каждая из них оказывается движущейся в электрическом поле, созданным зарядом другой пластины. Напряженность поля одной пластины в 2 раза меньше напряженности электрического поля между пластинами.
Если учесть здесь выражение (2), то получаются выражения, отражающие зависимость энергии конденсатора от ёмкости и заряда конденсатора:
Если учесть выражение (3) в выражениях (6) и (7), то можно получить следующие выражения для энергии электрического поля плоского конденсатора:
Распределение энергии электрического ноля в пространстве выражается физической величиной, называемой плотностью энергии электрического поля:
Плотность энергии электрического поля — физическая величина, численно равная энергии электрического поля, приходящейся на единицу объёма:
Здесь — плотность энергии электрического поля, единица её измерения в СИ:
Если в последнем выражении учесть формулу (8), выражения то станет очевидным, что плотность энергии электрического поля прямо пропорциональна квадрату напряженности поля:
Примечание. Конденсатор не может служить аккумулятором, длительное время сохраняющим в себе электрическую энергию (из-за утечки заряда). Однако он, в отличие от аккумулятора, способен мгновенно разряжаться в цепи с малым сопротивлением. Это свойство конденсатора широко используется на практике (например, во вспышках фотоаппаратов и лампах мобильных телефонов).
Соединение конденсаторов
Электрическая цепь может состоять из различных элементов: источник тока, потребители (лампа, электрический звонок, электрический нагреватель, телевизор и др.), ключ, соединительные провода. Одной из простейших цепей является последовательное соединение этих элементов.
При последовательном соединении конец каждого проводника соединяется с началом последующего.
При последовательном соединении силы токов одинаковы в любой части цепи:
Общее напряжение цепи при последовательном соединении равно сумме напряжений отдельных участков этой цепи:
Общее сопротивление при последовательном соединении равно сумме сопротивлений отдельных ее участков:
Общее сопротивление цепи, состоящей из n проводников с одинаковым сопротивлением R, в n раз больше сопротивления каждого проводника:
Параллельным называется соединение проводников, при котором начапа всех проводников соединяются в одной точке (например, в точке А), а концы в другой (например, в точке В).
Напряжения на концах параллельно соединенных проводников одинаковы:
При параллельном соединении сила тока в неразветвленной части цепи равна сумме сил токов в отдельных ветвях цепи:
Величина, обратная общему сопротивлению параллельно соединенных проводников, равна сумме величин, обратных сопротивлению каждого проводника:
Общее сопротивление участка цепи, состоящей из двух параллельно соединенных проводников, равно:
В соответствии с этим общее сопротивление участка цепи, состоящей из n числа параллельно соединенных проводников с одинаковым сопротивлением R, меньше сопротивления каждого из них в n раз:
На практике часто случается, что при выходе из строя бытовых приборов для срочного их ремонта отсутствуют конденсаторы с необходимым номиналом электроёмкости и напряжения. В таких случаях приходится получить необходимый номинал, используя конденсаторы различного номинала. А для этого необходимо знать правила их соединений.
С целью получения различных значений электроёмкости собирают батареи конденсаторов, соединяя их либо последовательно, либо параллельно.
Последовательное соединение конденсаторов
При последовательном соединении конденсаторов отрицательно заряженная пластина первого конденсатора соединена с положительно заряженной пластиной второго и т.д. (с).
Заряды последовательно соединенных конденсаторов одинаковы:
Общее напряжение на концах цепи, состоящей из последовательно соединенных конденсаторов, равно сумме напряжений отдельных конденсаторов:
Величина, обратная общей электроемкости батареи последовательно соединенных конденсаторов, равна сумме величин, обратных значениям электроёмкостей отдельных конденсаторов:
Общая ёмкость цепи, состоящей из последовательно соединенных n конденсаторов одинаковой ёмкости, в n раз меньше ёмкости одного конденсатора:
Напряжение и энергия последовательно соединенных конденсаторов обратно пропорциональны их электрическим ёмкостям:
Параллельное соединение конденсаторов
При параллельном соединении положительно заряженные пластины всех конденсаторов соединяют в одной точке, а отрицательно заряженные пластины в другой точке (d).
Общий заряд параллельно соединенных конденсаторов равен сумме зарядов отдельных конденсаторов:
Напряжения на концах параллельно соединенных конденсаторов одинаковы:
Общая электроёмкость батареи параллельно соединенных конденсаторов равна сумме электроёмкостей отдельных конденсаторов:
Общая электроёмкость n числа параллельно соединенных одинаковых конденсаторов в n раз больше электроёмкости одного конденсатора:
Электрические заряды и энергии параллельно соединенных конденсаторов прямо пропорциональны их электроёмкостям:
Движение заряженных частиц в магнитном поле
При равномерном движении по окружности линейная скорость материальной точки численно равна отношению пройденного пути ко времени, за которое этот путь пройден:
При равномерном движении по окружности модуль центростремительного ускорения материальной точки равен отношению квадрата линейной скорости к радиусу окружности:
Сила, с которой магнитное поле действует на движущуюся заряженную частицу, называется силой Лоренца:
Если заряженная частица влетает в магнитное поле в направлении, перпендикулярном линиям индукции, то сила Лоренца принимает максимальное значение:
Сила Лоренца перпендикулярна векторам и
её направление определяется правилом левой руки.
Правило левой руки для определения направления силы Лоренца
Правило левой руки для определения направления силы Лоренца: левую руку следует расположить в магнитном поле так, чтобы вектор магнитной индукции входил в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного заряда), тогда отогнутый на 90 о большой палец покажет направление действующей на заряд силы Лоренца.
Вблизи Северного и Южного полюсов Земли наблюдаются очень красивые природные явления, называемые «полярным сиянием». Причиной возникновения полярного сияния является действие магнитного поля Земли на поток заряженных частиц в атмосфере.
Магнитное поле — это электромагнитное поле, индукция магнитного поля которого относительно данной системы отсчета отлична от нуля напряженность электрического поля которого равна нулю
На заряженную частицу, движущуюся в магнитном поле, действует сила Лоренца:
Так как направление силы Лоренца перпендикулярно направлению скорости частицы то эта сила не совершает работы:
По этой причине сила Лоренца не может изменить модуль скорости и импульса частицы, а также ее кинетическую энергию. Она способна изменить лишь направление движения частицы. Согласно II закону Ньютона, уравнение движения заряженной частицы в неизменном во времени однородном магнитном поле (при условии
) имеет вид:
Если частица влетает в поле в направлении, перпендикулярном силовым линиям поля то на неё действует максимальная сила Лоренца (sin 90° = 1):
В этом случае уравнение движения частицы:
Сообщая телу центростремительное ускорение (так как ), сила Лоренца заставляет его вращаться по окружности радиусом R (b):
Уравнение движения частицы преобразуется:
Из выражения (4) можно выяснить, от каких величин зависит радиус окружности, по которой вращается частица:
Здесь р и Ек — соответственно модуль импульса и кинетическая энергия частицы.
Радиус окружности, которую описывает заряженная частица в однородном магнитном поле, прямо пропорционален модулю скорости его движения (импульса) и обратно пропорционален модулю вектора магнитной индукции поля.
Период обращения частицы по окружности зависит от массы частицы, величины заряда и модуля индукции магнитного поля:
Кстати:
Прибор, используемый для определения массы частицы, называется «масс-спектрограф». Принцип его работы заключается в следующем: вакуумная камера прибора помещается в однородное магнитное поле (вектор его индукции направлен к нам перпендикулярно плоскости рисунка). Заряженные частицы сначала ускоряются электрическим полем, а затем, отклоняясь магнитным полем, описывают дугу, оставляя след на фотопластинке (с). Радиус кривизны дуги измеряется. Это позволяет точно вычислить массу частицы с известным значением заряда.
Действие магнитного поля на проводник с током
Направление вектора индукции магнитного поля, созданного электрическим током, удобно определять правилом правого буравчика: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика показывает направление вектора индукции магнитного поля, созданного этим током (1). Направление вектора индукции магнитного поля кругового тока также определяется правилом правого буравчика: если вращать рукоятку буравчика по направлению кругового тока, то направление поступательного движения буравчика покажет направление вектора индукции магнитного поля, созданного током (2).
При помещении проводника с током в однородное магнитное поле модуль действующей на него силы Ампера равен произведению модуля индукции магнитного поля, длины этого проводника, силы тока в нем и синуса угла между направлением тока и вектором магнитной индукции:
Направление силы Ампера определяется правилом левой руки: если расположить левую руку в магнитном поле так, чтобы линии магнитной индукции были направлены в ладонь, а четыре пальца были вытянуты по направлению тока, то отведенный под 90 о большой палец укажет направление силы Ампера.
В начале XIX века один из основоположников математической теории электромагнетизма, немецкий математик и физик Карл Фридрих Гаусс (1777-1855) разработал теорию электромагнитной пушки, называемой «пушкой Гаусса». Принцип её работы основан на взаимодействии катушки с током и железного снаряда (постоянный магнит). На рисунке изображены модель пушки Гаусса и схема принципа его работы (а).
После того, как датский ученый X. Эрстед экспериментально установил существование взаимодействия проводника с током и магнитной стрелки, французский физик А. Ампер выяснил, что два параллельных проводника с током взаимодействуют как два постоянных магнита. Стало известно, что между параллельными проводниками с токами одинакового направления взаимодействие носит характер притяжения, а между проводниками с токами противоположного направления -характер отталкивания. Так как электрический ток является упорядоченным движением заряженных частиц, то магнитное взаимодействие является взаимодействием магнитных полей, созданных движущимися заряженными частицами в пространстве.
Магнитное поле действует с определенной силой на любой проводник с током (пробный ток), помещенный в это поле. Модуль этой силы, называемой силой Ампера, равен произведению силы тока в проводнике, модуля вектора магнитной индукции, длины проводника и синуса угла между направлением тока и вектором индукции магнитного поля:
Известно, что направление силы Ампера определяется правилом левой руки. Если проводник с током перпендикулярен вектору магнитной индукции (sin90°=l), то сила Ампера принимает максимальное значение:
С помощью этой формулы можно выразить физическую суть силовой характеристики магнитного поля — индукции магнитного поля.
Индукция магнитного поля — векторная величина, численно равная максимальной силе, действующей на элемент тока (), помещенный в это поле:
За направление вектора магнитной индукции в данной точке поля принимают направление, которое указывает северный полюс свободной магнитной стрелки, помещенной в эту точку поля (с). Единицей измерения магнитной индукции в СИ является тесла (Тл):
1 тесла — индукция такого магнитного поля, которое на проводник длиной 1 м, расположенный перпендикулярно линиям магнитной индукции, и силой тока 1 А, действует с силой 1 Н.
Магнитное поле, в каждой точке которого числовое значение и направление вектора магнитной индукции одинаковы, называется однородным магнитным полем.
Для магнитного поля выполняется принцип суперпозиции: вектор индукции результирующего магнитного поля, созданного несколькими проводниками с током, равен геометрической сумме векторов индукции отдельных магнитных полей, созданных этими проводниками:
С целью визуализации магнитного поля его изображают с помощью линий магнитной индукции (силовые линии поля) (d):
Линия индукции магнитного поля — линия, касательная к каждой точке которой совпадает с вектором магнитной индукции в этой точке.
Линии индукции магнитного поля замкнутые, они не имеют ни начала, ни конца.
Поле, силовые линии которого являются замкнутыми, называют вихревым.
Применение силы Ампера в электроизмерительных приборах
Известно, что существуют различные системы электроизмерительных приборов — амперметра, вольтметра и ваттметра. Это магнитоэлектрические, электромагнитные и электродинамические системы. Принцип работы всех этих систем основан на действии магнитного поля на проводник с током.
Принцип работы приборов магнитоэлектрической системы основан на взаимодействии магнитного поля постоянного магнита с магнитным полем, возникающим вследствие прохождения измеряемого тока через проводящую рамку (е).
Принцип работы прибора электромагнитной системы основан на взаимодействии магнитного поля, возникающего в результате прохождения измеряемого тока через неподвижную катушку, с подвижным стальным сердечником, помещенным в это поле (f).
Принцип действия прибора электродинамической системы основан на взаимодействии магнитных полей токов, протекающих по неподвижной и подвижной катушкам (или системам катушек) (g).
Магнитный поток и явление электромагнитной индукции
После проведения многочисленных опытов М. Фарадей в 1831 году установил, что изменения магнитного поля приводят к возникновению электрического тока в замкнутом проводящем контуре.
Явление возникновения электрического тока в замкнутом проводящем контуре, помещенном в изменяющееся магнитное поле, называют электромагнитной индукцией, а возникающий ток — индукционным током.
Возникновение переменного магнитного поля всегда сопровождается созданием в окружающем пространстве вихревого электрического поля.
Вихревое электрическое поле отличается от электростатического:
- a) электростатическое поле создается неподвижным электрическим зарядом, а вихревое электрическое поле создается переменным магнитным полем;
- b) линии напряженности электростатического поля не замкнуты: они начинаются на положительных зарядах и заканчиваются на отрицательных зарядах. Линии напряженности вихревого электрического поля не имеют ни начала, ни конца — эти линии замкнуты.
В 1833 году русский физик Э. Ленц установил общее правило определения направления индукционного тока, так называемое правило Ленца:
Индукционный ток принимает такое направление, что созданное им магнитное поле противодействует тому изменению внешнего магнитного поля, которое стало причиной возникновения тока.
При усилении внешнего магнитного поля магнитное поле индукционного тока ослабляет это изменение — вектор индукции магнитного поля индукционного тока направлен против вектора индукции внешнего магнитного поля (1).
При ослаблении внешнего магнитного поля магнитное поле индукционного тока препятствует изменению, то есть стремится к тому, чтобы это поле не ослабло. Вектор индукции магнитного поля индукционного тока направлен так же, как и вектор индукции внешнего магнитного поля (2).
Магнитный поток
Если поместить замкнутый контур (рамку) в однородное магнитное поле, то через площадь S, ограниченную этим контуром, проходит определенное количество линий магнитной индукции (с). Величину, прямо пропорциональную числу этих линий индукции, называют потоком магнитной индукции, или просто магнитным потоком.
Поток магнитной индукции (Ф) — скалярная физическая величина, равная произведению модуля вектора магнитной индукции, площади контура и косинуса угла между вектором магнитной индукции и нормалью к площади контура:
Магнитный поток относится к скалярным величинам, которые могут принимать положительные, отрицательные значения, а также равняться нулю:
- — если угол между вектором индукции и нормалью к плоскости контура острый, то магнитный поток принимает положительные значения, а если этот угол тупой — отрицательные;
- — если вектор индукции перпендикулярен плоскости контура, то есть параллелен нормали к плоскости, то
тогда магнитный поток, пронизывающий плоскость контура, принимает максимальное значение:
- — если вектор индукции параллелен поверхности, то есть перпендикулярен нормали, то
тогда магнитный поток не проходит через плоскость контура, то есть он равен нулю:
Значит, линии магнитной индукции не пронизывают поверхность контура.
Единицей измерения магнитного потока в СИ является вебер (1 Вб):
1 Вебер — магнитный поток, пронизывающий поверхность площадью 1 м 2 , ограниченную проводящим контуром, расположенным в магнитном поле с индукцией 1 Тл перпендикулярно линиям индукции поля.
Явление электромагнитной индукции
В 1831 году английский ученый Майкл Фарадей (1791-1867) открыл явление электромагнитной индукции и показал существование взаимосвязи между электрическим и магнитным полем.
Вы знаете, что при введении в катушку, соединенную с гальванометром, постоянного магнита, и выведении его из катушки в витках катушки возникает индукционный ток. А если магнит неподвижен внутри катушки или совершает вращательное движение внутри катушки, то ток не возникает. Значит, причиной возникновения индукционного тока является изменение магнитного потока, пронизывающего контур (d и е).
Возникновение электрического тока в проводящем контуре в результате изменений магнитного потока, пронизывающего площадь, ограниченную этим контуром, называют явлением электромагнитной индукции.
Направление индукционного тока зависит от того, увеличивается или уменьшается пронизывающий контур магнитный поток.
1. Магнитный поток увеличивается
Это случай, когда магнит приближается к контуру. В результате магнитный поток растет, индукционный ток, возникающий в контуре при изменении внешнего поля, создает свое собственное магнитное поле. Это вновь созданное поле отталкивает приближающийся к катушке магнит. Значит, вектор индукции
внешнего поля, создавшего ток в контуре, направлен против вектора
собственного магнитного поля контура с током (см. d). В этом случае магнит и контур отталкиваются одноименными магнитными полюсами. Для круговых токов можно применять правило правого буравчика и легко определить, как направлен индукционный ток — его направление совпадает с направлением вращения стрелки часов.
Правило правого буравчика для кругового тока
Правило правого буравчика для кругового тока: при вращении рукоятки буравчика по направлению кругового тока направление его поступательного движения совпадает с направлением вектора индукции магнитного поля внутри кругового тока (f).
2. Магнитный поток уменьшается Это случай, когда магнит выводится из катушки. В результате магнитный поток уменьшается. Возникающий в контуре индукционный ток принимает такое направление, при котором вектор индукции
его собственного магнитного ноля направлен так же, как и вектор индукции внешнего магнитного поля
. В этом случае магнит и контур притягиваются, как магниты, противоположными полюсами (см. е). На основе правила правого буравчика устанавливается, что индукционный ток направлен против направления вращения стрелки часов.
Итак, возникающий в замкнутом проводящем контуре индукционный ток всегда направлен так, что его собственное магнитное поле препятствует тем изменениям внешнего магнитного поля, которые стали причиной возникновения этого тока.
Это правило Ленца, позволяющее определить направление индукционного тока.
Закон электромагнитном индукции
Упорядоченное движение заряженных частиц называется электрическим током.
Для существования непрерывного электрического тока в проводнике необходимо выполнение следующих условий: наличие в проводнике заряженных частиц (носителей заряда), способных свободно перемещаться по проводнику; действие электрической силы, способной перемещать эти частицы в определенном направлении; проводник (цепь, состоящая из проводников), по которому проходит электрический ток, должен быть замкнутым.
За направление электрического тока условно принято направление вектора напряженности электрического поля внутри проводника.
За направление электрического тока принято направление движения положительных зарядов (против направления движения свободных электронов).
Зависимость силы тока в данном проводнике от напряжения на его концах проводника и от его сопротивления выражается законом Ома для участка цепи постоянного тока.
Сила тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению:
Индукционный ток, как и любой другой, создается электрическим полем.
Существование переменного магнитного поля всегда сопровождается появлением в окружающем пространстве вихревого электрического поля. Именно вихревое электрическое поле (а не переменное магнитное) действует на свободные электроны в замкнутом контуре и способствует возникновению индукционного тока в нем.
Вихревое электрическое поле существенно отличается от электростатического:
- а) Электростатическое поле создается покоящимися зарядами, а вихревое электрическое переменным магнитным полем;
- b) Линии напряженности электростатического поля не замкнуты: они начинаются на положительных зарядах и заканчиваются на отрицательных зарядах. Линии напряженности вихревого электрического поля не имеют ни начала, ни конца, они замкнуты как линии индукции магнитного поля.
Одним из современных видов общественного транспорта является поезд на воздушной подушке, движущийся в подвешенном состоянии левитации -без непосредственного контакта с дорогой. Вместо колес шасси этого поезда, называемого МагЛев, оснащено электромагнитной опорой и направляющими магнитами. Железная дорога состоит из проводящего рельса Т-образной формы, оснащенного электромагнитом, создающим мощный индукционный ток. Такой поезд, испытания которого проводились в Японии вблизи города Фудзияма, показал рекордную скорость 603 На рисунке показана упрощенная схема МагЛева (а).
Вихревое электрическое поле и ЭДС индукции
Причиной возникновения индукционного тока в замкнутом проводящем контуре является возникновение вихревого электрического поля вокруг переменного магнитного ноля, которое, действуя на свободные электроны в контуре, приводит их в упорядоченное движение -создает индукционный электрический ток. Работа вихревого электрического поля по перемещению положительного единичного заряда по замкнутому проводнику характеризуется физической величиной, называемой электродвижущей силой индукции (ЭДС индукции).
Электродвижущая сила индукции — скалярная физическая величина, равная отношению работы, совершенной вихревым электрическим полем при перемещении положительного единичного заряда вдоль замкнутого контура, к величине этого заряда:
В проведенном исследовании явления электромагнитной индукции вы определили, что значение возникшего в замкнутом контуре индукционного тока пропорционально скорости изменения магнитного потока, проходящего через поверхность, ограниченную этим контуром. Значит, и электродвижущая сила индукции, создающая индукционный ток в проводящем контуре, зависит от скорости изменения внешнего магнитного потока.
Если за очень малый промежуток времени магнитный поток изменяется на
то отношение
является скоростью изменения магнитного потока.
Закон электромагнитной индукции
На основе вышесказанного можно выразить закон электромагнитной индукции:
ЭДС индукции, возникающая в замкнутом проводящем контуре, прямо пропорциональна скорости изменения магнитного потока, проходящего через ограниченную этим контуром поверхность:
Знак минус в выражении (2) указывает на то, что магнитный поток индукционного тока препятствует изменению внешнего магнитного потока, породившего индукционный ток.
Если контур состоит из N числа витков, го выражение (2) принимает вид:
Здесь — ЭДС индукции, единицей ее измерения является вольт (1 В):
Сила индукционного тока, возникающего в замкнутом проводящем контуре, определяется согласно закону Ома для участка цепи:
Здесь R — сопротивление контура.
ЭДС индукции в движущихся в магнитном поле проводниках. При движении проводника в магнитном поле находящиеся внутри него свободные заряженные частицы движутся вместе с ним. По этой причине на каждую частицу действует сила Лоренца. В результате свободные заряды, перемещаясь внутри проводника, совершают упорядоченное движение — в проводнике возникает ЭДС индукции.
Возникающая ЭДС индукции зависит от скорости проводника, длины части проводника, находящейся в поле, и модуля вектора магнитной индукции. Это легко доказывается на основе закона электромагнитной индукции.
Представим, что проводник длиной переместился в магнитном поле индукцией
на
в направлении, перпендикулярном вектору индукции (b). ЭДС индукции, возникающая при этом в проводнике:
Здесь принято во внимание, что и
(см. b). Если вектор скорости составляет угол
с вектором магнитной индукции, то ЭДС индукции определяется так:
Направление индукционного тока в проводнике, движущегося в магнитном иоле, удобно определять правилом правой руки:
Правую руку следует держать в магнитном поле так, чтобы вектор входил в ладонь, а отогнутый на 90° большой палец показывал направление движения проводника, тогда четыре вытянутых пальца укажут направление индукционного тока.
Кстати:
Принцип работы электронных счетчиков потребления, используемых в быту, основан на применении закона электромагнитной индукции. Например, в электронных счетчиках потребления воды в проводящем электрический ток потоке жидкости возникает ЭДС индукции, пропорциональная скорости жидкости. Индукционный ток в электронной части прибора преобразуется в цифровой сигнал.
ЭДС самоиндукции и энергия магнитного поля
Инертность — одно из важнейших свойств тела (происходит от латинского слова «inertia» — бездеятельность, ленивость).
Инертность — это свойство тел, выражающееся в том, что на изменение скорости тела всегда требуется определенное время. Явление сохранения телом состояния покоя или прямолинейного равномерного движения при отсутствии действия на тело других тел (когда действующие на тело силы уравновешивают друг друга) называется инерцией.
Мера инертности тела — его масса.
Энергия, которой обладает тело вследствие своего движения, называется кинетической энергией. Кинетическая энергия тела зависит от массы тела и модуля его скорости (не от направления):
Так как магнитные свойства разных веществ различны, то индукция магнитного поля, созданного в них одним и тем же источником поля, будет различна. Магнитные свойства веществ характеризуются величиной, называемой магнитной проницаемостью вещества.
Магнитная проницаемость вещества показывает, во сколько раз модуль индукции однородного магнитного поля В в веществе отличается от индукции этого магнитного поля в вакууме Во:
Здесь (мю) — магнитная проницаемость вещества. Это безразмерная величина.
Прохождение электрического тока через газ при отсутствии внешнего воздействия называется самостоятельным разрядом. Одним из видов самостоятельного газового разряда является искровой разряд.
Искровой разряд возникает в воздухе при высоком напряжении между электродами и наблюдается в виде светящихся узких каналов зигзагообразной формы. Температура в канале разряда может достигать 10 ООО °С, сила тока до 5000 А, напряжение до 10 4 В.
Кстати:
Наверно, каждый из вас наблюдал появление кратковременной искры при вынимании вилки прибора в рабочем режиме из электрической розетки. Это значит, что в воздухе между вилкой прибора и электрической розеткой возник самостоятельный разряд с напряжением несколько тысяч вольт. Такая искра иногда приводит к выводу из строя вилки или розетки.
ЭДС самоиндукции
Электрический ток, существующий в любом замкнутом контуре, создает собственное магнитное поле (находится в собственном магнитном поле). При изменении силы тока в контуре одновременно происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока приводит к возникновению вихревого электрического поля, и в результате в этом контуре возникает ЭДС индукции.
Явление возникновения ЭДС индукции в замкнутом проводящем контуре в результате изменения силы тока в нем называют самоиндукцией.
При увеличении силы тока в замкнутом контуре от нуля до определенного значения увеличивается и проходящий через этот контур магнитный поток. Возникающая в контуре в результате увеличения магнитного потока ЭДС самоиндукции создает индукционный ток, направленный против проходящего по контуру основного тока — индукционный ток замедляет рост основного тока и достижение им максимального значения — на увеличение силы тока до максимального значения уходит определенное время (кривая OA, b).
При размыкании цепи сила тока уменьшается от максимального значения до нуля, вместе с этим уменьшается магнитный поток. Уменьшение магнитного потока приводит к возникновению в контуре ЭДС самоиндукции, которая в свою очередь создает в этом контуре индукционный ток, направленный, согласно правилу Ленца, так же, как и основной ток, и замедляющий его уменьшение (кривая ВС, b).
Из вышесказанного становится ясно, что возникающий в контуре собственный магнитный поток прямо пропорционален силе проходящего через контур тока — или:
Здесь L является коэффициентом пропорциональности (между и
) и называется индуктивностью контура (катушки).
Индуктивность зависит от геометрических размеров контура (катушки), от магнитной проницаемости среды внутри него, от числа витков. Она не зависит от силы тока в контуре и магнитного потока.
Индуктивность — скалярная величина, единица ее измерения в СИ названа генри (1 Гн), в честь американского ученого Джозефа Генри:
1 Гн — индуктивность такого контура (катушки), в которой при силе тока 1 А через контур проходит собственный магнитный поток 1 Вб.
Если учесть выражение (1) в законе электромагнитной индукции, то получим, что ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, проходящего через контур:
Здесь — ЭДС самоиндукции,
— скорость изменения силы тока в контуре.
Энергия магнитного поля
Согласно закону сохранения энергии, работа, совершенная при создании ЭДС индукции, будет равна энергии магнитного поля, создавшего его. Для определения этой энергии удобно воспользоваться схожестью явления самоиндукции с явлением инерции. Так, индуктивность L играет такую же роль при изменениях силы тока в электромагнитных процессах, какую играет масса
— при изменениях скорости
в механических процессах. Тогда для энергии магнитного поля, создаваемого контуром в электромагнитных явлениях, можно принять выражение, аналогичное выражению кинетической энергии тела в механических явлениях:
Если в этом выражении учесть формулу (1), получим ещё две формулы для энергии магнитного поля:
Из теоретических вычислений получено, что плотность энергии магнитного поля прямо пропорциональна квадрату магнитной индукции и обратно пропорциональна магнитным свойствам среды:
Здесь — магнитная постоянная:
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Для чего необходимо измерять электромагнитное поле
Электромагнитным полем называют силовое поле, которое равносильно электрическому полю и магнитному, находящимися под прямым углом по отношению друг к другу. Возмущение электромагнитного поля называется электромагнитным излучением.
Единицы измерения электромагнитного поля
Электромагнитное поле – комплексное явление. Так, электрическое поле характеризуется напряженностью, обозначаемой буквой Е и измеряемой в вольтах на метр (В/м). Характеристиками магнитного поля также является напряженность Н, измеряемая в амперах на метр (А/м), а также индукция В, измеряемая в теслах (Тл).
Типы электромагнитных полей
Электромагнитные поля невозможно увидеть или почувствовать, но они окружают нас практически повсеместно. Их образуют линии электропередач, домашние электроприборы, компьютеры, телевизоры, сотовые телефоны. Различают следующие типы электромагнитных полей:
- естественные (постоянное электрическое и магнитное поле Земли, радиоволны космических тел);
- антропогенные (генерируемые источниками, созданными людьми).
Природные электромагнитные поля имеют большой диапазон частот и величин. Все живые существа на Земле адаптированы к подобному типу воздействия и его гипотетическое исчезновение привело бы к серьезным сбоям в жизнедеятельности.
Искусственные источники электромагнитных полей представлены следующими группами:
- излучатели низких и сверхнизких частот (0–3 кГц);
- излучатели радиочастотного и микроволнового диапазона (3 кГц–300 ГГц).
В первую группу входят ЛЭП, электростанции, трансформаторные подстанции, домашние электроприборы, электротранспорт. Самое большое излучение производит метро.
Ко второй группе относятся средства получения и передачи информации (радио, телевидение, навигационное оборудование, телефоны, Wi-Fi).
Электромагнитное загрязнение
Уровень электромагнитного загрязнения планеты уже достиг невиданных размеров, однако ученым еще не хватает точных знаний, как подобного рода поля влияют на живой организм. Без сомнения, они представляют опасность для человека и других живых существ, однако в среде ученых имеются разногласия по поводу их пределов и диапазонов. Степень негативного воздействия зависит от частоты излучения, интенсивности, продолжительности, индивидуальных особенностей организма. Есть все основания полагать, что оно может провоцировать онкологические заболевания, нарушения половой и детородной функции, разрушение хрусталика глаза, снижение числа красных кровяных телец, сбои в обмене веществ, а также создавать помехи для работы нервной системы. Однако точных данных, при каких условиях возможно развитие болезней, до сих пор нет. ВОЗ, например, пока не видит связи между использованием мобильных телефонов и онкологическими заболеваниями, но проводит исследования на эту тему и признает наличие пробелов в знаниях об электромагнитных полях.
В России действует СанПиН 2.6.1.802-99 «Электромагнитные излучения радиочастотного диапазона», а также ряд других нормативных документов, регламентирующих уровень электромагнитного излучения на разных объектах. Для проведения измерений электромагнитных полей в офисах, жилых помещениях и на производственных объектах обращайтесь в аккредитованную лабораторию ООО «Веста».
Читайте также
Котлеты, пельмени, биточки, тефтели, манты – далеко не полный список блюд, в которых используется мясной фарш.
Система управления охраной труда (СУОТ) считается действительной, если существует разработанный и утвержденный документ.
Одним из ключевых параметров среды, влияющим на организм человека, является влажность воздуха – масса насыщенных паров воды в единице объема
в чем измеряется электромагнитное излучение и какая его величина опасна для здоровья и на протяжении какого времени?
ЭМИ характеризуются тремя основными параметрами: напряженностью электрического поля (Е) , напряженностью магнитного поля (Н) и плотностью потока энергии (ППЭ) .
Оценка интенсивности ЭМИ различных диапазонов неодинакова. В диапазоне радиочастотного излучения менее 300 МГц ( по рекомендации Международной организации IRPA / INIRC (Международный комитет по неионизирующим излучениям / Международная ассоциация по радиационной защите) — менее 10 МГц) интенсивность излучения выражается напряженностью электрической и магнитной составляющих и определяется соответственно в вольтах на метр (В/м) (или киловольтах на метр (кВ/м) : 1 кВ/м) и амперах на метр (А/м) .
В диапазоне СВЧ, т. е. выше 300 МГц, интенсивность, или ППЭ, выражается в ваттах на метр квадратный (Вт/м2; 1 Вт/м2 = 0,1 мВт/см2 = 100 мкВт/см2).
Для характеристики магнитных полей вводится величина, называемая индукцией магнитного поля (В) , равная силе, с которой магнитное поле действует на единичный элемент тока, расположенный перпендикулярно к вектору индукции. Единицей индукции является тесла (Тл) .
Для характеристики магнитного поля в вакууме вводится величина, называемая напряженностью магнитного потока (Н) , измеряемая в амперах на метр (А/м) . Напряженность и индукция магнитного поля связаны соотношением:
В=m m0 Н,
где m0 — магнитная постоянная, равная 4×10-7 Гс/м;
m — относительная магнитная проницаемость веществ.
1Тл = 7,965 А/м;
1 А/м = 1,256×10-6 Тл.
Внесистемная единица магнитной индукции — гаусс (Гс) : 1Гс = 10-4 Тл; напряженность магнитного поля — эрстед (Э) : 1Э = 79,58 А/м.
В воздушной среде 1 Гс = 1Э.
Про опасность ЭМИ говорить в отрыве от характеристики самого ЭМИ некорректно.
Например, поля разных частот действуют на организм сильно по-разному. В поле частотой 50 Гц мы находимся постоянно (излучает обычная электросеть) , и особых проблем нет.
А вот если ухитриться сунуть руку в микроволновку — и секунды хватит, чтобы ощутить пагубное влияние ЭМИ на организм человека.
Что такое электромагнитное излучение и как оно влияет на человека
Что такое электромагнитное излучение?
Электромагнитное излучение – это колебания электрического и магнитного полей. Скорость распространения в вакууме равна скорости света (около 300 000 км/с). В других средах скорость распространения излучения меньше.
Электромагнитное излучение классифицируется по частотным диапазонам. Границы между диапазонами весьма условны, в них нет резких переходов.
- Видимый свет. Это самый узкий диапазон во всем спектре. Человек может воспринимать только его. Видимый свет сочетает в себе цвета радуги: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. За красным цветом находится инфракрасное излучение, за фиолетовым – ультрафиолетовое, но они уже не различимы человеческим глазом.
Волны видимого света очень короткие и высокочастотные. Длина таких волн – одна миллиардная часть метра или один миллиард нанометров. Видимый свет от Солнца – своеобразный коктейль, в котором смешаны три основных цвета: красный, желтый и синий.
- Ультрафиолетовое излучение – часть спектра между видимым светом и рентгеном. Ультрафиолетовое излучение используется для создания световых эффектов на сцене театра, дискотеках; банкноты некоторых стран содержат защитные элементы, видимые только при ультрафиолете.
- Инфракрасное излучение является частью спектра между видимым светом и короткими радиоволнами. Инфракрасное излучение – это скорее тепло, чем свет: каждое нагретое твердое или жидкое тело испускает непрерывный инфракрасный спектр. Чем выше температура нагревания, тем короче длина волны и выше интенсивность излучения.
- Рентгеновское излучение (рентген) . Волны рентгеновского излучения обладают свойством проходить сквозь вещество и не поглощаться слишком сильно. Видимый свет такой способностью не обладает. Благодаря рентгену некоторые кристаллы могут светиться.
- Гамма-излучение – это наиболее короткие электромагнитные волны, которые проходят сквозь вещество без поглощения: они могут преодолеть однометровую стену из бетона и свинцовую преграду толщиной в несколько сантиметров.
ВАЖНО! Необходимо избегать рентгеновского и гаммы-излучений, так как они представляют для человека потенциальную опасность.
Шкала электромагнитных излучений
Процессы, происходящие в космосе, и объекты, которые там находятся, порождают электромагнитные излучения. Шкала волн является методом регистрации электромагнитных излучений.
Детальная иллюстрация спектрального диапазона представлена на рисунке. Границы на такой шкале условны.
Основные источники электромагнитного излучения
- Линии электропередач. На расстоянии 10 метров они создают угрозу для здоровья человека, поэтому их размещают на большой высоте либо закапывают глубоко в землю.
- Электротранспорт. Сюда входят электрокары, электрички, метро, трамваи и троллейбусы, а также лифты. Самым вредным воздействием обладает метро. Лучше передвигаться пешком или на собственном транспорте.
- Спутниковая система. К счастью, сильное излучение, сталкиваясь с поверхностью Земли, рассеивается, и до людей долетает только малая часть опасности.
- Функциональные передатчики: радары и локаторы. Они излучают электромагнитное поле на расстоянии 1 км, поэтому все аэропорты и метеорологические станции размещаются как можно дальше от городов.
Излучение от бытовых электроприборов
Широко распространенными источниками электромагнитного излучения являются бытовые приборы, которые находятся у нас дома.
- Мобильные телефоны. Излучение от наших смартфонов не превышает установленные нормы, но когда мы звоним кому-то, после набора номера идет соединение базовой станции с телефоном. В этот момент сильно превышается норма, так что подносите телефон к уху не сразу, а через несколько секунд после набора номера.
- Компьютер. Излучение также не превышает норму, но при длительной работе СанПин рекомендует каждый час делать перерыв на 5-15 минут.
- Микроволновая печь. Корпус микроволновки создает защиту от излучений, но не на 100%. Находиться рядом с микроволновкой – опасно: излучение проникает под кожу человека на 2 см, запуская патологические процессы. Во время работы СВЧ-печи соблюдайте расстояние в 1-1,5 метра от нее.
- Телевизор. Современные плазменные телевизоры не представляют большой опасности, а вот старых с кинескопами стоит опасаться и держаться на расстоянии минимум 1,5 м.
- Фен. Когда фен работает, он создает электромагнитное поле огромной силы. В это время мы сушим голову достаточно долго и держим фен близко к голове. Чтобы снизить опасность, пользуйтесь феном максимум 1 раз в неделю. Суша волосы вечером, вы можете вызвать бессонницу.
- Электробритва. Вместо нее приобретите обычный станок, а если привыкли – электробритву на аккумуляторе. Это в значительной мере снизит электромагнитную нагрузку на организм.
- Зарядные устройства создают поле во все стороны на расстоянии 1 м. Во время зарядки вашего гаджета не находитесь близко к нему, а после зарядки отсоедините устройство из розетки, чтобы излучения не было.
- Электропроводка и розетки.Кабеля, отходящие от электрощитов, представляют особую опасность. Расстояние от кабеля до спального места должно быть минимум 5 метров.
- Энергосберегающие лампы также излучают электромагнитные волны. Это касается люминесцентных и светодиодных ламп. Установите галогеновую лампу или лампу накаливания: они ничего не излучают и не представляют опасности.
Установленные нормы ЭМИ для человека
Каждый орган в нашем теле вибрирует. Благодаря вибрации вокруг нас создается электромагнитное поле, содействующее гармоничной работе всего организма. Когда на наше биополе воздействуют другие магнитные поля, это вызывает в нем изменения. Иногда организм справляется с влиянием, иногда – нет. Это становится причиной ухудшения самочувствия.
Даже большое скопление людей создает электрический заряд в атмосфере. Полностью изолироваться от электромагнитного излучения невозможно. Есть допустимый уровень ЭМИ, который лучше не превышать.
Вот безопасные для здоровья нормы:
- 30-300 кГц, возникающие при напряженности поля 25 Вольт на метр (В/м),
- 0,3-3 МГц, при напряженности 15 В/м,
- 3-30 МГц – напряженность 10 В/м,
- 30-300 МГц – напряженность 3 В/м,
- 300 МГц-300 ГГц – напряженность 10 мкВт/см 2 .
При таких частотах работают гаджеты, радио- и телеаппаратура.
Воздействие электромагнитных лучей на человека
Нервная система чрезвычайна чувствительна к влиянию электромагнитных лучей: нервные клетки уменьшают свою проводимость. В результате ухудшается память, притупляется чувство координации.
При воздействии ЭМИ на человека не только подавляется иммунитет – он начинает атаковать организм.
ВАЖНО! Для беременных женщин электромагнитное излучение представляет особую опасность: снижается скорость развития плода, появляются дефекты в формировании органов, велика вероятность преждевременных родов.
Защита от электромагнитных излучений
- Если вы проводите много времени за компьютером, запомните одно правило: расстояние между лицом и монитором должно быть около метра.
- Уровень электромагнитного излучения бытовой техники, которую вы покупаете, не должен доходить до отметки «минимум». Обратитесь к продавцу-консультанту. Он поможет выбрать наиболее безопасную технику.
- Ваша кровать не должна находиться рядом с местом, где проложена электропроводка. Расположите спальное место в противоположном конце комнаты.
- Установите защитный экран на компьютер. Он выполнен в виде мелкой металлической сетки и действует по принципу Фарадея: вбирает в себя все излучение, защищая пользователя.
- Сократите пребывание в электрифицированном общественном транспорте. Отдавайте предпочтение пешей ходьбе, велосипеду.
Как проверить уровень электромагнитного излучения в домашних условиях
Точно обрисовать, как обстоят дела с электромагнитным излучением в вашем доме, могут только специалисты. Когда в службу СЭС поступает объявление о превышении допустимой нормы ЭМИ, на место выезжают работники со специальными приборами, позволяющими получить точные данные. Показатели обрабатываются. Если они завышены, предпринимаются определенные меры. Первым делом выясняют причину неполадки. Это может быть ошибка в строительстве, проектировании, неправильная эксплуатация.