Схемы и группы соединений обмоток трансформаторов
Трехфазный трансформатор имеет две трехфазные обмотки — высшего (ВН) и низшего (НН) напряжения, в каждую из которых входят по три фазные обмотки, или фазы. Таким образом, трехфазный трансформатор имеет шесть независимых фазных обмоток и 12 выводов с соответствующими зажимами, причем начальные выводы фаз обмотки высшего напряжения обозначают буквами A , B , С, конечные выводы — X , Y , Z , а для аналогичных выводов фаз обмотки низшего напряжения применяют такие обозначения: a, b, c, x, y, z.
Каждая из обмоток трехфазного трансформатора — первичная и вторичная — может быть соединена тремя различными способами, а именно:
В большинстве случаев обмотки трехфазных трансформаторов соединяют либо в звезду, либо в треугольник (рис. 1).
Осветительные сети выгодно строить на высокое напряжение, но лампы накаливания с большим номинальным напряжением имеют малую световую отдачу. Поэтому их целесообразно питать от пониженного напряжения. В этих случаях обмотки трансформатора также выгодно соединять в звезду (Y), включая лампы на фазное напряжение.
С другой стороны, с точки зрения условий работы самого трансформатора, одну из его обмоток целесообразно включать в треугольник.
Фазный коэффициент трансформации трехфазного трансформатора находят, как соотношение фазных напряжений при холостом ходе:
а линейный коэффициент трансформации, зависящий от фазного коэффициента трансформации и типа соединения фазных обмоток высшего и низшего напряжений трансформатора, по формуле:
Если соединений фазных обмоток выполнено по схемам «звезда-звезда» или «треугольник-треугольник», то оба коэффициента трансформации одинаковы, т.е. n ф = n л.
При соединении фаз обмоток трансформатора по схеме «звезда — треугольник» — n л = n фV 3 , а по схеме «треугольник-звезда» — n л = n ф / V 3
Группы соединений обмоток трансформатора
Группа соединений обмоток трансформатора характеризует взаимную ориентацию напряжений первичной и вторичной обмоток. Изменение взаимной ориентации этих напряжений осуществляется соответствующей перемаркировкой начал и концов обмоток.
Стандартные обозначения начал и концов обмоток высокого и низкого напряжения показаны на рис.1.
Рассмотрим вначале влияние маркировки на фазу вторичного напряжения по отношению к первичному на примере однофазного трансформатора (рис. 2 а).
Обе обмотки расположены на одном стержне и имеют одинаковое направление намотки. Будем считать верхние клеммы началами, а нижние — концами обмоток. Тогда ЭДС Ё1 и E2 будут совпадать по фазе и соответственно будут совпадать напряжение сети U1 и напряжение на нагрузке U2 (рис. 2 б). Если теперь во вторичной обмотке принять обратную маркировку зажимов (рис. 2 в), то по отношению к нагрузке ЭДС Е2 меняет фазу на 180°. Следовательно, и фаза напряжения U2 меняется на 180°.
Таким образом, в однофазных трансформаторах возможны две группы соединений, соответствующих углам сдвига 0 и 180°. На практике для удобства обозначения групп используют циферблат часов. Напряжение первичной обмотки U1 изображают минутной стрелкой, установленной постоянно на цифре 12, а часовая стрелка занимает различные положения в зависимости от угла сдвига между U1 и U2. Сдвиг 0° соответствует группе 0, а сдвиг 180° — группе 6 (рис. 3).
В трехфазных трансформаторах можно получить 12 различных групп соединений обмоток. Рассмотрим несколько примеров.
Пусть обмотки трансформатора соединены по схеме Y/Y (рис. 4). Обмотки, расположенные на одном стержне, будем располагать одну под другой.
Зажимы А и а соединим для совмещения потенциальных диаграмм. Зададим положение векторов напряжений первичной обмотки треугольником АВС. Положение векторов напряжений вторичной обмотки будет зависеть от маркировки зажимов. Для маркировки на рис. 4а, ЭДС соответствующих фаз первичной и вторичной обмоток совпадают, поэтому будут совпадать линейные и фазные напряжения первичной и вторичной обмоток (рис. 4, б). Схема имеет группу Y/Y — О.
Изменим маркировку зажимов вторичной обмотки на противоположную (рис. 5. а). При перемаркировке концов и начал вторичной обмотки фаза ЭДС меняется на 180°. Следовательно, номер группы меняется на 6. Данная схема имеет группу Y/Y — б.
На рис. 6 представлена схема, в которой по сравнению со схемой рис 4 выполнена круговая перемаркировка зажимов вторичной обмотки. При этом фазы соответствующих ЭДС вторичной обмотки сдвигаются на 120° и, следовательно, номер группы меняется на 4.
Схемы соединений Y/Y позволяют получить четные номера групп, при соединении обмоток по схеме «звезда-треугольник» номера групп получаются нечетными. В качестве примера рассмотрим схему, представленную на рис. 7.
В этой схеме фазные ЭДС вторичной обмотки совпадают с линейными, поэтому треугольник аbс поворачивается на 30° против часовой стрелки по отношению к треугольнику АВС. Но так как угол между линейными напряжениями первичной и вторичной обмоток отсчитывается по часовой стрелке, то группа будет иметь номер 11.
Из двенадцати возможных групп соединений обмоток трехфазных трансформаторов стандартизованы две: «звезда-звезда» — 0 и «звезда-треугольник» — 11. Они, как правило, и применяются на практике.
Схемы «звезда-звезда с нулевой точкой» используют в основном для трансформаторов потребителей напряжением 6 — 10/0,4 кВ. Нулевая точка дает возможность получить напряжение 380/220 или 220/127 В, что удобно для одновременного подключения как трехфазных, так и однофазных приемников электроэнергии (электродвигателей и ламп накаливания).
Схемы «звезда-треугольник» применяют для высоковольтных трансформаторов, соединяя обмотку 35 кВ в звезду, а 6 или 10 кВ в треугольник. Схема «звезда с нулевой точкой» используется в высоковольтных системах, работающих с заземленной нейтралью.
Группы соединения обмоток трехфазных трансформаторов:
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Трехфазный трансформатор (маркировка выводов и проверка групп соединений обмоток трансформатора)
Цель работы: ознакомиться с особенностями конструкции трехфазных двухобмоточных трансформаторов, схемами соединений обмоток и группами их соединений. Произвести маркировку выводов обмоток трансформатора и проверку групп соединений обмоток методом полярометра.
Трехфазные трансформаторы со связанными магнитными системами имеют обычно трехстержневые сердечники. На каждом стержне сердечника размещены пары фазных обмоток высшего (ВН) и низшего (НН) напряжений, относящиеся к одноименным фазам. Фазные обмотки как ВН, так и НН чаще всего соединяют между собой звездой (Y) или треугольником (∆). Независимо от способа соединения выводы каждой фазной обмотки называют – один началом обмотки, другой – ее концом. Для какой-нибудь одной фазной обмотки выбор ее начала и конца можно сделать произвольно. Тогда за начала двух других обмоток необходимо принять выводы, идя от которых обмотки должны быть намотаны в том же направлении, что и первая.
Принято начала фазных обмоток ВН обозначать буквами А, В и С, а их концы – буквами X, Y и Z; соответственно начала и концы обмоток НН – буквами
Рисунок 1Размещение фазных обмоток ВН и НН на стержнях сердечника трехфазного трансформатора
Рисунок 2 Схема соединений обмоток ВН звездой, а обмоток НН – треугольником (Y/ ).
Очевидно, что соединения обмоток звездой или треугольником можно выполнить тогда, когда выводы всех фазных обмоток промаркированы (рисунок
2). Маркировку выводов обмоток производят в том случае, когда она отсутствует и для проверки уже имеющейся маркировки.
Как известно, в трехфазных трансформаторах напряжение между началом и концом фазной обмотки называется фазным (Uф), а между началами разных фаз – линейным (Uл). Векторная диаграмма линейных и фазных напряжений при соединении звездой приведена на рисунке 3, из которого видно, что в симметричной трехфазной системе линейные и фазные напряжения не совпадают по фазе на угол, кратный 300. При соединении звездой : Uл = √3 Uф, а при соединении треугольником : Uл = Uф. Поэтому, во-первых, отношение
где k – коэффициент трансформации, справедливо только при одинаковых схемах соединений обмоток ВН и НН; во-вторых, при любых схемах соединений векторы линейных одноименных напряжений ВН и НН сдвинуты по фазе между собой на угол, кратный 300, который и определяет группу соединения обмоток. Так как этот угол необходимо учитывать в эксплуатации (например, на параллельную работу можно включать трансформаторы только с одинаковыми группами соединений), то кроме указания схем соединения обмоток необходимо указание и группы соединений.
Рисунок 3 Векторная диаграмма напряжений UФ и UЛ при соединении Y.
Группа соединений трехфазного трансформатора зависит от:
а) направления намотки обмоток;
б) способа обозначения выводов обмоток, т.е. их маркировки;
в) схем соединения обмоток.
Фазные обмотки ВН и НН, расположенные на общем стержне, сцеплены с одним и тем же магнитным потоком (рисунок 1), поэтому их ЭДС совпадают по фазе при одинаковых направлениях намотки и сдвинуты по фазе на 1800, если обмотки намотаны в противоположных направлениях, или при перемене местами обозначений начала и конца одной из обмоток. Сдвиг по фазе между одноименными линейными ЭДС ВН и НН можно определить, построив векторные диаграммы (рисунок 4). Угол отставания линейной ЭДС НН от одноименной линейной ЭДС ВН, определяющий группу соединения, принято выражать не в градусах, а относительной величиной, полученной делением данного угла на 30º. Удобно при этом воспользоваться циферблатом часов. Если вектор линейной ЭДС ВН (он больше по величине) совместить с минутной стрелкой, установленной на цифру 12, а вектор линейной ЭДС НН – с часовой стрелкой, то последняя укажет номер группы соединения (рисунок 5). Отсчет угла производится от минутной к часовой стрелке по направлению их вращения. Трансформаторы, имеющие одинаковые схемы соединения обмоток ВН и НН, могут иметь 6 различных четных групп соединений, а с различными схемами соединений (Y/Y или Δ/Y) – 6 различных нечетных групп. Однако стандартизированы только группы Y/Y-0 (Y/Y-0) и Y/Δ-11 (Y/Δ-11).
Рисунок 4 – Схемы соединения, векторные диаграммы и группы соединения трехфазных трансформаторов
Рисунок 5 – Определение номера группы с помощью циферблатных часов
Принадлежность трансформатора к той или иной группе соединения можно определить полярометром-вольтметром магнитоэлектрической системы с нулем посередине шкалы и отмеченной полярностью его зажимов. При включении обмоток ВН на постоянное напряжение определенной полярности в других обмотках трансформатора в момент включения наводится мгновенная ЭДС, величина и направление которой зависят от группы соединения обмоток и фиксируются с помощью полярометра. Каждой группе соединений отвечает определенная таблица отклонений стрелки полярометра для испытуемого трансформатора и, сравнив ее с имеющимися, устанавливают группу соединений обмоток.
Порядок выполнения работы
1 Маркировка зажимов трансформатора
При маркировке выводов обмоток трехфазных трансформаторов допускается пользоваться напряжениями источника, не превышающими номинальные напряжения обмоток, а по соображениям безопасности следует проводить эксперимент на пониженных напряжениях как переменного, так и постоянного тока.
Клеммная доска Щиток трансформатора
Рисунок 6 – Экспериментальная установка
Экспериментальная установка содержит испытуемый трехфазный трансформатор, специальную клеммную доску, однофазный понижающий трансформатор, выпрямитель и вольтметры.
К клеммам клеммной доски подключены проводники многожильного кабеля (провода, собранные в жгут). Выходные концы жил кабеля снабжены клеммами, не имеющими маркировки. Перед экспериментом студенты присоединяют эти провода к выводам обмоток трансформатора. Таким образом, на клеммной доске зажимы 1-12 являются немаркированными выводами обмоток трансформатора, и их следует промаркировать в соответствии с принятыми
обозначениями выводов обмоток. Маркировка осуществляется в несколько этапов:
а) определяют пары выводов отдельных обмотoк ВН или НН;
б) определяют обмотки ВН и НН и пары обмоток, расположенные на общих стержнях сердечника;
в) маркируют начала и концы обмоток ВН и НН.
Рисунок 7 – Схема для определения пар выводов, принадлежащих отдельным обмоткам
Трехфазный трансформатор. Устройство трехфазного трансформатора. Схема трехфазного трансформатора.
Для трансформирования энергии в трехфазных системах используют либо группу из трех однофазных трансформаторов (именно так и работают мощные однофазные трансформаторы, устанавливаемые на крупных электростанциях), у которых первичные и вторичные обмотки соединяются звездой или треугольником, либо один трехфазный трансформатор с общим магнитопроводом.
Устройство трехфазного трансформатора
Трехфазные трансформаторы могут иметь различные схемы соединения первичных и вторичных обмоток. Все начала первичных обмоток трансформатора обозначают большими буквами: А, В, С; начала вторичных обмоток — малыми буквами: а, Ь, с. Концы обмоток обозначаются соответственно: X, У, Z и х, у, z. Зажим выведенной нулевой точки при соединении звездой обозначают буквой О.
Наибольшее распространение имеют соединения обмоток по схеме «звезда» (Y) и «треугольник» ( D ), причем первичные и вторичные обмотки могут иметь как одинаковые, так и различные схемы. Если при соединении обмоток «звездой» нулевая точка выводится, то такое соединение называют «звезда c нулем» (Yо).
Самым простым и дешевым из них является соединение обеих обмоток трансформатора звездой (Y/Y), при котором каждая из обмоток и ее изоляция (при глухом заземлении нейтральной точки) должны быть рассчитаны только на фазное напряжение и линейный ток; так как число витков обмотки трансформатора прямо пропорционально напряжению, то, следовательно, соединение обмоток звездой требует в каждой из обмоток меньшего количества витков, но большего сечения проводников с изоляцией, рассчитанной лишь на фазное напряжение.
Схема трехфазного трансформатора
На рисунке приведено устройство трехфазного трансформатора при соединении обеих обмоток звездой (Y/Y). Такое соединение широко применяют для трансформаторов небольшой и средней мощности (примерно до 1800 кВ-А). Соединение звездой является наиболее желательным для высокого напряжения, так как при нем изоляция обмоток рассчитывается лишь на фазное напряжение. Чем выше напряжение и меньше ток, тем относительно дороже обходится соединение обмоток треугольником.
Соединение обмоток треугольником конструктивно удобнее при больших токах. По этой причине соединение Y/D широко применяется для трансформаторов большой мощности в тех случаях, когда на стороне низшего напряжения не требуется нейтрального провода.
При трехфазной трансформации только отношение фазных напряжений U1ф/U2ф всегда приближенно равно отношению чисел витков первичной и вторичной обмоток w1/w2; что же касается линейных напряжений, то их отношение зависит от способа соединения обмоток трансформатора. При одинаковом способе соединения (Y/Y или D/D) отношение линейных напряжений также равно коэффициенту трансформации. Однако при различном способе соединения (Y/D или D/Y) отношение линейных напряжений меньше или больше этого коэффициента в √3 раз. Это дает возможность регулировать вторичное линейное напряжение трансформатора соответствующим изменением способа соединения его обмоток.