Энергия ветра как альтернативный источник энергии
2) Собираем основу конструкции генератора
3) С помощью самодельного устройства наматываем 9 катушек по 70 витков
4) Магниты приклеиваем к стальному диску, чередуя полярность; а катушки крепим к пластине из оргстекла
5) На второй стальной диск клеим магниты со смещением
6) Соединяем катушки и собираем выпрямитель на диодах
7) Подключаем к генератору вольтметр
8) Раскручиваем генератор и измеряем напряжение, которое он может вырабатывать. От силы раскручивания диска зависела величина напряжения
9) Зажигаем с помощью генератора светодиод, потребляющая мощность которого 3 В
10) Для прошлого проекта мы с папой собрали повышающий преобразователь напряжения (ферритовое кольцо, медный провод, транзистор, резистор). Это электротехническое устройство позволило зажечь наш водный фонарик. Мы решили использовать его также для ветрогенератора
11) Делаем лопасти для нашего ветрогенератора и дорабатываем изобретение
12) Проводим тестовый запуск устройства около дома
Мы узнали, что площадь, которую может помочь осветить наш ветрогенератор, составляет около 1 кв.м.
2.2 Вывод из эксперимента
Нам удалось создать ветрогенератор. Напряжение, которое мы получили, раскручивая его руками, оказалось достаточным для свечения светодиода. Затем мы усовершенствовали ветрогенератор, установив повышающий преобразователь напряжения. После этого мы проверили наш ветряк с помощью вентилятора, и убедились, что наше изобретение работает. Также мы посчитали экономическую выгоду проекта (Приложение 1). Наше устройство является очень полезным. Оно может выручить в условиях отсутствия электричества. Но самое главное, что изготовленный нами ветрогенератор не вредит окружающей среде и сберегает ценные природные ресурсы. Этой весной мы с папой обязательно установим наше изобретение на даче, пока же мы провели пробную установку около дома. Это позволило нам узнать площадь, которую может помочь осветить наш ветрогенератор. Она составляет около 1 кв.м.
Как было сказано выше, в связи с увеличением количества электромобилей потребуется всё больше мест для их зарядки. Я размышляла над этим и пришла к выводу, что вдоль дорог можно было бы установить зарядные станции, работающие на таких ветрогенераторах, как наш. Получилась бы «экологичная» заправка для «экологичных» автомобилей.
Заключение
Электроэнергия – неотъемлемая часть жизни человека, и потребности в ней постоянно возрастают. Отказаться от благ цивилизации люди не смогут, но они должны отказаться от вредных для окружающей среды традиционных источников энергии в пользу альтернативных возобновляемых ресурсов, безопасных для будущего планеты. Тем более, такие уже есть: это подтверждает наш эксперимент по созданию ветрогенератора и альтернативные источники энергии, обнаруженные нами на Алтае. Это значит, наша гипотеза подтвердилась.
Человечество должно стремиться полностью перейти на производство именно экологичной энергии. Нам дана только одна планета, возможно, единственная во Вселенной, пригодная для жизни, и мы не можем её потерять.
Список литературы:
1. О внесении изменений в постановление Совета Министров — Правительства Российской Федерации от 23 октября 1993 г. № 1090: постановление Правительства Российской Федерации от 12 июня 2017 года № 832 // Собрание законодательства РФ. – 2017. – № 30. – ст. 4666.
2. Баскаков А.П. Нетрадиционные и возобновляемые источники энергии. Учебное пособие / А.П. Баскаков, В.А. Мунц. – М.: ИД Бастет, 2013. – 368 с.
3. Германович В.Т. Альтернативные источники энергии. Практические конструкции по использованию энергии ветра, солнца, воды, земли, биомассы / В.Т. Германович, А.В. Турилин. – СПб.: Наука и техника, 2014. – 318 с.
4. Кривченко И.В. Физика. 8 класс: учебник. / И.В. Кривченко. – М.: Бином. Лаборатория знаний, – 2015. – 152 с.
5. Максаковский В.П. Географическая картина мира Кн.1: Общая картина мира. Глобальные проблемы человечества / В.П. Максаковский. – М.: Дрофа, 2008. – 495 с.
6. Рязанцев В.Д. Большая политехническая энциклопедия / В.Д. Рязанцев. – М.: Мир и образование, 2011. – 707 с.
7. Сидорович В. Мировая энергетическая революция: Как возобновляемые источники энергии изменят наш мир / В. Сидорович. – М.: Альпина Паблишер, 2015. – 208 с.
8. Степанов И. Энергия будущего: черный, голубой, зеленый? / И. Степанов // Эксперт Сибирь. – 2017. – № 29 (497).
9. Чумаков В. Токи ветров / В. Чумаков // Вокруг света. – 2008. – № 8.
10. Такер Б. Энергия ветра без лопастей // Форбс [Электронный ресурс]. – Режим доступа: https://www.forbes.com/sites/billtucker/2015/05/07/wind-power-without-the-mills/#681581771812.
11. Анализ мирового производства электроэнергии // http://www.unep.org/ru/ — сайт ООН окружающая среда.
12. Две солнечные электростанции открыли в Республике Алтай // Новости Горного Алтая [Электронный ресурс]. – Режим доступа: http://www.gorno-altaisk.info/news/83255.
13. Традиционные и нетрадиционные источники электрической энергии // Об альтернативных источниках энергии, электростанциях и генераторах [Электронный ресурс]. – Режим доступа: http://dom-en.ru/sprav2/
14. Начало положено. Fortum приступила к строительству ветропарка в Ульяновской области // Neftegaz.ru [Электронный ресурс]. – Режим доступа: https://neftegaz.ru/news/view/157767-Nachalo-polozheno.-Fortum-pristupila-k-stroitelstvu-vetroparka-v-Ulyanovskoy-oblasti.
15. Традиционная и нетрадиционная электроэнергетика // Все об энергетике [Электронный ресурс]. – Режим доступа: http://energomir.blogspot.ru/p/12.html
16. http://www.ecolife.ru/ — официальный сайт журнала Экология и жизнь.
17. http://dic.academic.ru/ — элекронная энциклопедия
18. http://www.popmech.ru/ — сайт журнала «Популярная механика».
Экономическое обоснование проекта
Затраты на освещение спортивной площадки с помощью традиционной энергетики:
1) 40 м кабеля по 20 руб/м: 40 Х 20 = 800 руб
2) Плафон с лампой 150 руб
3) Ожидаемую стоимость потребленной электроэнергии за год мы рассчитали исходя из среднего периода освещения (май – сентябрь в течение 4 ч/сутки) при освещении 100 Вт лампой и стоимости электроэнергии 4 руб/кВт: 100 Х 4 Х 153 : 1000 Х 4 = 244 руб 80 коп/год
Итого затрат за 1-й год использования: 800 + 150 + 244,8 = 1194,8 руб; за 2-й год: 1194,8 + 244,8 = 1439,6; за 3-й год 1439,6 + 244,8 = 1684,4
Затраты на освещение спортивной площадки с помощью ветрогенератора:
1) Магниты 900 руб
2) Металл + крепления 210 руб
3) Лампа-прожектор 340 руб
Итого: 900 + 210 + 340 = 1450 руб
Экономия за 3 года:
1684,4 — 1450 = 234,4 руб
Таким образом, окупаемость нашего проекта составит почти 3 года. К концу третьего сезона эксплуатации ветрогенератора мы даже получим экономию 234 руб 40 коп. И, конечно же, полученная нами энергия будет экологически чистой.
Старт в науке
Учредителями Конкурса являются Международная ассоциация учёных, преподавателей и специалистов – Российская Академия Естествознания, редакция научного журнала «Международный школьный научный вестник», редакция журнала «Старт в науке».
Ветер — альтернативный источник энергии Текст научной статьи по специальности «Энергетика и рациональное природопользование»
Аннотация научной статьи по энергетике и рациональному природопользованию, автор научной работы — Грибач Ю.С., Егорычев О.О., Кургузова Е.В.
Введение: на сегодняшний день одной из важнейших проблем мировой экономики является ограниченное количество традиционного топлива, за счет потребления которого ведется удовлетворение потребностей человечества в энергии. Содержится определение понятия «альтернативная энергетика», что представляет собой совокупность способов получения энергии при использовании возобновляемых источников энергии . Представлена необходимость поиска возобновляемых источников энергии , которые позволят повысить экологический потенциал территорий, энергетическую и экономическую составляющие. Выделена перспективность применения возобновляемых источников энергии , к числу которых можно отнести один из наиболее распространенных альтернативных источников энергии ветер . Методы: приведены принципы работы ветровых установок. Подробно описан процесс преобразования ветровой энергии в механическую. Также приведена классификация существующих установок по оси вращения с описанием функционирования каждого из них и выделены четыре основных способа передачи мощности ветра потребителю. Результаты и обсуждения: содержит информацию об экономической выгоде применения ветроустановок на территории России, а также приведен список благоприятных регионов для создания ветроэлектрических станций. Кроме того, содержит информацию об экологической целесообразности применения ветроэнергетических установок, так как ветрогенераторы компенсируют выброс углекислого газа. Заключение: представлены выводы, которые позволяют определить положительные стороны использования ветровых установок, к которым можно отнести экологичность, экономичность и доступность. Необходимо подчеркнуть, что ветрогенератор компенсирует выброс углекислого газа, связанный с его производством, благодаря чему применение данного вида установок позволит создать максимально чистую среду.
Похожие темы научных работ по энергетике и рациональному природопользованию , автор научной работы — Грибач Ю.С., Егорычев О.О., Кургузова Е.В.
Wind is an alternative source of energy
Introduction: today, one of the most important problems of the world economy is a limited amount of traditional fuels, due to the consumption of which the needs of humanity for energy are being met. The chapter “Introduction” contains the definition of the term “alternative energy”, which is a set of ways to generate energy when using renewable energy sources . This chapter presents the need to search for renewable energy sources that will increase the ecological potential of the territories, as well as the energy and economic component. The prospects for the use of renewable energy sources have been highlighted, among which one of the most common alternative energy sources is wind . Methods: the chapter “Methods” describes the principles of operation of wind turbines. This chapter describes in detail the process of converting wind energy into mechanical energy. Also in the chapter “Methods” is a classification of existing installations along the axis of rotation with a description of the operation of each of them and highlighted four main ways to transfer wind power to the consumer. Results and discussions: the chapter “Results and Discussions” contains information on the economic benefits of using wind turbines in Russia, as well as a list of favorable regions for the creation of wind power stations. The structure of this chapter includes information on the environmental feasibility of the use of wind power plants, since wind generators compensate for carbon dioxide emissions. Conclusion: in the “Conclusion” presents conclusions that allow you to determine the positive aspects of the use of wind turbines, which include environmental friendliness, efficiency and affordability. It should be emphasized that the wind generator compensates for carbon dioxide emissions associated with its production, so that the use of this type of installation will create the most clean environment.
Текст научной работы на тему «Ветер — альтернативный источник энергии»
ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ
УДК 697.952.4 DOI: 10.32464/2618-8716-2019-2-1-40-49
Ветер — альтернативный источник энергии
Ю.С. Грибач, О.О. Егорычев, Е.В. Кургузова
Национальный исследовательский Московский государственный строительный университет (НИУМГСУ), 129337, г. Москва, Ярославское шоссе, д. 26
Введение: на сегодняшний день одной из важнейших проблем мировой экономики является ограниченное количество традиционного топлива, за счет потребления которого ведется удовлетворение потребностей человечества в энергии. Содержится определение понятия «альтернативная энергетика», что представляет собой совокупность способов получения энергии при использовании возобновляемых источников энергии. Представлена необходимость поиска возобновляемых источников энергии, которые позволят повысить экологический потенциал территорий, энергетическую и экономическую составляющие. Выделена перспективность применения возобновляемых источников энергии, к числу которых можно отнести один из наиболее распространенных альтернативных источников энергии — ветер.
Методы: приведены принципы работы ветровых установок. Подробно описан процесс преобразования ветровой энергии в механическую. Также приведена классификация существующих установок по оси вращения с описанием функционирования каждого из них и выделены четыре основных способа передачи мощности ветра потребителю.
Результаты и обсуждения: содержит информацию об экономической выгоде применения ветроустановок на территории России, а также приведен список благоприятных регионов для создания ветроэлектрических станций. Кроме того, содержит информацию об экологической целесообразности применения ветроэнергетических установок, так как ветрогенераторы компенсируют выброс углекислого газа.
Заключение: представлены выводы, которые позволяют определить положительные стороны использования ветровых установок, к которым можно отнести экологичность, экономичность и доступность. Необходимо подчеркнуть, что ветрогенератор компенсирует выброс углекислого газа, связанный с его производством, благодаря чему применение данного вида установок позволит создать максимально чистую среду.
Ключевые слова: альтернативные источники энергии, аэродинамика, аэродинамическая труба, ветер, ветровое воздействие, возобновляемые источники энергии
Для цитирования: Грибач Ю.С., Егорычев О.О., Кургузова Е.В. Ветер — альтернативный источник энергии // Силовое и энергетическое оборудование. Автономные системы. 2019. Т. 2. Вып. 1. С. 40-49. URL: http://www. powerjournal.ru
Wind is an alternative source of energy
J.S. Gribach, O.O. Egorychev, E.V. Kurguzova
Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation
Introduction: today, one of the most important problems of the world economy is a limited amount of traditional fuels, due to the consumption of which the needs of humanity for energy are being met. The chapter "Introduction" contains the definition of the term "alternative energy", which is a set of ways to generate energy when using renewable energy sources. This chapter presents the need to search for renewable energy sources that will increase the ecological potential of the territories, as well as the energy and economic component. The prospects for the use of renewable energy sources have been highlighted, among which one of the most common alternative energy sources is wind.
Methods: the chapter "Methods" describes the principles of operation of wind turbines. This chapter describes in detail the process of converting wind energy into mechanical energy. Also in the chapter "Methods" is a classification of existing installations along the axis of rotation with a description of the operation of each of them and highlighted four main ways to transfer wind power to the consumer.
Results and discussions: the chapter "Results and Discussions" contains information on the economic benefits of using wind turbines in Russia, as well as a list of favorable regions for the creation of wind power stations. The structure of this chapter includes information on the environmental feasibility of the use of wind power plants, since wind generators compensate for carbon dioxide emissions.
Conclusion: in the "Conclusion" presents conclusions that allow you to determine the positive aspects of the use of wind turbines, which include environmental friendliness, efficiency and affordability. It should be emphasized that the wind generator compensates for carbon dioxide emissions associated with its production, so that the use of this type of installation will create the most clean environment.
Keywords: aerodynamics alternative energy sources, aerodynamics, wind tunnel, wind, wind effect, renewable energy sources
For citation: Gribach J.S., Egorychev O.O., Kurguzova E.V. Veter — al'ternativnyy istochnik energii [Wind is an alternative source of energy]. Silovoe i energeticheskoe oborudovanie. Avtonomnye sistemy [Power and Autonomous Equipment]. 2019. Vol. 2. Issue 1. Pp. 40-49. URL: http://www.powerjournal.ru (In Russian)
Адрес для переписки: Грибач Юлия Сергеевна
НИУ МГСУ, 129337, г. Москва, Ярославское шоссе, д. 26, js-995@mail.ru
Address for correspondence: Julia Sergeevna Gribach
MGSU, 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation, js-995@mail.ru
На сегодняшний день одной из важнейших проблем мировой экономики является ограниченное количество традиционного топлива, за счет потребления которого ведется удовлетворение потребностей человечества в энергии (рис. 1). Мировое сообщество энергетиков регулярно проводит мониторинг касательно вопроса нехватки природных ресурсов, однако при отсутствии изменений в данной области прогнозы специалистов неутешительны1. И пока одна часть инженеров и изобретателей разрабатывают новейшие де-вайсы и электронные устройства, способные облегчить нашу жизнь, другая часть специалистов совместно с учеными занимаются созданием инновационных приборов и устройств, которые будут работать на базе альтернативных источников энергии.
Альтернативная энергетика представляет собой совокупность способов получения энергии при использовании возобновляемых источников энергии. В основном к возобновляемым источникам энергии относятся природные неисчерпаемые ресурсы: электромагнитное излучение Солнца, кинетическая энергия ветра, движение воды в реках, морях и океанах, тепловая энергия горячих источников энергии, например вулканов, гейзеров и др. Данная отрасль является перспективной по нескольким причинам:
1) при выработке энергии за счет перечисленных ранее источников наносится минимальный вред окружающей среде;
2) многие виды альтернативной энергетики используют источники, количество которых не имеет ограничения.
Одним из наиболее распространенных альтернативных источников энергии является ветер1 [1-3]. В связи с неравномерностью нагрева земной поверхности и воздушных масс за счет солнечной энергии возникает перемещение воздушных масс: нагретый воздух, имеющий меньшую плотность, перемещается как в вертикальном, так и горизонтальном направлениях. Постоянные перемещения воздушных масс непосредственно в горизонтальном направлении — и есть ветер, который обладает кинетической энергией. С помощью специализированных установок запасы данной энергии можно преобразовать в механическую [1, 3]. Созданием подобных устройств и занимаются проектировщики ветроустановок.
1 ГОСТ Р 51237-98. Нетрадиционная энергетика. Ветроэнергетика. Термины и определения.
Рис. 1. Потребление энергии Fig. 1. Power consumption
Ветродвигатели работают за счет аэродинамических сил, возникающих на лопастях ветроколеса при набегании на них воздушного потока [1, 4-6]. Так же, как и на крыльях самолета, на лопастях ветроколеса возникают подъемная сила и сила сопротивления поверхности. Подъемная сила создает вращающий момент на ветроколесе.
Для того чтобы более результативно использовать энергию ветра, лопастям ветроколеса придают аэродинамический профиль [4, 7].
На рис. 2 видно, что лопасти располагаются под углом по отношению к направлению ветра. Такой угол называется углом атаки. Важно понимать, что при одинаковом исполнении лопастей максимальная мощность ветродвигателя практически не зависит от количества лопастей. Это объясняется тем, что с уменьшением числа лопастей уменьшается вращающий момент, но одновременно увеличиваются обороты ветроколеса. Поэтому многолопастные конструкции достигают своей максимальной мощности при скорости ветра 8-10 м/с, при более высоких скоростях ветрах мощность не увеличивается. Малолопастные (быстроходные) ветроустановки рассчитаны на скорость ветра 15-18 м/с.
Ветроустановки могут быть классифицированы по многим признакам [4, 5, 8-11]. Одним из основных таких признаков является ориентация оси вращения установки относительно ветрового потока.
Ветроустановки с горизонтальной осью вращения получили наибольшее распространение [6, 7]. Они бывают как тихоходные (многолопастные или парусные), так и быстроходные (двух- или трехлопастные).
Быстроходные ветроустановки следует выбирать для местности со среднегодовой скоростью ветра от 7 м/с и выше. В районах, где скорость ветра более низкая, предпочтительно устанавливать тихоходные ветряки.
На территории России в большинстве случаев наиболее применимы тихоходные ветроустановки [8, 12-14].
Самые лучшие из них — парусные ВЭУ (рис. 3). Эта установка начинает вырабатывать электричество уже при скорости ветра от 2,5 м/с. Оригинальная конструкция ветроколеса позволяет обходиться без флюгера или других устройств ориентирования на ветер [11, 13].
Лопасти Вал от лопастей Коробка скоростей Вал от генератора
Энергия Генератор (Q Датчик
Поворотный механизм Передача энергии к трансформатору
Рис. 2. Устройство ветрогенератора Fig. 2. Wind generator device
Рис. 3. Ветроустановки с горизонтальной осью вращения Рис. 4. Ветроустановки с вертикальной осью вращения Fig. 3. Horizontal axis wind turbines Fig. 4. Vertical axis wind turbines
Ветроустановки с вертикальной осью вращения (рис. 4) менее популярны, но вполне заслуживают отдельного внимания. В некоторых случаях они более актуальны. Вертикальные ВЭУ также бывают быстроходные и тихоходные.
Классический пример вертикального тихоходного ветряка — это ветроустановка карусельного типа.
Еще один тип вертикально осевых установок — ортогональные [14-16]. Основная особенность таких установок — необходимость принудительного запуска. Лопасти этой конструкции имеют профиль такой же, как у крыла самолета, который должен сначала разбежаться до того, как опереться на подъемную силу крыла. В случае с ортогональной ветроустановкой ее сначала необходимо раскрутить до необходимой скорости для того, чтобы она перешла в режим генерации.
Существуют ортогональные ветрогенераторы и с горизонтальной осью вращения [11, 17].
Кроме того, можно выделить несколько основных способов передачи мощности ветра потребителю (электрогенератор):
1) механическая передача — передача крутящего момента от вращающихся лопастей к потребителю производится через общую ось вращения (либо механической системы мультипликаторов). Данная схема является наиболее распространенной за счет своей простоты и большого показателя КПД, который может достигать 0,85. 0,95. Недостатком же является необходимость использования мультипликатора и передача колебаний с лопастей ВЭУ на вал потребителя [18, 19];
2) гидравлическая передача — может иметь различные конструктивные модификации, однако зачастую представляет из себя совокупность механической передачи с небольшим передаточным отношением и гидропередачи;
3) пневматическая передача — основана на принципе работы разделенной гидропередачи — энергия к потребителю передается в виде потенциальной энергии перепада давления воздуха в пневмотрассе;
4) аэродинамическая передача, которой обычно называют схему с расположением небольших вторичных ветродвигателей на концах лопастей основного ветроколеса. Вторичные ветродвигатели обтекаются потоком, имеющим гораздо большую скорость по сравнению со скоростью атмосферного ветра.
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ
Необходимо подчеркнуть, что ветроэнергетика обладает большим потенциалом развития во всем мире, и в России в частности [1, 3, 20-22]. Это связано с огромной территорией страны, в том числе, во-первых, с различными климатическими зонами (рис. 5), а во-вторых, с отсутствием централизованного электроснабжения по причине больших расстояний между населенными пунктами [23, 24]. Именно в силу второго пункта наиболее актуально для России применение автономных ветровых электростанций.
Экономически выгодна установка ветроэлектрических станций: ветротурбин, объединенных групп (рис. 6). Их мощность колеблется от сотен киловатт до сотен мегаватт. Ветроустановки большой мощности не предназначены для автономной работы или работы параллельно друг с другом.
Хорошими ветровыми условиями в России обладают следующие субъекты Российской Федерации [23, 25]: Архангельская, Астраханская, Волгоградская, Калининградская, Камчатская, Ленинградская, Магаданская, Мурманская, Новосибирская, Пермская, Ростовская, Сахалинская, Тюменская области, Краснодарский, Приморский, Хабаровский края, Дагестан, Калмыкия, Карелия, Коми, Ненецкий автономный округ, Хакасия, Чукотка, Якутия, Ямало-Ненецкий автономный округ.
Важно отметить, что благодаря применению ветроэнергетических установок появляется возможность сделать окружающую среду чистой, так как ветрогенераторы компенсируют выброс углекислого газа, связанный с его производством, установкой и утилизацией уже за первые 3-9 месяцев работы [7, 13, 26-28]. Это означает, что в последующие 20 лет энергия будет чистой. Учеными подсчитано, что к 2020 году ветроэнергетика позволит человечеству сократить выбросы СО2 на миллиард тонн в год [22, 29, 30].
Рис. 5. Ветровая карта России Fig. 5. Wind Map of Russia
Savonius VAWT Рис. 6. Виды ветроустановок Fig. 6. Types of wind turbines
На основании вышесказанного можно сделать следующие положения о ветровой энергетике: 1) использование энергии ветра позволит сократить выбросы углекислого газа;
2) при грамотном планировании работы по выработке энергии ветра можно увеличить объем получаемой энергии до 30 % мирового электричества;
3) ветровая энергия является наиболее доступной альтернативной энергией;
4) ветрогенератор компенсирует выброс углекислого газа, связанный с его производством.
1. Янсон Р.А. Ветроустановки / под ред. М.И. Осштова. М. : Изд-во МГТУ им. Н.Э. Баумана, 2007. 36 с.
2. Андреева Е.В. Ветроустановка для зон средних географических широт с умеренно-континентальным климатом // Инженерно-техническое обеспечение АПК. Реферативный журнал. 2005. № 1. С. 25.
3. Кончаков Е.И., Грибков С.В., Долгорук В.М. Безопасная ветроустановка // Международный научный журнал Альтернативная энергетика и экология. 2005. № 3 (23). С. 66-67.
4. Жарков С.В. Ветроустановка с наклонной осью // Тяжелое машиностроение. 2007. № 10. С. 6-9.
5. Серебряков Р.А. Ветроустановка с вихревым преобразователем потоков сплошной среды // Евразийский союз ученых. 2016. № 1-2 (22). С. 122-129.
6. Кочкорова М.Б., Белекова Б.Т., Белеков Б.Т. Расчет идеального ветряка // Вестник Жалал-Абадского государственного университета. 2018. № 1 (36). С. 65-71.
7. Елистратов В.В. Возобновляемая энергетика. 3-е изд., доп. СПб. : Изд-во Политехн. ун-та, 2016. 421 с.
8. Серебряков Р.А., Доржиев С.С., Базарова Е.Г. Современное состояние, проблемы и перспективы развития ветроэнергетики // Вестник ВИЭСХ. 2018. № 1 (30). С. 89-96.
9. Вийтович О.И. Новые источники электроэнергии // Аспирант. Приложение к журналу Вестник Забайкальского государственного университета. 2010. № 2 (8). С. 107-111.
10. Суравков И.А., Лаурин Д.В., Гусакова М.А., Гусева А.М. Оценка экологического и энергетического потенциала применения ветроэнергетики в России // Актуальные проблемы безопасности жизнедеятельности и экологии : сб. науч. тр. и мат. III Междунар. науч.-практ. конф. с науч. шк. для мол. Тверь : Тверской государственный технический университет, 2017. С. 327-330.
11. Грозных В.А. Проблемы надежности электроснабжения от ветроэнергетических установок // Главный энергетик. 2017. № 8. С. 67-75.
12. Синеглазов В.М., Швалюк И.С. Classification of vertical-axis wind power plants with rotary Blades // Електрошка та системи управлшня. 2017. № 3 (53). С. 84-87. DOI: 10.18372/1990-5548.53.12147
13. Лукашин П.С., Мельникова В.Г., Стрижак С.В., Щеглов Г.А. Методика решения задач аэроупругости для лопасти ветроустановки с использованием СПО. Труды ИСП РАН, 2017. Т. 29. Вып. 6. C. 253-270. DOI: 10.15514/ ISPRAS2017-29(6)-16
14. АуесжановД.С., Орынбаев С.А. Функционирование систем регулирования и оптимального управления параметрами ВЭУ малой мощности // Знание. 2018. № 1-1 (53). С. 21-25.
15. Лятхер В.М. Ортогональные ветроустановки с высокими КПД и мощностью // International Scientific Journal Life and Ecology. 2017. № 1-2 (7-8). С. 39-40.
16. Гильманова А.А., Нафиков И.Р. Разработка установки альтернативного источника энергии // Агроинженер-ная наука XXI века : сб. науч. тр. региональной науч.-практ. конф. Казань : Казанский государственный аграрный университет, 2018. С. 65-68.
17. Сушков С.Л., Рудаков А.И. Анализ ветроэнергетической электроустановки парусного типа // Интеллектуальный и научный потенциал XXI века : сб. мат. Междунар. (заоч.) науч.-практ. конф. Нефтекамск : Научно-издательский центр «Мир науки», 2017. С. 86-88. URL: https://elibrary.ru/item.asp?id=29201500
18. Чудинов Д.М., Боева А.С., Бобина Н.С., Сокур Е.Г. Уровень развития ветроэнергетики в мире // Градостроительство. Инфраструктура. Коммуникации. 2017. № 2 (7). С. 34-39.
19. Валентей О.А., Артамонова Е.Ю., Шепелев А.О. Основные типы ветроустановок // Актуальные вопросы энергетики : мат. Междунар. науч.-практ. конф. Омск : Омский государственный технический университет, 2017. С. 111-114.
20. Верзилин А.А., Немова А.А. Ветровая энергетика и ее перспективы // Современные технологии в мировом научном пространстве : сб. ст. Междунар. науч.-практ. конф. : в 6 ч. Ч. 3. Уфа : АЭТЕРНА, 2017. С. 44-47.
21. Грибков С.В. Современное состояние малой ветроэнергетики // Новое в российской электроэнергетике. М. : Информационное агентство «Энерго-пресс», 2017. № 7. С. 58-74.
22. ДенисовР.С., Елистратов В.В., ГзенгерШ. Ветроэнергетика в России: возможности, барьеры и перспективы развития // Научно-технические ведомости СПбПУ Естественные и инженерные науки. 2017. Т. 23. № 2. С. 17-27. DOI: 10.18721/JEST.230202
23. Ким Ю.М., Кузнецова С.Э., Мустапинова Ю.Б. Альтернативная энергетика будущего // Труды Университета. 2016. № 3 (64). С. 92-95.
24. Чабанный А.А. Ветроэнергетические установки-преобразователи энергии // Молодежь в науке: новые аргументы : сб. науч. работ V междунар. молодежного конкурса. Липецк : Научное партнерство «Аргумент», 2016. С. 223-228.
25. Проценко П.П., Астахов В.А. Использования ветрогенерирующей установки в условиях Амурской области // Энерго- и ресурсосбережение в теплоэнергетике и социальной сфере : мат. Междунар. науч.-техн. конф. студ., асп., уч. Челябинск : Южно-Уральский государственный университет (национальный исследовательский университет), 2016. № 4 (1). С. 197-200.
26. Абдимуратов Ж.С., Темирбаева Н.Ы., Нарымбетов М.С. Энергообеспечение сельского хозяйства от возобновляемых источников энергии // Вестник Кыргызского национального аграрного университета им. К.И. Скрябина. 2014. № 2 (31). С. 214-217.
27. Дайчман Р.А. Эффективность выбора современных ветрогенераторов // Апробация. 2015. № 12 (39). С. 24-26.
28. Serebryakov R.A., Dorjev S.S., Bazarova E.G. Problems and prospects of wind energy development // Modern Science. 2016. No. 9. Pp. 9-17.
29. Миллер Р.Ф. Способ повышения эффективности работы ветродвигателя // Энергосбережение. Энергетика. Энергоаудит. 2014. № 8 (126). С. 35-38.
30. Карташова А.А., Гарипов Н.Л., Малолетков П.А., Ильин В.К., Новиков В.Ф. Сравнение нестандартных конструкций ветроэнергетических установок // Вестник Казанского государственного энергетического университета. 2014. № 1 (20). С. 7-15.
1. Janson R.A. Vetroustanovki [Wind turbines]. Moscow, Izd-vo MGTU im. N.E. Baumana, 2007. 36 p. (In Russian)
2. Andreeva E.V. Vetroustanovka dlya zon srednikh geograficheskikh shirot s umerenno-kontinental'nym klimatom [Wind turbine for zones of middle geographic latitudes with a temperate continental climate]. Inzhenerno-tekhnicheskoe obes -pechenieAPK. Referativnyy zhurnal [Engineering and Technical Support of the Agroindustrial Complex. Review Journal]. 2005. No. 1. P. 25. (In Russian)
3. Konchakov E.I., Gribkov S.V, Dolgoruk V.M. Bezopasnaya vetroustanovka [Save wind turbine]. Mezhdunarodnyy nauchnyy zhurnalAl 'ternativnaya energetika i ekologiya [International Scholarly journal Alternative Energy and Ecology] . 2005. No. 3 (23). Pp. 66-67. (In Russian)
4. Zharkov S.V. Vetroustanovka s naklonnoy os'yu [Wind turbine with an inclined axis]. Tyazheloe mashinostroenie [Russian Journal of Heavy Machinery]. 2007. No. 10. Pp. 6-9. (In Russian)
5. Serebryakov R.A. Vetroustanovka s vikhrevym preobrazovatelem potokov sploshnoy sredy [Wind turbine with the vortex converter continuum]. Evraziyskiy soyuz uchenykh [Eurasian Union of Scientists]. 2016. No. 1-2 (22). Pp. 122-129. (In Russian)
6. Kochkorova M.B., Belekova B.T., Belekov B.T. Raschet ideal'nogo vetryaka [Calculation of the ideal wind]. Vestnik Zhalal-Abadskogo gosudarstvennogo universiteta [Bulletin of Jalal-Abad State University]. 2018. No. 1 (36). Pp. 65-71. (In Russian)
7. Elistratov VV Vozobnovlyaemaya energetika [Renewable Energy]. 3rd ed., suppl. Saint Petersburg, Izd-vo Politehn. un-ta, 2016. 421 p. (In Russian)
8. Serebryakov R.A., Dorzhiev S.S., Bazarova E.G. Sovremennoe sostoyanie, problemy i perspektivy razvitiya vetro-energetiki [State of the art, problems and prospects of wind energy development]. Vestnik VIESKh [Viesh Institute' Herald]. 2018. No. 1 (30). Pp. 89-96. (In Russian)
9. Vijtovich O.I. Novye istochniki elektroenergii [New resources of electrical power]. Aspirant. Prilozhenie kzhurnalu Vestnik Zabaykal 'skogo gosudarstvennogo universiteta [Graduate student. Supplement to the journal Bulletin of Transbaikal State University]. 2010. No. 2 (8). Pp. 107-111. (In Russian)
10. Suravkov I.A., Laurin D.V., Gusakova M.A., Guseva A.M. Otsenka ekologicheskogo i energeticheskogo potentsiala primeneniya vetroenergetiki v Rossii [The assessment of the environmental and energy potential the use of wind energy in Russia]. Aktual'nyeproblemy bezopasnosti zhiznedeyatel'nosti i ekologii: sbornik nauchnykh trudov i materialov IIIMezh-dunarodnoy nauchno-prakticheskoy konferentsii s nauchnoy shkoloy dlya molodezhi [Current Problems of Life Safety and Ecology : Collection of Scientific Papers and Materials of the III International Scientific Practical Conference with a scientific school for young people]. Tver, Tverskoy gosudarstvennyy tekhnicheskiy universitet, 2017. Pp. 327-330. (In Russian)
11. Groznyh VA. Problemy nadezhnosti elektrosnabzheniya ot vetroenergeticheskikh ustanovok [Problems of reliability of power supplyfrom wind power installations]. Glavnyy energetic [Chief Power Engineer]. 2017. No. 8. Pp. 67-75. (In Russian)
12. Sineglazov V.M., Shvaljuk I.S. Classification of vertical-axis wind power plants with rotary Blades. Elektronika ta sistemi upravlinnya [Electronics and Control Systems]. 2017. No. 3. Pp. 84-87. DOI: 10.18372/1990-5548.53.12147
13. Lukashin P.S., Melnikova VG., Strijhak S.V., Shcheglov G.A. Metodika resheniya zadach aerouprugosti dlya lo-pasti vetroustanovki s ispol'zovaniem SPO [The method of solving aeroelasticity problems for wind blade using open source software]. Trudy ISP RAN [Proc. ISP RAS]. 2017. Vol. 29. Issue 6. Pp. 253-270. DOI: 10.15514/ISPRAS2017-29(6)-16 (In Russian)
14. Aueszhanov D.S., Orynbaev S.A. Funktsionirovanie sistem regulirovaniya i optimal'nogo upravleniya parametrami VEU maloy moshchnosti [The functioning of the control systems and optimal control parameters of wind energy installations of low power]. Znanie [Knowledge]. 2018. No. 1-1 (53). Pp. 21-25. (In Russian)
15. Ljather V.M. Ortogonal'nye vetroustanovki s vysokimi KPD i moshchnost'yu [Orthogonal units to use energy of flows with the highest efficiency and power]. International Scientific Journal Life and Ecology. 2017. No. 1-2 (7-8). Pp. 39-40. (In Russian)
16. Gilmanova A.A., Nafikov I.R. Razrabotka ustanovki al'ternativnogo istochnika energii [Development of analternative energy source]. Agroinzhenernaya nauka XXI veka : sbornik nauchnye trudy regional'noy nauchno-prakticheskoy konferentsii [Agro-engineering Science of the XXI Century : Proceedings of the regional scientific-practical conference]. Kazan, Kazan State Agrarian University, 2018. Pp. 65-68. (In Russian)
17. Sushkov S.L., Rudakov A.I. Analiz vetroenergeticheskoy elektroustanovki parusnogo tipa [Analysis of wind power station electric installation of sailing type]. Intellektual'nyy i nauchnyy potentsial XXI veka : sbornik materialov Mezh-dunarodnoy (zaochnoy) nauchno-prakticheskoy konferentsii [The Intellectual and Scientific Potential of the XXI Century : a collection of materials of the International (correspondence) scientific-practical conference.]. Neftekamsk, Nauchno-izdatel'skiy tsentr "Mir nauki", 2017. Pp. 86-88. URL: https://elibrary.ru/item.asp?id=29201500 (In Russian)
18. Chudinov D.M., Boeva A.S., Bobina N.S., Sokur E.G. Uroven' razvitiya vetroenergetiki v mire [Development of wind energy in the world]. Gradostroitel'stvo. Infrastruktura. Kommunikatsii [Town planning. Infrastructure. Communications]. 2017. No. 2 (7). Pp. 34-39. (In Russian)
19. Valentey O.A., Artamonova E.Yu., Shepelev A.O. Osnovnye tipy vetroustanovok [Main types of windways]. Aktual'nye voprosy energetiki : materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Actual issues of energy: materials of the International Scientific and Practical Conference]. Omsk, Omskiy gosudarstvennyy tekhnicheskiy univer-sitet, 2017. Pp. 111-114. (In Russian)
20. Verzilin A.A., Nemova A.A. Vetrovaya energetika i ee perspektivy [Wind energy and its perspectives]. Sovremennye tekhnologii v mirovom nauchnom prostranstve : sbornik statey Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Modern technologies in the global scientific space: a collection of states of the International Scientific and Practical Conference]. 6 parts. Part 3. Ufa, AETERNA Publ., 2017. Pp. 44-47. (In Russian)
21. Gribkov S.V. Sovremennoe sostoyanie maloy vetroenergetiki [The current state of small wind power]. Novoe v ros-siyskoy elektroenergetike [New in the Russian electric power industry]. Moscow, Information Agency "Energy Press", 2017. No. 7. Pp. 58-74. (In Russian)
22. Denisov R.S., Elistratov V.V, Gsaenger S. Vetroenergetika v Rossii: vozmozhnosti, bar'ery i perspektivy razvitiya [Wind power in Russia: opportunities, barriers and prospects]. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki [St. Petersburg polytechnic university journal of engineering sciences and technology]. 2017. No. 23 (2). Pp. 17-27. DOI: 10.18721/JEST.230202 (In Russian)
23. Kim Yu.M., Kuznecova S.E., Mustapinova Ju.B. Al'ternativnaya energetika budushchego [Alternative energy of the future]. Trudy Universiteta [Proceedings of the University]. 2016. No. 3 (64). Pp. 92-95. (In Russian)
24. Chabannyj A.A. Vetroenergeticheskie ustanovki-preobrazovateli energii [Wind power plants-converters of energy]. Molodezh' v nauke: novye argumenty : sbornik nauchnykh rabot V mezhdunarodnogo molodezhnogo konkursa [Youth in science: new arguments : collection of scientific papers of the V International Youth Competition]. Lipetsk, Nauchnoe part-nerstvo "Argument", 2016. Pp. 223-228. (In Russian)
25. Procenko P.P., Astahov VA. Ispol'zovaniya vetrogeneriruyushchey ustanovki v usloviyakh Amurskoy oblasti [Use of wind-generating installation in the conditions of the Amur region]. Energo- i resursosberezhenie v teploenerge-tike i sotsial'noy sfere : materialy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii studentov, aspirantov, uchenykh [Energy and resource saving in heat and power engineering and social sphere : materials of the International scientific and technical conference of students, graduate students, scientists]. Chelyabinsk, Yuzhno-Ural'skiy gosudarstvennyy universitet (natsional'nyy issledovatel'skiy universitet), 2016. No. 4 (1). Pp. 197-200. (In Russian)
26. Abdimuratov Zh.S., Temirbaeva N.Y., Narymbetov M.S. Energoobespechenie sel'skogo khozyaystva ot vozob-novlyaemykh istochnikov energii [Energy supply of agriculture from renewable energy sources]. Vestnik Kyrgyzskogo natsional'nogo agrarnogo universiteta im. K.I. Skryabina [Bulletin of the Kyrgyz National Agrarian University. K.I. Scria-bin]. 2014. No. 2 (31). Pp. 214-217. (In Russian)
27. Daychman R.A. Effektivnost' vybora sovremennykh vetrogeneratorov [Efficiency of the choice of modern wind generators]. Aprobatsiya [Approbation]. 2015. No. 12 (39). Pp. 24-26. (In Russian)
28. Serebryakov R.A., Dorjev S.S., Bazarova E.G. Problems and prospects of wind energy development. Modern Science. 2016. No. 9. Pp. 9-17.
29. Miller R.F. Sposob povysheniya effektivnosti raboty vetrodvigatelya [A method to increase performance of the wind motor]. Energosberezhenie. Energetika. Energoaudit [Energy saving. Power engineering. Energy audit]. 2014. No. 8 (126). Pp. 35-38. (In Russian)
30. Kartashova A.A., Garipov N.L., Maloletkov P. A., Ilin VK., Novikov V.F. Sravnenie nestandartnykh konstruktsiy vetroenergeticheskikh ustanovok [Comparing nonstandart constructions of wind-power installations]. Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta [Bulletin of Kazan State Energy University]. 2014. No. 1 (20). Pp. 7-15. (In Russian)
Поступила в редакцию 10 декабря 2018 г. Принята в доработанном виде 16 января 2019 г. Одобрена для публикации 12 февраля 2019 г.
masterok
Давайте посмотрим на нетрадиционые варианты выработки энергии, а именно ветровые электростанции. Пока еще вопрос спорный в возможности существования этого вида энергодобычи без серьезных дотаций, возможность широкого и повсеместного применения этих устройств (а не только для специфических случаев). Однако не оспорим вопрос экологичности. Ну и это еще к тому же красиво 🙂
В Европе и США огромные ветряки — привычный элемент загородного пейзажа. Эти красивые гиганты устанавливаются не только на земле, но и на водных просторах.
Идея использовать силу ветра для получения электрической энергии не нова. Она родилась ещё в конце 19 века, а именно зимой 1887-88 годов, когда один из основателей американской электрической индустрии, Чарльз Ф. Браш построил прототип автоматически управляемой ветровой турбины для производства электроэнергии. На тот момент она была гигантской — диаметр ротора равнялся 17 метрам, и состоял из 144 лопастей, изготовленных. из кедра.
В Европе первая ветряная электрическая станция была пущена в 1900 году, а к началу ІІ-ой мировой войны на планете работало несколько миллионов ветряков.
Современный ветряк — это стальная башня высотой от 70 до 125 м, на вершине которой установлены генератор и ротор с лопастями из композиционных материалов. Сегодня используют 56-метровые лопасти.
Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры. Климатические условия позволяют развивать ветроэнергетику на огромной территории.
На первый взгляд ветер кажется одним из самых доступных и возобновляемых источников энергии. В отличие от Солнца он может "работать” зимой и летом, днем и ночью, на севере и на юге. Но ветер — это очень рассеянный энергоресурс.
Ветровая энергия практически всегда "размазана” по огромным территориям. Основные параметры ветра — скорость и направление — меняются подчас очень быстро и непредсказуемо, что делает его менее "надежным”, чем Солнце. Таким образом, встают две проблемы, которые необходимо решить для полноценного использования энергии ветра. Во-первых, это возможность "ловить” кинетическую энергию ветра с максимальной площади. Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема пока решается с трудом.
К решению первой проблемы привлекли специалистов самолета строения умеющих выбрать наиболее целесообразный профиль лопасти, для получения максимальной энергии ветра. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.
Это многолопастные «ромашки» и винты вроде самолетных пропеллеров с тремя, двумя и даже одной лопастью. Вертикальные конструкции хороши тем, что улавливают ветер любого направления; остальным приходится разворачиваться по ветру. Такой вертикальный ротор напоминает разрезанную вдоль и насаженную на ось бочку. Встречаются и оригинальные решения. Например, тележка с парусом ездит по кольцу из рельс, а ее колеса приводят в действие электрогенератор.
Кликабельно 1700 рх
Среди десятков тысяч ветряков есть огромные, а есть и маленькие, на один домик. А это как раз гигантские ветряки. Один из самых больших ветряков на сегодня построен в сентябре 2002 под Магдебургом в Германии. Его мощность — 4.5 мегаватт, каждая из трех лопастей достигает 52 метров в длину и 6 в ширину, и весит по 20 тонн. Крепится ротор на 120-метровой башне.
Последнее достижение ветроэнергетики — ветряки, диаметр ротора которых превышает размах крыла самолетов-гигантов, даже нашего «Руслана». Такая установка имеет мощность 1–2 мегаватта и способна обеспечивать электроэнергией 800 современных жилых домов.
Наиболее распространенным типом ветровых энергоустановок (ВЭУ) является турбина с горизонтальным валом и числом лопастей от 1 до 3. По оценкам различных авторов, ветроэнергетический потенциал Земли равен 1200 ТВт, однако использования этого вида энергии в различных районах Земли неодинаковы. В России валовой потенциал ветровой энергии — 80 трлн. кВт/ч в год, а на Северном Кавказе — 200 млрд. кВт/ч (62 млн. т усл. топлива). Эти величины существенно больше соответствующих величин технического потенциала органического топлива. Среднегодовая скорость ветра на высоте 20–30 м над поверхностью Земли должна быть достаточно большой, чтобы мощность воздушного потока, проходящего через надлежащим образом ориентированное вертикальное сечение, достигала значения, приемлемого для преобразования.
Ветровые электростанции выгодны, как правило, в регионах, где среднегодовая скорость ветра составляет 6 метров в секунду и выше и которые бедны другими источниками энергии, а также в зонах, куда доставка топлива очень дорога.
Норвегия объявила о планах построить самый большой в мире ветряк в 2011 году. Работы уже ведутся. Высота ветряной турбины будет составлять 533 фута, а диаметр ротора — 475 футов. Как ожидается, турбина будет обеспечивать электроэнергией 2 000 домов. Рекордный опытный образец стоит $67,5 миллионов.
Ветроэнергетическая установка, расположенная на площадке, где среднегодовая удельная мощность воздушного потока составляет около 500 Вт/м2 (скорость воздушного потока при этом равна 7 м/с), может преобразовать в электроэнергию около 175 из этих 500 Вт/м2. следует также учитывать те изменения, которые вносятся ветровыми установками в ландшафт местности, их размещение должно соответствовать не только стандартам безопасности и эффективности, но и правильного размещения на местности (мельницы ВЭУ, расположенные хаотично менее эффективны, чем те, которые расположены в определенной геометрической последовательности).
Малые ВЭУ обычно предназначаются для автономной работы. Системы, которым они выдают энергию, привередливы, требуют подачи энергии более высокого качества и не допускают перерывов в питании, например, в периоды безветрия. Поэтому им необходим дублер, то есть резервные источники энергии, например, дизельные двигатели той же, как у ветроустановок, или меньшей мощности.
Что касается более мощных ветроустановок (свыше 100кВт), то они применяются как электростанции и включаются обычно в энергосистемы. Обычно на одной площадке устанавливаются достаточно большое количество ВЭУ, образующих так называемую ветровую ферму. На одном краю (фермы) может дуть ветер, на другом в это время тихо. Ветряки нельзя ставить слишком тесно, чтобы они не загораживали друг друга. Поэтому (ферма) занимает много место.
Ветроэнергетика сильно зависит от капризов природы. Скорость ветра бывает настолько низкой, что ветра агрегат совсем не может работать, или настолько высокой, что ветра агрегат необходимо остановить и принять меры по его защите от разрушения. Если скорость ветра превышает номинальную рабочую скорость, часть извлекаемой механической энергии ветра не используется, с тем чтобы не превышать номинальной электрической мощности генератора. Для эффективной работы ВЭУ их размещают на открытых пространствах, реже на территориях сельскохозяйственных угодий, что повышает их продуктивность. В горных районах ветра установки работают эффективно из-за природных особенностей данных местностей, там преобладает движение воздушных масс с большой силой и скоростью, к тому же это дает энергию в труднодоступные районы.
Правильная установка влияет на КПД ветра агрегатов поэтому удельная выработка электрической энергии в течение года составляет 15 – 30% энергии ветра или даже меньше в зависимости от место положения и параметров установки.
В настоящее время рекорд по размеру и мощности (141 метр и 7 мегаватт) принадлежит ветрогенератору Enercon E-126, расположенному около немецкого городка Эмден.
Установка ветряка Enercon E-126:
Ветряные двигатели не загрязняют окружающую среду, отсутствие влияния на тепловой баланс атмосферы Земли, отсутствие потребления кислорода, выбросов углекислого газа и других загрязнителей. Чтобы производить с их помощью много электроэнергии, необходимы огромные пространства земли. Лучше всего они работают там, где дуют сильные ветры.
Сегодня ветроэлектрические агрегаты надежно снабжают током нефтяников; они успешно работают в труднодоступных районах, на дальних островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования.
В проектировании установки самая трудная проблема состояла в том, чтобы при разной силе ветра обеспечить одинаковое число оборотов пропеллера. Ведь при подключении к сети генератор должен давать не просто rкакую-то электрическую энергию, а только переменный ток с заданным числом циклов в секунду, т. е. со стандартной частотой 50 — 60 Гц. Поэтому угол наклона лопастей по отношению к ветру регулируют за счет попорота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии. Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра.
Одна из возникших проблем ветра агрегатов это избыток энергии в ветреную погоду и не достаток ее период без ветрея. Способов хранения ветреной энергии очень много рассмотрим наиболее простые один из способов: состоит в том, что ветряное колесо движет насос, который накачивает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. Существуют и другие способы, и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнетания сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Электрический ток от ветра агрегата разлагает воду на кислород и водород. Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности.
Ветряки ставят не только на суше, но и на водных просторах:
Самый высокий ветряк в мире находится в провинции Сан-Хуан на высоте 4 110 метров над уровням моря. Его установила самая крупная золотодобывающая компания в мире — Баррик. Ветряк занесен в книгу рекордов Гиннеса.
Ветроустановка — дорогая техника, но расходы на ее приобретение окупятся в течение первых 7 лет эксплуатации. Расчетный срок службы — 25 лет.
Европейский лидер по использованию энергии ветра — Дания. В этой стране их обычно размещают на скалистых рифах и мелководье, на расстоянии до 2 км от берега.
Кликабельно
Самым ветреным местом в Европе считают шотландские Внешние Гибриды. Северная часть этих островов продувается постоянно. Ветер там практически никогда не утихает.
В конце прошлого года компания Deepwater Wind объявила о планах создания крупнейшей в мире глубоководной ветровой электростанции.
Предполагается, что она будет возведена на протяжении от 29 до 43 км от побережья штата Род-Айленд и Массачусетс и будет производить до 1 000 мегаватт, что сопоставимо с ядерным энергоблоком. Ветряки будут установлены в океане с глубиной дна 52 м — это значительно глубже, чем любая другая современная ветроэлектростанция.
Кликабельно
А вот еще есть такой интересный ветряк
Первая в мире плавучая ветряная турбина была установлена в Северном море у побережья Норвегии. Об этом сообщила во вторник норвежская энергетическая компания StatoilHydro. Турбина, названная Hywind, достигает в высоту 65 метров и весит 5.300 тонн. Ее установили примерно в 10 километрах от острова Кармой, у юго-западного побережья страны, говорится в пресс-релизе компании.
"Ветряк" установлен на плавающей платформе, которая закреплена тремя якорями. В качестве балласта выступают вода и камни, помещенные внутрь платформы.
StatoilHydro планирует проводить испытания Hywind в течение последующих двух лет, прежде чем примет решение о производстве большего числа плавучих ветровых турбин.
По мнению специалистов StatoilHydro, данная технология может представлять интерес для Японии, Южной Кореи, американского штата Калифорния, части Восточного побережья Соединенных Штатов и Испании. Это лишь часть потенциальных рынков.
Hywind может устанавливаться на большем удалении от берега, чем статические ветровые турбины, уже находящиеся в эксплуатации. Речь идет о глубинах от 120 метров до 700 метров, что позволяет размещать новую турбину значительно дальше от берега.
В создание 2,3-мегаваттной плавающей турбины было вложено в общей сложности 400 млн. крон (46 миллионов евро), что делает ее дороже наземных аналогов. Теперь главная задача компании-производителя – удешевить свою разработку.
Ветровая энергия это огромная энергия, надо только правильно ее получать и хранить.
Рассмотрим теперь отрицательное влияние ВЭУ на среду обитания человека и животных, на телевизионную связь и пути сезонной миграции птиц. Действительно крупные ВЭУ влияют на телесигнал. На расстоянии до 0.5 км, они вызывают помехи в телесигнале, это связано с тем, что лопасти ветрового колеса ВЭУ отражают сигналы, вызывая помехи при передачи телевизионного сигнала. Вследствие работы крупных ВЭУ больше 20 кВт возникает достаточное количества инфразвука, которое влияет на состояние человека и животных. При работе крупных ВЭУ возникает и естественный шум от работы ветрового колеса. Поэтому размещение ВЭУ больше 10 кВт нежелательно в переделах черты города. С этими отрицательными факторами пытаются бороться, в частности применяя новые виды материала, которые способны пропускать сигналы в большом спектре и т.д.
Ветровая энергетика вызывает все больше интерес и стремление к усовершенствованию установок для максимальной эффективности. Во многих страна начинают их применять в домах, на фермах, на небольшом производстве.
А вот такой проект :
Необычная ветровая электростанция, имеющая не три, а две лопасти, в скором времени появится у восточного побережья Шотландии. Экстравагантный ветряк, видимо, будет славен ещё и тем, что сможет принимать вертолёты.По данным Inhabitat, шотландский министр энергетики Фергюс Юинг (Fergus Ewing) на днях объявил, что правительство одобрило строительство инновационной ветровой турбины по проекту голландской компании 2-B Energy. Гигантский двухлопастный ветряк мощностью 6 мегаватт будет возведён в составе комплекса Energy Park Fife примерно в 20 метрах от берега.
Вызывающая немало вопросов вертолётная площадка присутствует только на проектных картинках в разделе «общее впечатление». В шотландском правительстве посадка геликоптеров на ветряк не обсуждается (иллюстрации 2-B Energy).
2-B Energy с нуля разработала новый тип турбин в 2007 году. Её ветряки предназначены именно для работы на воде, в прибрежной зоне, где нет строгих требований к шуму и жёстких ограничений по размеру конструкции. Что касается двух лопастей вместо трёх, то компания поясняет: чем меньше движущихся частей, тем лучше в плане ремонтопригодности.
Как сообщает BusinessGreen, 2-B Energy хотела установить в Шотландии два ветряка, но получила одобрение только на один.
«Тот факт, что инновационные компании решают проверить свои новые идеи именно в Шотландии, в лишний раз подтверждает репутацию нашей страны как места для разработки и внедрения всех типов новых „зелёных“ энергетических технологий», – заявил министр Юинг. Судя по всему, строительство экспериментальной турбины начнётся в 2014 году.
Кликабельно
Ну и еще один проектик:
Небольшая американская фирма Joby Energy разработала проект установки в виде огромного летающего змея. Змей представляет собой прямоугольный металлический каркас, несущий на себе десяток небольших лопастей. Сначала лопасти приводятся в действие моторами и, подобно пропеллеру самолета, поднимают каркас на высоту 400-500 метров.
Там в дело вступают мощные высотные ветры, которые вращают лопасти, вырабатывая электрическую энергию. Часть ее идет на поддержание каркаса в воздухе, а основная часть передается на землю по той металлической «нити», которая соединяет каркас с местом запуска. Конечно, для этого требуются прочные и легкие материалы, необходимые для создания летающего (и подвергающегося мощнейшим давлениям) гигантского, в десятки метров длиной, каркаса, и электроника, которая должна обеспечивать автоматическое управление полетом и маневрированием, и датчики, непрерывно измеряющие скорость, направление ветра и ориентацию аппарата, и компьютеры, которые по указаниям этих датчиков автоматически и непрерывно контролируют и нужным образом меняют ориентацию каркаса к ветру, чтобы обеспечить максимальный кпд, и многое другое, чего не было еще 10 лет назад.
Кликабельно 3000 рх
Новый план не просто реален. Он еще и достаточно перспективен, о чем говорит одна, но весьма красноречивая цифра: нынешняя потребность человечества в энергии составляет, по подсчетам, 17 тераватт, между тем как мощность ветров в тропосфере равна 870 тераваттам, то есть в 50 с лишним раз больше. (Напомним, что тропосферой называется приземный слой атмосферы до высоты в 20-30 километров, отделенный от выше лежащей стратосферы переходным слоем; под этим слоем образуются характерные для тропосферы постоянные «струйные потоки» (jet streams) со скоростями ветра от 100 до 400 километров в час. Для сравнения: на земле ураганной считается скорость выше 117 километров в час.) Далеко не случайно эта фирма так энергично испытывает одну систему за другой. Агентство НАСА в ближайшее время проводит нечто вроде всеамериканского конкурса на лучший проект надежной и безопасной летающей турбины мощностью в 300 киловатт. Тот факт, что на этом конкурсе фирма будет лишь одним из нескольких десятков конкурентов, свидетельствует об интересе, проявляемом к новому виду «чистой» энергии. Но еще более ярко о том же говорит интерес, проявляемый к новому плану американским правительством. Это именно оно выделило НАСА деньги для координации и проверки всех этих частных проектов.
Сейчас на предварительном испытании находятся самые разные варианты летающих турбин — в виде воздушного змея, подвесного аэростата, летающего крыла, парашюта и так далее. Отбор поручен НАСА, уже имеющему опыт такой работы. Предстоит прежде всего найти наиболее эффективный вид носителя турбины. Для этого все они будут проверяться в одинаковых условиях полета на высоте до 600 метров — это предел, который для начала установило федеральное правительство.
Даже на этой высоте летающие турбины вполне могут показать свои преимущества перед наземными, ведь сила ветра, как уже говорилось, растет с высотой, а мощность ветряков, как уже выяснила практика, пропорциональна кубу силы ветра. Это значит, что даже при удвоенной за счет высоты силе ветра летающая турбина может дать в 8 раз больше мощности, чем наземная, а при утроенной — даже в 27 раз больше. Как полагают расчетчики, в будущем, когда такие турбины будут летать на высоте 8-9 километров, на уровне самых низких «струйных течений» с их средней скоростью ветра 240 километров в час, они смогут давать 20 000-40 000 ватт на квадратный метр лопастей вместо 500 ватт, которые дают нынешние наземные ветряки .
Кроме того, у них есть еще то преимущество, что установка запуска, где крепится нанотрубочная «нить» (она же — кабель для приема тока), занимает очень малую площадь. Да и стоимость турбины-змея много меньше, чем, скажем, того норвежского гиганта, который сейчас готовится выплыть в море. С другой стороны, летающие ветряки, конечно, уступают таким гигантам по максимальной мощности каждой отдельной установки. Чтобы сравняться с мощностью норвежского плавучего ветряка, летающий ветряк должен иметь рабочую площадь в несколько сот квадратных метров, а это ставит перед конструкторами очень трудные — и пока неразрешимые — технические задачи (в смысле прочности, подъемной силы и так далее.) Так что перегнать наземные ветряки по суммарной мощности можно только за счет я количества, и поэтому энтузиасты нового плана говорят сегодня о создании огромной сети таких летающих ветряков, пусковые установки которых будут собраны на определенных участках той или иной страны — нечто вроде проекта «Дезертек», предлагающего покрыть Сахару сплошными солнечными зеркалами.
В отличие от «Дезертека», в данном случае возникает, однако, сложный вопрос о воздушном пространстве. Каждая летающая турбина требует своей нити, а поскольку эта турбина не стоит на одном месте, а под воздействием ветра и нити описывает определенные траектории в небе, ей нужен также свой «воздушный коридор» — этакий колодец, на дне которого находится ее пусковая установка, а «стены» заданы границами беспрепятственного перемещения этой турбины под действием ветра. Но ведь в воздухе сегодня летают самолеты: частные — на малой высоте, военные, грузовые и пассажирские — на большой, и каждому из них требуется свой воздушный коридор. Система этих коридоров устанавливается в национальном и международном масштабе, и наличие множества «нитей» и самих летающих турбин может создать огромную опасность. В силу этого развитие сети летающих турбин требует сложных диспетчерских расчетов и системы международных соглашений. Поэтому НАСА предполагает провести свои конкурсные испытания уже существующих проектов летающих турбин и проверку проектов их дальнейшего совершенствования в одном единственном месте — на побережье Калифорнии (с тем, чтобы нити проходили над морем) и не выше 600 метров, чтобы не мешать рейсам обычной авиации.
И все же, несмотря на все эти трудности, можно сказать, что план добычи энергии из воздуха начинает обретать реальные очертания. Свой и, возможно, весьма существенный со временем вклад в освобождение мира от нефтяной удавки и опасности глобального потепления летающие ветряки будущего, наверное, внесут.
Кликабельно
Кликабельно 2000 рх
Кликабельно