6 Электонная лампа
Электро́нная ла́мпа, радиола́мпа — электровакуумный прибор (точнее, вакуумный электронный прибор), работающий за счёт управления интенсивностью потока электронов, движущихся в вакууме или разрежённом газе между электродами.
Радиолампы массово использовались в ХХ веке как активные элементы электронной аппаратуры (усилители, генераторы, детекторы, переключатели и т.п.). В настоящее время практически полностью вытеснены полупроводниковыми приборами. Иногда ещё применяются в мощных высокочастотных передатчиках, высококачественной аудиотехнике.
Электронные лампы, предназначенные для освещения (лампы-вспышки, ксеноновые лампы, ртутные и натриевые лампы), радиолампами не называются и обычно относятся к классу осветительных приборов.
Электронно-лучевые приборы основаны на тех же принципах что и радиолампы, но, помимо управления интенсивностью электронного потока, также управляют распределением электронов в пространстве и потому выделяются в отдельную группу. Также отдельно выделяют СВЧ электровакуумные приборы с использованием резонансных явлений в электронном потоке (такие как магнетрон).
Принцип действия Вакуумные электронные лампы с подогреваемым катодом
В результате термоэлектронной эмиссии электроны покидают поверхность катода.
Под воздействием разности потенциалов между анодом и катодом электроны достигают анода и образуют анодный ток во внешней цепи.
С помощью дополнительных электродов (сеток) осуществляется управление электронным потоком путём подачи на эти электроды электрического потенциала.
В вакуумных электронных лампах наличие газа ухудшает характеристики лампы.
Газонаполненные электронные лампы
Основным для этого класса устройств является поток ионов и электронов в газе, наполняющем лампу. Поток может быть создан, как и в вакуумных устройствах, термоэлектронной эмиссией, а может создаваться образованием электрического разряда в газе за счёт напряжённости электрического поля.
История
В 1883 году Эдисон пытался увеличить срок службы осветительной лампы с угольной нитью накаливания. Он ввёл в баллон лампы, из которой откачан воздух, металлический электрод. К выводу впаянного электрода и одному из выводов раскалённой электрическим током нити он подсоединил батарею и гальванометр. Стрелка гальванометра отклонялась, когда к электроду подсоединялся плюс батареи, а к нити — минус. При смене же полярности ток в цепи прекращался.
Этот эксперимент привёл Эдисона к фундаментальному научному открытию, которое является основой работы всех электронных ламп и всей электроники до полупроводникового периода. Это явление впоследствии получило название термоэлектронная эмиссия.
В 1905 году этот «эффект Эдисона» стал основой британского патента Джона Флеминга на «прибор для преобразования переменного тока в постоянный» — первую электронную лампу, открывшую векэлектроники. [ источник не указан 1336 дней ]
В 1906 году американский инженер Ли де Форест ввёл в лампу третий электрод — управляющую сетку (и, таким образом, создалтриод). Такая лампа могла уже работать в качестве усилителя тока, а в 1913 году на её основе был создан автогенератор. В 1921 году А. А. Чернышёвым [1][2] предложена конструкция цилиндрического подогревного катода
Вакуумные электронные лампы стали элементной базой компьютеров первого поколения. Главным недостатком электронных ламп было то, что устройства на их основе были довольно громоздкими. Для питания ламп необходимо было подводить дополнительную энергию для нагрева катода (именно он испускает электроны, необходимые для тока в лампе), а образованное ими тепло отводить. Например, в первых компьютерах использовались тысячи ламп, которые размещались в металлических шкафах и занимали много места. Весила такая машина десятки тонн. Для её работы требовалась электростанция. Для охлаждения машины использовали мощные вентиляторы в связи с выделением лампами огромного количества тепла.
Пик расцвета («золотая эра») ламповой схемотехники пришёлся на 1935—1950 годы.
Для какой цели в электронных лампах создают вакуум
Для какой цели в электронных лампах создают вакуум? цель лампа вакуум
в моей душе запечатлен портрет одной прекрасной дамы. ее глаза в иные дни обращены . там хорошо — там лишних нет и страх не властен над годами и все давно уже друг-другом прощены . (С)
Что такое электронная лампа и как она работает
Эленктронная лампа — это название прекрасно подчеркивает основную черту радиолампы как электронного прибора, работа которого построена на использовании движения электронов. В чем же заключается участие электронов в работе радиолампы?
В металлах имеется много полусвободных, г. е. слабо связанных с атомами электронов. Эти электроны находятся в постоянном движении, точно так же как находятся в постоянном движении и все частицы вещества — атомы и молекулы.
Движения электронов хаотичны; для иллюстрации такого хаотического движения обычно приводят в качестве примера рой комаров в воздухе. Скорость движения электронов немала: она в грубых цифрах равна примерно 100 км/сек — это раз в 100 больше скорости винтовочной пули.
Но если электроны летают в металле в различных направлениях, как мошкара в воздухе, да еще с такими громадными скоростями, то они, вероятно, вылетают и за пределы тела.
На самом деле этого не происходит. Те скорости, которыми обладают в нормальных условиях электроны, недостаточны для их вылета из толщи металла во внешнее пространство. Для этого нужны гораздо большие скорости.
Электронная эмиссия
Каким же способом можно увеличить скорость движения электронов? Физика дает ответ на этот вопрос. Если нагревать металл, то скорость движения электронов возрастет и в конце концов может достичь того предела, когда электроны начнут вылетать в іпространство.
Нужная для этого скорость довольно велика. Например, для чистого вольфрама, из которого делают нити накала радиоламп, она равна 1270 км/сек. Такой скорости электроны достигают при нагреве вольфрама до 2 000° и выше (здесь и дальше градусы указаны по абсолютной шкале).
Испускание нагретым металлом электронов называется термоэлектронной эмиссией. Электронную эмиссию можно уподобить испарению жидкостей.
При низких температурах испарения совсем не происходит или оно бывает очень мало. С повышением температуры испарение увеличивается. Бурное испарение начинается по достижении точки кипения.
Испарение жидкости и термоэлектронная эмиссия металлов — явления, во многом сходные.
Для (получения термоэлектронной эмиссии металл надо нагреть, причем способ нагревания не имеет значения. Но практически удобнее всего нагревать металл электрическим током.
В электронных лампах нагреваемому металлу придают вид тонких нитей, накаливаемых электрическим током. Нити эти называются нитями накала, а нагревающий их ток — током накала.
Мы упоминали о том, что для получения эмиссии надо нагреть металл до очень высокой температуры — примерно до 2 000 и даже выше. Такую температуру выдерживает далеко не каждый металл; большинство металлов при такой высокой температуре плавится.
Поэтому нити накала можно делать только из очень тугоплавких металлов; обычно их делают из вольфрама.
Рис. 1. Температура нити накала лампы.
При t = 2 000° вольфрам начинает испускать электроны.
В первых образцах электронных ламп применялись чисто вольфрамовые нити накала. При температуре, нужной для получения эмиссии, вольфрамовые нити накаливались до белого свечения, отчего и произошло, между прочим, название «лампа».
Однако такая «иллюминация» обходится очень дорого. Чтобы накалить нить лампы до белого каления, нужен сильный ток. Маленькие приемные лампы с чисто вольфрамовой нитью накала потребляли ток накала в пол-ампера.
Но скоро был найден путь уменьшения тока накала. Исследования показали, что если покрыть вольфрам некоторыми другими металлами или их соединениями, то вылет электронов облегчается.
Для вылета требуются меньшие скорости, следовательно требуется и меньший нагрев нити, значит такая нить будет потреблять меньший ток накала.
Совершенствование нитей накала ламп
Мы не станем приводить здесь истории — постепенного совершенствования нитей, а сразу укажем, что современные оксидированные нити накала работают при температуре около 700—900° С, т. е. три мало заметном оранжево-красном накале.
В связи с этим удалось снизить ток накала примерно в 10 раз. Современный десятиламповый приемник потребляет примерно такой же ток накала, как приемник, имевший всего лишь одну лампу старого образца.
Процесс покрытия нитей накала облегчающими эмиссию составами называется активированием,, а сами нити носят название активированных.
Активированные нити накала хороши во всех отношениях, кроме одного: они боятся перекала, т. е. повышенного против нормы нагрева.
Если активированную нить перекалить, то нанесенный на нее слой активирующего вещества улетучится; вследствие этого нить потеряет способность испускать электроны при низкой температуре.
Про такую лампу говорят, что она «потеряла эмиссию». Нить накала такой лампы цела, лампа «горит», но не работает. Об этом обстоятельстве следует помнить и никогда не допускать, чтобы напряжение накала лампы превосходило нормальную величину.
Конечно, потерявшую эмиссию лампу можно было бы заставить работать, доведя накал ее нити до белого свечения. Но нити современных ламп делаются очень тонкими и, так как при белом калении металл нити довольно быстро распыляется, то нити скоро перегорают.
Катоды
Нить накала является в электронных приборах излучателем электронов. В практических схемах использования этих приборов эти излучатели всегда соединяются с отрицательным полюсом (минусом) основного источника питания, почему они и называются катодами. Поэтому нить накала, служащую для излучения электронов, можно назвать катодом.
Но нужно отметить, что раскаленная нить не всегда служит непосредственным излучателем электронов. Иногда она используется только в качестве источника тепла, с помощью которого разогревается другое металлическое тело, являющееся уже источником нужных для работы лампы электронов.
Иначе говоря, функции подогрева и излучения электронов не всегда бывают объединены, т. е. нить накала не всегда бывает катодом.
Так, например, если катод выполнен в виде тонкой нити, такую нить удобно питать постоянным током от гальванических элементов или от аккумулятора, так как для ее накала требуется небольшой ток; катод оказывается экономичным.
Но для питания переменным током тонкие нити накала не годятся.
Для нормальной работы электронных приборов надо, чтобы катод все время излучал одинаковое количество электронов. Для этого его температура должна поддерживаться строго постоянной.
При питании нити от батарей или аккумуляторов это условие выполняется. Но при питании нити переменным током оно уже не может быть соблюдено.
Переменный осветительный ток 100 раз в секунду меняет свои величину и направление (дважды в течение каждого периода). 100 раз в секунду ток достигает наибольшей величины и столько же раз уменьшается до нуля.
Совершенно очевидно, что и температура нити накала будет испытывать колебания в соответствии с изменениями величины тока, а вместе с тем будет изменяться и количество излучаемых электронов.
Правда, вследствие тепловой инерции нить не успеет полностью охладиться в те мгновения, когда ток переходит через нулевое значение, но все же колебания ее температуры и величины электронной эмиссии оказываются очень заметными.
Это обстоятельство не позволяло раньше пользоваться таким удобным источником тока, как осветительная сеть, для питания электронных приборов, в которых использовалась тепловая эмиссия электронов.
Многочисленные попытки сделать нить накала пригодной для нагрева переменным током путем увеличения ее толщины были мало успешны. Полное решение этого вопроса дала лишь реализация предложения нашего ученого А. А. Чернышева об устройстве подогревного катода.
Подогревные катоды в настоящее время применяются во всем мире. Большая часть электронных приборов всех типов предназначена для питания от осветительной сети переменного тока и имеет подогревные катоды.
В подогревных катодах нить накала сама по себе уже не является источником, излучающим электроны. Непосредственный излучатель электронов изолирован от нити и лишь подогревается ею.
Отсюда и произошло название «подогревный» катод. Масса излучателя делается достаточно большой, для того чтобы он не успевал охладиться во время уменьшения величины подогревающего тока. Само собой понятно, что такие катоды не могут давать эмиссию немедленно после включения тока накала. Их разогрев занимает примерно от 15 до 30 сек.
Конструкции подогревных катодов бывают различными, но принцип их устройства в общем одинаков. В старых конструкциях подогреватель выполнялся в виде керамической трубочки диаметром около миллиметра с двумя сквозными каналами по ее длине.
В эти каналы пропускалась подогревная нить. В более современных конструкциях слой теплостойкой изоляции наносится непосредственно на нить подогревателя.
Для этого нить обмазывают составом, который после соответствующей обработки затвердевает, покрывая подогреватель теплостойкой оболочкой, обладающей достаточно хорошими изоляционными свойствами при высокой температуре.
На подогреватель надевается цилиндрик из никеля, покрытый снаружи слоем оксида, являющийся собственно излучателем электронов, или катодом.
У таких катодов имеются три вывода — два от концов подогревающей нити и один от излучателя. Первые два. обычно называются выводами нити накала, а третий — выводом катода.
Эмиссия подогревного катода совершенно равномерна.
Цилиндрическая форма подогревного катода наиболее распространена, но не является единственной. В некоторых современных электронных лампах применяются катоды торцового типа в форме стаканчика, дно которого снаружи покрыто оксидом.
Такие катоды применяются, в частности, в электронно-лучевых трубках, с которыми мы встретимся позже.
Если излучателем электронов является сама нить накала, то такой катод иногда называют катодом прямого накала; если же нить только подогревает излучатель, то подобное устройство часто называют катодом косвенного подогрева или косвенного накала.
Вакуум. Каждый, кто видел электронную лампу, знает, что она заключена в стеклянный или металлический баллон, из которого выкачан воздух. Внутри баллона воздух чрезвычайно разрежен.
Давление воздуха на поверхности земли, т. е. давление в одну атмосферу, соответствует примерно 760 мм рт. ст., а давление воздуха внутри баллона электронной лампы составляет всего лишь около 10^- 7 мм рт. ст. и даже меньше, т. е. примерно в 10 млрд. раз меньше атмосферного давления. Такую степень разреженности называют высоким вакуумом (вакуум по-русски значит пустота).
Для чего нужен вакуум в электронной лампе
Во-первых, он нужен для сохранения нити накала. Если бы нить накала, нагретая почти до тысячи градусов, находилась просто в воздухе, то она бы очень скоро перегорела. Нагретые тела быстро окисляются кислородом воздуха.
Во-вторых, вакуум нужен для беспрепятственного движения вылетающих из нити электронов. Работа электронной лампы основана на использовании электронов, вылетающих из нити накала.
Однако для того чтобы можно было как следует использовать электроны, надо, чтобы они не встречали на своем пути никаких препятствий. Воздух же является таким препятствием.
Рис. 2. Давление воздуха внутри баллона радиолампы примерно в 10 раз меньше атмосферного.
Молекулы и атомы газов, входящих в состав воздуха, в несметном количестве окружают нить накала и препятствуют полету электронов. Для того чтобы уменьшить возможность столкновения электронов с частицами газов, воздух внутри баллона разрежают.
Особую роль в создании вакуума играют так называемые «геттеры», или поглотители. Дело в том, что при массовом производстве ламп было бы слишком долго и невыгодно доводить вакуум в них до требуемой степени при помощи насосов.
Поэтому поступают иначе. При помощи насосов производят лишь предварительное, так сказать черновое, разрежение воздуха в лампе. Давление доводят до одной тысячной или даже только до одной сотой миллиметра ртутного столба.
А для устойчивой работы лампы необходимо, чтобы давление в ней было меньше одной миллионной миллиметра ртутного столба. Чтобы получить это высокое разрежение, в лампе распыляют вещество, которое обладает способностью жадно поглощать газы. Таким свойством обладают, например, металлы магний, барий и некоторые соединения.
Чтобы распылить геттер в лампе со стеклянной оболочкой, к ней подносят катушку, питаемую током высокой частоты. Укрепленная на никелевой пластинке внутри лампы таблетка геттера раскаляется и испаряется.
Пары ее оседают на стекле и образуют тот серебристый (при магниевом геттере) или темно-металлический налет (при геттере из бария), который мы видим у большинства стеклянных электронных ламп.
Этот металлический налет жадно поглощает все остатки газов, и давление в лампе падает до миллионной доли миллиметра ртутного столба, его уже вполне достаточно для устойчивой и надежной работы лампы.
В среде столь разреженного газа электроны распространяются практически беспрепятственно. При движении внутри лампы не больше чем один электрон из миллиона встречается на своем пути с молекулой газа.
Электроника для «чайников»: как работает радиолампа и зачем она нужна
Сейчас мы привыкли к компактным электронным устройствам и сверхтонким ноутбукам. А чуть больше ста лет назад появился девайс, который сделал это реальностью и произвел настоящую революцию в развитии электроники. Речь идет о радиолампе.
Ламповое вступление
В схемотехнике раньше повсеместно использовались лампы, первые электронные приборы были построены именно с их использованием. Золотое время радиоламп пришлось на первую половину 20 века. Для наших дедов и прадедов гораздо привычнее были гигантские ЭВМ, занимавшие целое помещение и греющиеся как адское пекло. На такой машине сериальчик не посмотришь.
Потом еще было время, когда советские микросхемы стали самыми большими в мире. Но это уже другая история, которая началась после появления полупроводниковых приборов. Как вы поняли, эта статья о работе электронной лампы и ее современном использовании.
Вакуумные приборы
Вакуум – это отсутствие материи. Точнее, практически полное ее отсутствие. В физике разделяют высокий, средний и низкий вакуум. Понятно, что электрического тока в вакууме быть не может, так как ток – это направленное движение (частиц) носителей заряда, которым в вакууме взяться неоткуда.
Но так уж и неоткуда? Металлы при нагревании испускают электроны. Это так называемая термоэлектронная эмиссия. На ней и основана работа электронных вакуумных приборов.
Термоэлектронную эмиссию открыл Томас Эдисон. Точнее ученый выяснил, что при нагреве нити и наличия в вакуумной колбе второго электрода вакуум проводит ток. Тогда Эдисон не в полной мере оценил значение своего открытия, но на всякий случай запатентовал его. Вывод: в любой непонятной ситуации патентуйте!
Вакуумные приборы – герметично запаянные баллоны с электродами внутри. Баллоны делают из стекла, металла или керамики, предварительно откачав из них воздух.
Помимо электронных ламп есть следующие вакуумные приборы:
- приборы СВЧ, магнетроны, клистроны;
- кинескопы, электронно-лучевые трубки;
- рентгеновские трубки.
Принцип работы электронной лампы
Электронная лампа – это электронный вакуумный прибор, который работает за счет управления интенсивностью потока электронов между электродами.
Простейший тип лампы – диод. Вместо того чтобы читать определения, лучше посмотрим на нее.
В любой лампе есть катод, с которого электроны вылетают, и анод, на который они летят. Если на катод подать «минус», а на анод «плюс», электроны, вылетевшие из раскаленного катода, начнут двигаться к аноду. В лампе потечет ток.
Кстати! Если вам нужно произвести расчет усилителя на диодах, для наших читателей сейчас действует скидка 10% на любой вид работы
Диод обладает односторонней проводимостью. Это значит, что если на катод подать плюс, а на анод минус, тока в цепи уже не будет.
Помимо этих двух электродов в лампах могут быть и другие.
Все названия электронных ламп связаны с количеством электродов. Диод – два, триод – три, тетрод – четыре, пентод – пять и т.д.
Возьмем триод. Это диод, в который добавлен дополнительный электрод — управляющая сетка. Такая лампа с тремя электродами уже может работать как усилитель тока.
Если на сетке есть небольшое отрицательное напряжение, она будет задерживать часть электронов, летящих к аноду, и ток уменьшится. При большом отрицательном напряжении сетка «запрет» лампу, и ток в ней прекратится. А если подать на сетку положительное напряжение, анодный ток будет усиливаться.
Небольшое изменение напряжения на сетке, которая устанавливается рядом с катодом, существенно влияет на ток между катодом и анодом. На этом и строится принцип усиления.
Применение электронных ламп
Почти везде лампу вытеснил полупроводниковый транзистор. Однако в некоторых отраслях лампы заняли свое место и остаются незаменимыми.
Например, в космосе. Ламповое оборудование выдерживает больший диапазон температур и радиационный фон, поэтому используется в производстве космических аппаратов.
Лампы с воздушным или водяным охлаждением также находят применение в мощных радиопередатчиках.
Конечно, сложно представить современное музыкальное оборудование без ламповых схем.
Ламповый звук: правда или вымысел?
Усилители низкой частоты или просто усилители звука – самое известное современное применение радиоламп, которое к тому же вызывает много споров.
Доходит вплоть до «холиваров» между адептами лампового и транзисторного звука. Ламповый звук, как говорят, более «душевный» и «мягкий», его приятно слушать. В то время как транзисторный звук – «бездушный» и «холодный».
Чтобы дальше лучше понимать то, о чем тут написано, мы рекомендуем прочесть тематическую статью про звуки и их влияние на наши мозги.
Разогретые лампы УНЧ
Ничего не бывает просто так, и вряд ли такие споры и мнения возникали на пустом месте. В свое время вопросом, действительно ли ламповый звук приятнее для слуха, заинтересовались ученые. Было проведено довольно много исследований на тему отличий лампы от транзистора.
По данным одного из них, ламповые усилители добавляют в сигнал четные гармоники, которые субъективно воспринимаются людьми как «теплые», «приятные» и «уютные». Правда, сколько людей, столько и мнений, поэтому споры до сих пор ведутся.
Часто спор – пустая трата времени. А вот студенческий сервис, наоборот, поможет сохранить ценные человеко-часы. Обращайтесь к нашим специалистам за качественной помощью в любой области знаний.
- Контрольная работа от 1 дня / от 120 р. Узнать стоимость
- Дипломная работа от 7 дней / от 9540 р. Узнать стоимость
- Курсовая работа 5 дней / от 2160 р. Узнать стоимость
- Реферат от 1 дня / от 840 р. Узнать стоимость
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.