Какие лучи отклоняются в магнитном поле
Перейти к содержимому

Какие лучи отклоняются в магнитном поле

  • автор:

Альфа-излучение

В воздухе при атмосферном давлении альфа-излучение преодолевает лишь небольшое расстояние, как правило, от 2,5 до 7,5 см. В условиях вакуума электрическое и магнитное поля заметно отклоняют его от первоначальной траектории. Направление и величина отклонений указывают на то, что альфа-излучение — это поток положительно заряженных частиц, для которых отношение заряда к массе (e/m) в точности соответствует дважды ионизированному атому гелия (He++). Эти данные и результаты спектроскопического исследования собранных альфа-частиц позволили Резерфорду сделать вывод о том, что они являются ядрами атома гелия.

Бета-излучение

Это излучение обладает большей проникающей способностью, чем альфа-излучение. Как и альфа-излучение, оно отклоняется в магнитном и электрическом полях, но в противоположную сторону и на большее расстояние. Это указывает на то, что бета-излучение является потоком отрицательно заряженных частиц малой массы. По отношению e/m Резерфорд идентифицировал бета-частицы как обычные электроны.

3. Гамма-излучение

Гамма-излучение проникает в вещество гораздо глубже, чем альфа- и бета-излучения. Оно не отклоняется в магнитном поле и, следовательно, не имеет электрического заряда. Гамма-лучи были идентифицированы как жесткое (т.е. имеющее очень высокую энергию) электромагнитное излучение. Разделение радиоактивного излучения в магнитном поле на альфа-, бета- и гамма-лучи схематично показано на рисунке.

СХЕМА ЭКСПЕРИМЕНТА, иллюстрирующего отклонение разных видов радиоактивного излучения в магнитном поле.

Мерой радиоактивности служит активность. Измеряется в Беккерелях (Бк), что соответствует 1 распаду в секунду. Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или объема (Бк/куб.м). Также встречается еще такая единица активности, как Кюри (Ки). Это — огромная величина: 1 Ки = 37000000000 Бк. Активность радиоактивного источника характеризует его мощность. Так, в источнике активностью 1 Кюри происходит 37000000000 распадов в секунду.

Виды радиоактивных излучений:

1. Естественная радиоактивность существует миллиарды лет, она присутствует буквально повсюду. Ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Любой человек слегка радиоактивен: в тканях человеческого тела одним из главных источников природной радиации являются калий-40 и рубидий-87, причем не существует способа от них избавиться.Учтем, что современный человек до 80% времени проводит в помещениях — дома или на работе, где и получает основную дозу радиации: хотя здания защищают от излучений извне, в стройматериалах, из которых они построены, содержится природная радиоактивность. Существенный вклад в облучение человека вносит радон и продукты его распада.

2.Радон: Основным источником этого радиоактивного инертного газа является земная кора. Проникая через трещины и щели в фундаменте, полу и стенах, радон задерживается в помещениях. Другой источник радонов помещении — это сами строительные материалы (бетон, кирпич и т.д.), содержащие естественные радионуклиды, которые являются 7 источником радона. Радон может поступать в дома также с водой (особенно если она подается из артезианских скважин), при сжигании природного газа и т.д.Радон в 7,5 раз тяжелее воздуха. Как следствие, концентрация радона в верхних этажах многоэтажных домов обычно ниже, чем на первом этаже. Основную часть дозы облучения от радона человек получает, находясь в закрытом, непроветриваемом помещении; регулярное проветривание может снизить концентрацию радона в несколько раз. При длительном поступлении радона и его продуктов в организм человека многократно возрастает риск возникновения рака легких. Сравнить мощность излучения различных источников радона поможет следующая диаграмма.

3.Техногенная радиоактивность возникает вследствие человеческой деятельности. Осознанная хозяйственная деятельность, в процессе которой происходит перераспределение и концентрирование естественных радионуклидов, приводит к заметным изменениям естественного радиационного фона. Сюда относится добыча и сжигание каменного угля, нефти, газа, других горючих ископаемых, использование фосфатных удобрений, добыча и переработка руд. Такой вид транспорта, как гражданская авиация, подвергает своих пассажиров повышенному воздействию космического излучения. И, конечно, свой вклад дают испытания ядерного оружия, предприятия атомной энергетики и промышленности. Возможно и случайное (неконтролируемое) распространение радиоактивных источников: аварии, потери, хищения, распыление и т.п. Таки ситуации, к счастью, ОЧЕНЬ РЕДКИ. Кроме того, их опасность не следует преувеличивать.

Закон радиоактивного распада

Закон радиоактивного распада — закон, открытый Фредериком Содди и Эрнестом Резерфордом экспериментальным путём и сформулированный в 1903 году. Современная формулировка закона:

,

что означает, что число распадов за интервал времени в произвольном веществе пропорционально числу имеющихся в образце атомов .

В этом математическом выражении — постоянная распада, которая характеризует вероятность радиоактивного распада за единицу времени и имеющая размерность с −1 . Знак минус указывает на убыль числа радиоактивных ядер со временем.

Этот закон считается основным законом радиоактивности, из него было извлечено несколько важных следствий, среди которых формулировки характеристик распада — среднее время жизни атома и период полураспада.

Свойства радиоактивных излучений:

Ионизируют воздух; (ИОНИЗАЦИЯ ВОЗДУХА — процесс превращения нейтральных атомов и молекул воздушной среды в электрически заряженные частицы (ионы))

Действуют на фотопластинку;

Вызывают свечение некоторых веществ;

Проникают через тонкие металлические пластинки;

Интенсивность излучения пропорциональна

Интенсивность излучения не зависит от внешних факторов (давление, температура, освещенность, электрические разряды).

Радиоактивность.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев.

Темы кодификатора ЕГЭ : радиоактивность, альфа-распад, бета-распад, гамма-излучение, закон радиоактивного распада.

Явление радиоактивности обнаружил французский физик Анри Антуан Беккерель, и произошло это совершенно случайно.

В начале 1896 года всё научное сообщество было охвачено интересом к недавно открытым всепроникающим рентгеновским лучам. Беккерель решил выяснить, не появляются ли рентгеновские лучи при освещении солнечным светом некоторых минералов, и выбрал для своих экспериментов весьма редкую соль урана.

Опыт Беккереля был чрезвычайно прост. Кристаллы соли выставлялись на солнце и лежали при этом на фотопластинке. Разумеется, фотопластинка заворачивалась в чёрную бумагу, чтобы её не засветил солнечный свет. Но чёрная бумага — не помеха рентгеновским лучам, и если они действительно возникают, то засветят фотопластинку.

Итак, Беккерель положил завёрнутую фотопластинку с насыпанной поверх урановой солью на солнечный свет, подержал несколько часов и затем проявил фотопластинку. Ожидания подтвердились! После проявления на фотопластинке проступили очертания кристаллов соли урана.

Полагая, что и впрямь обнаружись рентгеновские лучи, испускаемые урановой солью под действием солнечного света, Беккерель доложил об этом на заседании Французской академии. Доклад вызвал большой интерес, и было решено, что на следующем заседании, то есть через неделю, Беккерель расскажет о результатах новых опытов.

А погода тем временем испортилась, и солнце на всю неделю скрылось за облаками. Медный крест, покрытый урановой солью и приготовленный для опытов, в ожидании солнца несколько дней пролежал в ящике письменного стола — поверх фотопластинки, завёрнутой в чёрную бумагу.

Накануне нового доклада облачность так и не рассеялась, и докладывать Беккерелю было нечего. Однако отчаяние и удачу порой разделяет лишь один шаг. Неизвестно почему, но Беккерель решил проявить фотопластинку, лежавшую в столе. Каково же было его удивление, когда он увидел проступившие на ней почернения в виде отчётливой тени креста!

Таким образом, солнце оказалось совершенно ни при чём. Было обнаружено новое явление природы: урановая соль без каких-либо внешних факторов, сама по себе испускает некоторое излучение, пронизывающее чёрную бумагу.

На следующий день Беккерель доложил об этом на заседании Французской академии и затем приступил к интенсивным исследованиям. В ходе своих экспериментов он обнаружил мследующие черты нового явления.

-Новые лучи могут проникать сквозь предметы и ионизировать воздух.
-Засвечивают фотопластинку только те вещества, которые содержат уран.
-Интенсивность излучения зависит только от количества урана в веществе. Само химическое соединение при этом роли не играет. Максимально интенсивным является излучение чистого урана.

Новое явление было впоследствии названо радиоактивностью. Из опытов Беккереля следовало, что радиоактивность есть свойство химического элемента урана самого по себе — то есть свойство, которым обладают атомы урана.

Уран оказался не единственным радиоактивным элементом. Мария Склодовская-Кюри спустя два года после открытия Беккереля обнаружила аналогичное излучение тория. Вместе с мужем, Пьером Кюри, они открыли новый радиоактивный химический элемент — полоний. Наконец, вручную переработав 11 тонн руды, Мария Склодовская-Кюри получила маленькую капельку чистого радия, который излучал в три миллиона раз интенсивнее урана.

Виды радиоактивных излучений.

Каков состав радиоактивного излучения? Оказалось, что радиоактивные вещества испускают три типа лучей, различающихся по своим физическим свойствам. Эти три компоненты обнаруживаются в результате пропускания радиоактивного излучения солей урана через сильное магнитное поле (рис. 1 ).

Рис. 1. Виды радиоактивных излучений

А именно, излучение радиоактивного препарата, находящегося внутри свинцового контейнера с узким каналом, направляется на фотопластинку. В отсутствии магнитного поля на фотопластинке наблюдается одно тёмное пятно. Но если пропустить излучение сквозь область магнитного поля, то пятен становится три — одно на прежнем месте и два по бокам от него на разных расстояниях. Это означает, что радиоактивное излучение в магнитном поле распалось на три существенно различные части.

То, что две компоненты отклонились в разные стороны, означает, что они являются соответственно потоками положительных и отрицательных зарядов. Третья компонента, не отклоняющаяся магнитным полем, электрического заряда не несёт.

Положительно заряженной компоненте была присвоена буква ; её называли -излучением, -лучами или потоком -частиц. Альфа-лучи достаточно слабо отклонялись магнитным полем. Тщательные исследования Резерфорда показали, что -частицы — это полностью ионизованные атомы гелия, то есть ядра гелия.

Отрицательно заряженная компонента была названа -излучением (или -лучами
). Они отклонялись магнитным полем значительно сильнее, чем -частицы. Бета-лучи оказались потоком электронов, мчащихся со скоростями, близкими к скорости света.

Нейтральная компонента получила название -излучения (или -лучей). (Электромагнитная природа гамма-излучения была установлена экспериментально: обнаружилась дифракция гамма-лучей на кристаллических решётках. Эти же опыты позволили измерить и длину волны гамма-излучения. Гамма-лучи оказались электромагнитными волнами чрезвычайно высокой частоты — выше, чем у рентгеновского излучения.) Соответственно, проникающая способность гамма-лучей также больше, чем у рентгеновских лучей.
Среди трёх компонент радиоактивного излучения наибольшей проникающей способностью также обладают гамма-лучи — они могут пробиться сквозь слой свинца толщиной в несколько сантиметров. Сильнее поглощаются веществом бета-лучи: тут хватит нескольких миллиметров свинца, чтобы поглотить их полностью. Слабее всего проникают сквозь вещество -частицы: они не могут, например, пройти через лист бумаги

Радиоактивные превращения.

Многочисленные эксперименты с радиоактивными веществами показали, что радиоактивность сопровождается изменениями атомов, и в результате этих изменений одни химические элементы превращаются в другие.

Положение химического элемента в таблице Менделеева определяется числом электронов в нейтральном атоме, или, что то же самое — зарядом ядра атома. Поэтому превращения химических элементов означают, что в результате радиоактивных процессов изменения претерпевают атомные ядра.

Ядра атомов радиоактивных элементов являются нестабильными. Каждое такое ядро в некоторый момент распадается, поэтому явление радиоактивности называют ещё радиоактивным распадом.

В процессе радиоактивного распада исходное вещество постепенно исчезает. Новые вещества, являющиеся продуктами распада, также могут быть нестабильными и распадаться дальше. Наблюдаются целые цепочки радиоактивных распадов — вплоть до образования стабильных элементов.

Самой известной такой цепочкой является радиоактивное семейство урана. Начинается эта цепочка с альфа-распада ядра , в результате которого образуется ядро тория и вылетает -частица:

Затем родившееся ядро тория испытывает бета-распад, испуская электрон и превращаясь в ядро протактиния :

Обратите внимание, что электрону приписывается зарядовое число -1 (так как заряд электрона равен -e) и массовое число 0 (так как электрон не содержит нуклонов).

В обеих формулах (1) и (2) мы наблюдаем два важных момента.

-Сумма массовых чисел продуктов распада равна массовому числу исходного ядра. Этот баланс массовых чисел отражает неизменность общего числа нуклонов до и после распада.

-Сумма зарядовых чисел продуктов распада равна зарядовому числу исходного ядра. Этот факт служит одним из многочисленных экспериментальных подтверждений закона сохранения заряда.

Поскольку -частица уносит заряд +2e, а электрон уносит заряд -e , то возникает следующая закономерность превращения химических элементов при — и -распадах.

Правило смещения. После -распада элемент смещается на две клетки назад, то есть к началу периодической системы. После -распада элемент смещается на одну клетку вперёд, то есть к концу периодической системы.

Общие формулы, выражающие правило смещения при альфа- и бета-распадах, выглядят так:

Формулы (1) и (2) — это самое начало радиоактивного семейства урана. Всего в этой цепочке происходит восемь -распадов и шесть -распадов (причём при каждом -распаде вдобавок излучается -квант), пока в самом конце цепочки не образуется стабильное ядро свинца .

Излучение всех элементов радиоактивного семейства урана как раз и засветило фотопластинку Беккереля, и именно эта смесь излучений была впервые разложена на компоненты в магнитном поле (рис. 1 ).

Закон радиоактивного распада.

Нестабильное ядро распадается самопроизвольно (или, как ещё говорят, спонтанно). Происходит это в случайный момент времени, так что невозможно предсказать, когда именно распадётся каждое конкретное ядро.Тем не менее, ядра каждого элемента обладают определённым средним временем жизни, характерным для данного элемента.

А именно, опыт показывает, что распад радиоактивного элемента происходит со строго определённой, присущей именно этому элементу скоростью. Скорость распада у разных элементов различна; она является такой же неотъемлемой характеристикой радиоактивного элемента, как зарядовое или массовое число. Вне зависимости от условий опыта можно точно сказать, спустя какой промежуток времени интенсивность излучения данного элемента уменьшится, например, в два раза.

Период полураспада — это время, в течение которого распадается половина имеющихся радиоактивных атомов. Период полураспада как раз и является количественной характеристикой скорости радиоактивного распада.

Величина периода полураспада может быть очень разной. Например, период полураспада урана равен 4,5 млрд. лет, радия — 1600 лет, полония -138 дней, а у инертного газа радона — он составляет всего 3,8 суток.

Выведем теперь закон радиоактивного распада, а именно — найдём, как зависит от времени количество атомов, не претерпевших пока радиоактивный распад. Начальное число радиоактивных атомов равно , период полураспада равен .

Имеем следующую простую цепочку рассуждений.

Спустя время количество оставшихся атомов будет равно

Спустя время атомов останется

Спустя время атомов останется

Становится ясно, что спустя время атомов останется

Поставляя сюда , получим:

Отбрасывая индекс k, находим число оставшихся атомов в зависимости от времени:

Мы получили закон радиоактивного распада. Количество нераспавшихся атомов оказывается показательной функцией, убывающей с течением времени.

Непосредственной характеристикой скорости распада радиоактивного элемента является активность — число радиоактивных распадов, происходящих в единицу времени. Активность есть производная по времени от числа распавшихся атомов:

Обозначая множитель перед показательной функцией через (это будет активность в начальный момент времени), получим:

Мы видим, что зависимость активности от времени имеет точно такой же вид, как и закон радиоактивного распада (3) . График зависимости активности от времени приведён на рис. 2 .

Рис. 2. Зависимость активности от времени

Ясно, что активность убывает тем быстрее, чем меньше период полураспада. И наоборот, при большом периоде полураспада активность меняется медленно. Например, активность радона (T= 3,8 суток) уменьшается буквально на глазах, а активность солей урана (T= 4,5 млрд.лет) остаётся практически неизменной на протяжении человеческой жизни.

Благодарим за то, что пользуйтесь нашими материалами. Информация на странице «Радиоактивность.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам. Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими материалами из данного раздела.

Закон радиоактивного распада

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет.

Получите невероятные возможности

Конспект урока «Закон радиоактивного распада»

Серия экспериментов, проведённая с соля́ми урана в период 1899—1900 гг., показала, что радиоактивное излучение в сильном магнитном поле распадается на три составляющие:

лучи первого типа отклоняются так же, как поток положительно заряженных частиц. Их назвали альфа-лучами;

лучи второго типа обычно отклоняются в магнитном поле так же, как поток отрицательно заряженных частиц, их назвали бета-лучами (существуют, однако, позитронные бета-лучи, отклоняющиеся в противоположную сторону);

а лучи третьего типа, которые не отклоняются магнитным полем, назвали гамма-излучением.

Хотя в ходе исследований были обнаружены и другие типы частиц, испускающихся при радиоактивном распаде, эти названия сохранились до сих пор, поскольку соответствующие типы распадов наиболее распространены.

Позже было установлено, что альфа-лучи представляют собой поток ядер атома гелия. А продуктом распада материнского ядра оказывается элемент, зарядовое число которого на две единицы меньше, а массовое число на четыре единицы меньше, чем у материнского ядра:

При бета-минус-распаде ядро атома испускает один электрон и антинейтрино, в результате чего образуется ядро нового элемента с тем же самым массовым числом, но с атомным номером на единицу больше, чем у материнского ядра:

А при бета-плюс-распаде ядра самопроизвольно испускают позитрон и электронное нейтрино. Ядро нового химического элемента имеет то же самое массовое число, но его атомный номер уменьшается на единицу:

Исследование изотопов различных химических элементов показало, что большинство из них превращается в более устойчивые изотопы путём радиоактивного распада. При этом очевидно, что в процессе радиоактивного распада число ядер со временем уменьшается. Но предсказать, когда именно распадётся то или иное ядро, оказалось невозможным. Однако было установлено, что для каждого радиоактивного ядра существует некоторое характерное время, называемое периодом полураспада, спустя которое в исходном состоянии остаётся половина первоначального количества радиоактивных ядер. При этом распавшиеся ядра превращаются в ядра других, более устойчивых изотопов.

Период полураспада характеризует такое свойство, как активность радионуклида. Данная величина указывает на интенсивность радиоактивных превращений, т. е. на количество радиоактивных распадов атомных ядер, происходящих за единицу времени.

В СИ единицей активности является беккерель. 1 Бк — это активность радиоактивного препарата, в котором происходит распад одного ядра за одну секунду. Внесистемной единицей активности служит кюри (1 Ки = 3,7 · 10 10 Бк).

Таким образом, чем меньше период полураспада радионуклида, тем быстрее происходит его распад и тем активнее элемент.

Отметим также, что период полураспада не зависит от того, в каком состоянии находится вещество: твёрдом, жидком или газообразном. Кроме того, период полураспада не зависит от времени, места и условий, в которых находится радиоактивное вещество. Поэтому количество радиоактивных ядер «тогда», и «сейчас» зависит только от промежутка времени, прошедшего с момента начала регистрации процесса распада ядер.

Как мы говорили, точно предсказать, когда произойдёт распад данного ядра невозможно. Однако можно оценить среднее число ядер, которые распадутся за данный промежуток времени. Закон, который описывает интенсивность радиоактивного распада от времени и количества радиоактивных атомов в образце, был открыт Фредериком Содди и Эрнестом Резерфордом в 1903 году. В своих работах «Сравнительное изучение радиоактивности радия и тория» и «Радиоактивные превращения» они сформулировали закон радиоактивного распада следующим образом: «Во всех случаях, когда отделяли один из радиоактивных продуктов и исследовали его активность независимо от радиоактивности вещества, из которого он образовался, было обнаружено, что активность при всех исследованиях уменьшается со временем по закону геометрической прогрессии».

Давайте с вами получим математическую форму закона радиоактивного распада. Для этого будем считать, что в начальный момент времени число радиоактивных ядер составляло «Эн нулевое». Тогда, через промежуток времени, равный периоду полураспада, у нас останется? Правильно, половина от их первоначального количества.

За второй период полураспада у нас распадётся половина от половины исходного числа ядер. То есть нераспавшимися останется четверть от начального числа ядер. Рассуждая далее аналогичным образом, найдём, что за промежуток времени, равный n периодам полураспада, радиоактивных ядер останется:

Поскольку n — это отношение времени наблюдения к периоду полураспада радиоактивного элемента, то последнюю запись можно представить в том виде, который вы сейчас видите на экране:

Полученное соотношение и выражает математическую запись закона радиоактивного распада. С его помощью можно найти число нераспавшихся ядер в любой момент времени.

Для примера давайте с вами решим такую задачу. Изотоп является β – -радиоактивным с периодом полураспада 30 лет. Определите заряд β-частиц, испущенных этим изотопом за 15 лет, если масса исходного препарата равна 2 г.

Отметим, что закон радиоактивного распада является статистическим, так как он справедлив до тех пор, пока число нераспавшихся ядер остаётся достаточно большим.

Вы видите теоретический и экспериментальный графики распада 47 ядер изотопа фермия-256, период полураспада которого равен 3,5 часам. Из графиков хорошо видно, что пока ядер было достаточно много (от 47 до 12), показательная функция хорошо описывала закон распада. Однако при меньшем числе ядер истинная зависимость существенно отличается от показательной функции.

Теперь давайте с вами выясним, от чего же зависит активность радионуклида. Для этого вспомним, что в процессе радиоактивного распада количество нераспавшихся ядер уменьшается, значит, активность образца равна скорости уменьшения количества нераспавшихся ядер:

Подставим в данное уравнение математическую запись закона радиоактивного распада и возьмём первую производную по времени полученного выражения.

После всех математических преобразований получим, что активность источника прямо пропорциональна числу радиоактивных ядер, имеющихся в образце в данный момент времени, и обратно пропорциональна периоду полураспада данного радиоактивного вещества.

Представим полученную нами формулу в том виде, как это показано на экране:

Произведение, стоящее в знаменателе формулы представляет собой среднее время жизни радиоактивного изотопа. Оно также равно периоду, за который количество нераспавшихся ядер уменьшается в е ≅ 2,72 раз.

Как вы уже знаете, все радиоактивные ядра данного изотопа одинаковы. Поэтому и вероятность распада для каждого из них одинакова в каждую секунду. То есть распад ядра — это, так сказать, не «смерть от старости», а скорее «несчастный случай» в его жизни. Ядро может распасться сейчас, а может прожить в образце неопределённо долго без распада.

Вероятность распада одного ядра данного изотопа за одну секунду называется постоянной распада и обозначается греческой буквой лямбда (λ). Для любого ядра данного изотопа постоянная распада одинакова. Но для ядер различных изотопов постоянная распада различна.

Давайте предположим, что в некотором радиоактивном образце имеется N ядер. Тогда вероятность распада равна той части ядер (|dN/N|) образца, которая распадётся за единицу времени:

(знак «–» в уравнении указывает на убывание числа радиоактивных ядер данного изотопа с течением времени). Из этой формулы следует, что доля распавшихся ядер равна произведению постоянной распада на малый промежуток времени, за который они распались:

Проинтегрируем это выражение от начального до произвольного момента времени:

Воспользовавшись свойствами логарифма, мы с вами получим второй вариант записи закона радиоактивного распада:

На основании полученного уравнения мы с вами можем определить, от чего зависит постоянная радиоактивного распада. Итак, предположим, что время наблюдения за радиоактивным препаратом равно его периоду полураспада. Значит, через этот промежуток времени в образце останется половина от первоначального количества ядер:

Перепишем закон радиоактивного распада с учётом этого выражения.

И прологарифмируем полученное равенство по основанию «Е».

Из полученной записи видно, что постоянная распада обратно пропорциональна периоду полураспада радиоактивного элемента:

Сравнивая эти формулы с формулой, полученной нами ранее для активности вещества, видим, что активность образца равна произведению постоянной распада и числа радиоактивных ядер в образце в данный момент:

Физика атомного ядра. Радиоактивность.

Радиоактивность (от лат. radio — излучаю и activue — деятельный) — свойство атомных ядер самопроизвольно (спонтанно) изменять свой состав — заряд Z, массовое число А путем испускания элементарных частиц или ядерных фрагментов.

Открытие радиоактивности.

Физика атомного ядра Радиоактивность

Явление радиоактивности было открыто Беккерелем в 1896 г. при его исследованиях люминесценции солей урана: он обнаружил спонтанное испускание неизвестного излучения. Иссле­дование других химических элементов на предмет радиоактивности позволило в 1898 г. Марии Склодовской-Кюри во Франции (и другим ученым) обнаружить свечение тория, а затем выделить неизвестный ранее элемент — полоний (названный так в честь родины Марии Кюри — Польши). Спустя некоторое время был открыт элемент радий, дающий очень интенсивное излучение. Яв­ление самопроизвольного излучения по предложению Марии и Пьера Кюри было названо радиоактивностью. Вскоре Э. Резерфорд и супруги Кюри установили, что радиоактивное излучение состоит из лучей трех видов: α -лучей, состоящих из положительных α -частиц (являющихся ядрами гелия), β -лучей, или отрицательно за­ряженных β -частиц (которые оказались электронами), и γ -лучей, не имеющих заряда, которые оказались γ -квантами (жестким электромагнитным излучением). Классический опыт, позволивший обнару­жить сложный состав радиоактивного излучения, изображен на рисунке ниже. На излучение препарата радия, помещенного на дно узкого ка­нала в куске свинца, действовало сильное магнитное поле с линиями индукции, перпендикулярными лучу. Перпендикулярно каналу рас­полагалась фотопластинка. Вся установка размещалась в вакууме. По отклонению луча определялся заряд частиц, его составляющих.

Гамма-лучи.

То, что это электромагнитная волна, было доказано опытами по дифракции на кристаллах. В ходе этих опытов была определена длина волны γ -лучей: от 10 -8 до 10 — 11 см. Их проникающая способность гораздо выше, чем у рентгеновских лучей. На шкале электромагнитных волн γ -лучи следуют непос­редственно за рентгеновскими. Скорость распространения, как у всех электромагнитных волн, — 300 000 км/с.

Бета-лучи.

Бета-лучи были идентифицированы как электроны, движущиеся со скоростями, близкими к скорости света, по сильному отклонению как в магнитном, так и электрическом поле. Скорости β -частиц, испущенных радиоактивным элементом, различны, что приводит к расширению пучка (см. рис. выше).

Альфа-частицы.

Альфа-частицы отклоняются в магнитном и электрическом полях меньше других, что затрудняло их идентификацию. Окончательно природу α -частиц удалось выяснить Э. Резерфорду. С помощью экспериментов в магнитном поле он определил соотношение заряда и массы. С помощью счетчика Гейгера измерил количество частиц, испущенных препаратом за определенное время, а с помощью электрометра определил их суммарный заряд, рассчитав, таким образом, заряд одной α -частицы (+2). Экспериментально природа альфа-частиц была подтверждена с помощью спектрального анализа газа, образовавшегося за несколько дней в резервуаре, в котором Резерфорд собирал α -частицы. Каждая α -частица захватывала два электрона и превращалась в гелий.

Радиоактивные превращения. Альфа-, бета-, гамма-распад.

В процессе исследования явления радиоактивности обнаружилось, что радиоактивные элементы в результате испускания радиоактивного излучения превращаются в другие элементы. При радиоактивном распаде происходит цепочка последовательных превращений атомов.

После того, как было открыто атомное ядро, сразу стало ясно, что именно оно претерпевает превращения при радиоактивных распадах. Ведь на электронных оболочках нет α -частиц. а уменьшение числа электронов оболочки превращает атом в ион. а не в новый химический элемент.

Правило смещения. Превращения ядер подчиняются так называемому правилу смещения, сформулированному впервые Содди: при α -распаде ядро теряет положительный заряд 2е, и мас­са его убывает приблизительно на четыре атомные единицы массы. В результате элемент смещается на две клетки к началу Периодической системы. Это записывается так:

Физика атомного ядра Радиоактивность

.

Физика атомного ядра Радиоактивность

Здесь элемент обозначается общепринятыми символами. Заряд ядра указывается в виде ин­декса внизу слева от символа элемента, а атомная масса — в виде индекса слева вверху символа. Для α -частицы, являющейся ядром атома гелия, применяют обозначение .

При β -распаде атом теряет электрон. В результате заряд ядра увеличивается на единицу, масса остается почти неизменной:

Физика атомного ядра Радиоактивность

Физика атомного ядра Радиоактивность

Здесь обозначает электрон: индекс 0 сверху означает, что масса его очень мала по сравнению с атомной единицей массы. После β -распада элемент смещается на одну клетку ближе к концу Периодической системы.

Гамма-излучение не сопровождается изменением заряда; масса же ядра меняется ничтожно мало.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *