Как зависит электрическая проводимость полупроводников от температуры и освещенности
Перейти к содержимому

Как зависит электрическая проводимость полупроводников от температуры и освещенности

  • автор:

 

Зависимость сопротивления проводника от температуры

Зависимость проводимости полупроводников от температуры и освещенности

Полупроводники – это вещества, сопротивление которых убывает с повышением температуры, изменения освещенности, наличия примесей.
При нагревании полупроводникового термистора сила тока в цепи растет, что указывает на уменьшение его сопротивления.

При освещении полупроводникового фоторезистора сила тока в цепи растет, что указывает на уменьшение его сопротивления.

Типичными полупроводниками являются кристаллы германия (Ge) и кремния (Si).

Зависимость сопротивления проводника от температуры

Практически в электротехнике выло выявлено, что с увеличением температуры сопротивление проводников из металла возрастает, а с понижением уменьшается. Для всех проводников из металла это изменение сопротивления почти одинаково и в среднем равно 0,4% на 1°С.

Если быть точным, то на самом деле при изменении температуры проводника изменяется его удельное сопротивление, которое имеет следующую зависимость:

где ρ и ρ0, R и R0 — соответственно удельные сопротивления и сопротивления проводника при температурах t и 0°С (шкала Цельсия), α — температурный коэффициент сопротивления, [α] = град-1.

Изменение удельного сопротивления проводника приводит к изменения самого сопротивления, что видно из следующего выражения:

Зная электронную теорию строения вещества можно дать следующее объяснение увеличению сопротивления металлических проводников с повышением температуры. При увеличении температуры проводник получает тепловую энергию, которая несомненно передается всем атомам вещества, в результате чего .возрастает их тепловое движение. Увеличившееся тепловое движение атомов создает большее сопротивление направленному движению свободных электронов (увеличивается вероятность столкновения свободных электронов с атомами), от этого и возрастает сопротивление проводника.

С понижением температуры направленное движение электронов облегчается (уменьшается возможность столкновения свободных электронов с атомами), и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов. Сверхпроводимость, т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре —273° С, называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.

График звисимости сопротивления металлического проводника от температуры представлен на рисунке 1.

Рисунок 1. График зависимости удельного сопротивления металлического проводника от температуры

Необходимо сказать, что сопротивление электролитов и полупроводников (уголь, селен и другие) с увеличением температуры уменьшается.

Температурная зависимость сопротивления электролита объясняется также в основном изменением удельного сопротивления,однако всегда температурный коэффициент сопротивления — α <0.

Поэтому кривая зависимости сопротивленя электролита от температуры имеет вид, представленый на рисунке 2.

Рисунок 1. График зависимости удельного сопротивления электролита от температуры

Ддя полупроводников характер изменения удельного сопротивления от температуры будет схож с таковым для элетролитов.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

  • Резисторы. Виды резисторов
  • Типы резисторов
  • Обозначение резисторов на схемах
  • Соединение резисторов
  • Зависимость электрического сопротивления от сечения, длины и материала проводника
Добавить комментарий

Собственная проводимость полупроводников

В идеальном кристалле германия при низкой температуре атомы объединены ковалентной связью: свободных носителей заряда нет. При увеличении температуры энергия электронов увеличивается и происходит разрыв ковалентной связи, а на их месте образуется свободное вакантное место – положительная дырка.

В идеальном кристалле четырехвалентного германия при низкой температуре атомы объединены ковалентной связью: свободных носителей заряда нет. Четыре валентных электрона связаны с четырьмя соседними атомами. При увеличении температуры энергия электронов увеличивается и происходит разрыв ковалентной связи, а на их месте образуется положительная дырка.

В чистом полупроводнике электрический ток создается равным количеством электронов и дырок. Такой тип проводимости называется собственной проводимостью полупроводников.

Виды и свойства полупроводников

Для того, чтобы появился электрический ток, необходимо наличие подвижных частиц, переносящих заряды. Электропроводность того или иного вещества зависит от количества таких носителей на единицу объема. В диэлектриках они практически отсутствуют, а в полупроводниках свободные носители присутствуют лишь в небольшом количестве. Следовательно, удельное сопротивление полупроводников очень высокое, а в диэлектриках оно еще больше. Существуют различные виды этих материалов, обладающих собственными специфическими свойствами.

Все полупроводники можно разделить на несколько основных видов. Среди них лидируют чистые или собственные материалы, в которых отсутствуют какие-либо примеси.

Сопротивление полупроводников

Для них характерна кристаллическая структура, где атомы расположены в периодическом порядке в ее узлах. Здесь существует устойчивая взаимная связь каждого атома с четырьмя атомами, расположенными рядом. Это дает возможность образовывать постоянные электронные оболочки, в состав которых входит восемь электронов. При температуре, равной абсолютному нулю, такой полупроводник становится диэлектриком, поскольку все электроны соединены ковалентными связями.

Когда температура повышается или происходит какое-либо облучение, электроны могут выйти из ковалентных связей и превратиться в свободных носителей зарядов. Свободные места при перемещении постепенно занимаются другими электронами, поэтому электрический ток протекает только в одном направлении.

В электронных полупроводниках, кроме четырех атомов, составляющих основу кристаллической решетки, имеются так называемые доноры. Они представляют собой примеси в виде пятивалентных атомов. Электрон, содержащийся в таком атоме, не может нормально вступить в ковалентную связь и поэтому отделяется от донора. Таким образом, он превращается в свободный носитель заряда. В свою очередь донор становится положительным ионом, это может произойти даже при комнатной температуре.

Примесная проводимость полупроводников

При внесении примеси электрическая проводимость полупроводников увеличивается. Такой полупроводник обладает примесной проводимостью.

При добавлении донорной примеси (с большей валентностью) в полупроводнике образуются лишние электроны. Например, если в четырехвалентный кристалл германия добавить пятивалентный мышьяк, то четыре электрона мышьяка образуют ковалентные связи, а пятый остается свободным. Проводимость становится электронной, а полупроводник называют полупроводником n-типа.

При добавлении акцепторной примеси (с меньшей валентностью) в полупроводнике образуются лишние дырки. Например, если в четырехвалентный кристалл германия ввести трехвалентный индий, то одна ковалентная связь останется незавершенной. Проводимость становится дырочной, а полупроводник называют полупроводником p-типа.

Полупроводниковые приборы и их применение

Полупроводниковый диод

Прибор, в котором используется p-n-переход, называется полупроводниковым диодом.

Электрический ток через контакт полупроводников p-n-типа:

Идет значительный ток.

Ток практически отсутствует.

Вольт-амперная характеристика p-n-перехода.

Правая часть графика соответствует прямому направлению тока, а левая – обратному.

Полупроводниковый диод используется как выпрямитель переменного тока.

Транзистор

Транзистор имеет два p-n-перехода и используется как усилитель мощности в радиоэлектронных устройствах. Транзистор состоит из двух полупроводников p-типа и одного n-типа или двух полупроводников n-типа и одного p-типа. Эти переходы делят полупроводник на три области, называемые эмиттер, база, коллектор.

Интегральные схемы

На основе полупроводниковых кристаллов создаются интегральные схемы, в которых сотни тысяч элементов соединяются в единую электрическую цепь.

Полупроводники используются при создании:

фоторезисторов, которые находят применение в автоматических выключателях света, индикаторах на ИСЗ;

термисторах, используемых для измерения температуры, в пожарной сигнализации, реле времени;

фотоэлементах, используемых в солнечных батареях;

фотодиодах, используемых для измерения интенсивности света;

фототранзисторах, используемых в различных датчиках;

светодиодах, используемых в качестве источника инфракрасного излучения, знаковых индикаторах, полупроводниковых лазерах.

Подведем итог

Полупроводники по электропроводности занимают промежуточное положение между диэлектриками и проводниками. К полупроводникам относится большая группа веществ (Si, Ge и др.). В отличие от металлов с ростом температуры удельное сопротивление полупроводников уменьшается.

Проводимость полупроводников обусловлена наличием свободных электронов и дырок. В чистом кристалле электроны и дырки присутствуют в равном количестве. Такой полупроводник обладает собственной проводимостью.

При наличии примесей в полупроводниках возникает примесная проводимость. При добавлении донорной примеси с валентностью на единицу больше, чем у полупроводника, один электрон остается свободным. Получается полупроводник n-типа.

Если же добавить акцепторную примесь с валентностью на единицу меньше, чем у полупроводника, то в таком полупроводнике концентрация дырок превышает концентрацию электронов. Получается полупроводник p-типа.

Область контакта полупроводников двух типов называется p-n-переходом. Важным свойством p-n-перехода является его односторонняя проводимость. Данное свойство используется в работе полупроводникового диода.

Полупроводники используются при создании транзисторов, термисторов, светодиодов, фотоэлементов, интегральных схем.

В настоящее время полупроводниковые приборы находят широкое применение в радиотехнике, автоматике, вычислительной технике, телемеханике.

Факторы, влияющие на сопротивление полупроводников

Опытным путем было установлено, что при повышении температуры происходит уменьшение электрического сопротивления в полупроводниковых кристаллах. Это связано с тем, что при нагревании кристалла увеличивается количество свободных электронов, соответственно, возрастает их концентрация. Изменяющееся сопротивление полупроводников под воздействием температуры, применяется для создания специальных приборов, называемых терморезисторами.

Для того, чтобы изготовить терморезистор используются полупроводники, представляющие собой оксиды отдельных металлов в смешанном состоянии. Готовое вещество размещается в защитном металлическом корпусе с изолированными выводами. С их помощью происходит подключение прибора к электрической цепи.

Терморезисторы используются для измерения температуры или для ее поддержания в заданном режиме в каких-либо устройствах. Основным принципом их работы является изменяющееся сопротивление при перепадах температур. Тот же принцип используется и в фоторезисторах. Здесь величина сопротивления изменяется в зависимости от уровня освещения.

Физика. 10 класс

§ 37. Электрический ток в полупроводниках. Собственная и примесная проводимости полупроводников

Полупроводники — широкий класс как неорганических, так и органических веществ в твёрдом или жидком состоянии. Полупроводники обладают многими замечательными свойствами, благодаря которым они нашли широкое применение в различных областях науки и техники. Каковы особенности строения полупроводников?

Зависимость сопротивления полупроводников от температуры и освещённости. Удельное сопротивление полупроводников находится в пределах от 10 –6 до 10 8 Ом · м (при Т = 300 К), т. е. во много раз меньше, чем у диэлектриков, но существенно больше, чем у металлов. В отличие от проводников удельное сопротивление полупроводников резко убывает при увеличении температуры, а также изменяется при изменении освещения и введении сравнительно небольшого количества примесей. К полупроводникам относят ряд химических элементов (бор, углерод, кремний, германий, фосфор, мышьяк, сурьма, сера, селен, теллур и др.), множество оксидов и сульфидов металлов, а также других химических соединений.

Изучить свойства полупроводников можно на опытах. Соберём электрическую цепь, состоящую из источника тока, полупроводника и миллиамперметра ( рис. 215 ). Из опыта следует, что при нагревании полупроводника сила тока в цепи возрастает. Возрастание силы тока обусловлено тем, что при увеличении температуры сопротивление полупроводника уменьшается.

Проведём ещё один опыт. Изменяя освещённость поверхности полупроводника, наблюдаем изменение показаний миллиамперметра ( рис. 216 ). Результаты наблюдений означают, что при освещении поверхности полупроводника его сопротивление уменьшается.

Таким образом, уменьшить сопротивление полупроводника можно, либо нагревая его, либо воздействуя электромагнитным излучением, например освещая его поверхность.

Полупроводники

До сих пор, говоря о способности веществ проводить электрический ток, мы делили их на проводники и диэлектрики. Удельное сопротивление обычных проводников находится в интервале Ом·м; удельное сопротивление диэлектриков превышает эти величины в среднем на порядков: Ом·м.

Но существуют также вещества, которые по своей электропроводности занимают промежуточное положение между проводниками и диэлектриками. Это полупроводники: их удельное сопротивление при комнатной температуре может принимать значения в очень широком диапазоне Ом·м. К полупроводникам относятся кремний, германий, селен, некоторые другие химические элементы и соединения (Полупроводники чрезвычайно распространены в природе. Например, около 80% массы земной коры приходится на вещества, являющиеся полупроводниками). Наиболее широко примененяются кремний и германий .

Главная особенность полупроводников заключается в том, что их электропроводность резко увеличивается с повышением температуры. Удельное сопротивление полупроводника убывает с ростом температуры примерно так, как показано на рис. 1 .

Рис. 1. Зависимость для полупроводника

Иными словами, при низкой температуре полупроводники ведут себя как диэлектрики, а при высокой — как достаточно хорошие проводники. В этом состоит отличие полупроводников от металлов: удельное сопротивление металла, как вы помните, линейно возрастает с увеличением температуры.

Между полупроводниками и металлами имеются и другие отличия. Так, освещение полупроводника вызывает уменьшение его сопротивления (а на сопротивление металла свет почти не оказывает влияния). Кроме того, электропроводность полупроводников может очень сильно меняться при введении даже ничтожного количества примесей.

Опыт показывает, что, как и в случае металлов, при протекании тока через полупроводник не происходит переноса вещества. Стало быть, электрический ток в полупроводниках обусловлен движением электронов.

Уменьшение сопротивления полупроводника при его нагревании говорит о том, что повышение температуры приводит к увеличению количества свободных зарядов в полупроводнике. В металлах ничего такого не происходит; следовательно, полупроводники обладают иным механизмом электропроводности, чем металлы. И причина этого — различная природа химической связи между атомами металлов и полупроводников.

Ковалентная связь

Металлическая связь, как вы помните, обеспечивается газом свободных электронов, который, подобно клею, удерживает положительные ионы в узлах кристаллической решётки. Полупроводники устроены иначе — их атомы скрепляет ковалентная связь. Давайте вспомним, что это такое.

Электроны, находящиеся на внешнем электронном уровне и называемые валентными, слабее связаны с атомом, чем остальные электроны, которые расположены ближе к ядру. В процессе образования ковалентной связи два атома вносят «в общее дело» по одному своему валентному электрону. Эти два электрона обобществляются, то есть теперь принадлежат уже обоим атомам, и потому называются общей электронной парой (рис. 2 ).

Рис. 2. Ковалентная связь

Обобществлённая пара электронов как раз и удерживает атомы друг около друга (с помощью сил электрического притяжения). Ковалентная связь — это связь, существующая между атомами за счёт общих электронных пар. По этой причине ковалентная связь называется также парноэлектронной.

Кристаллическая структура кремния

Теперь мы готовы подробнее изучить внутреннее устройство полупроводников. В качестве примера рассмотрим самый распространённый в природе полупроводник — кремний. Аналогичное строение имеет и второй по важности полупроводник — германий.

Пространственная структура кремния представлена на рис. 3 (автор картинки — Ben Mills). Шариками изображены атомы кремния, а трубки, их соединяющие, — это каналы ковалентной связи между атомами.

Рис. 3. Кристаллическая структура кремния

Обратите внимание, что каждый атом кремния скреплён с четырьмя соседними атомами. Почему так получается?

Дело в том, что кремний четырёхвалентен — на внешней электронной оболочке атома кремния расположены четыре валентных электрона. Каждый из этих четырёх электронов готов образовать общую электронную пару с валентным электроном другого атома. Так и происходит! В результате атом кремния окружается четырьмя пристыковавшимися к нему атомами, каждый из которых вносит по одному валентному электрону. Соответственно, вокруг каждого атома оказывается по восемь электронов (четыре своих и четыре чужих).

Более подробно мы видим это на плоской схеме кристаллической решётки кремния (рис. 4 ).

Рис. 4. Кристаллическая решётка кремния

Ковалентные связи изображены парами линий, соединяющих атомы; на этих линиях находятся общие электронные пары. Каждый валентный электрон, расположенный на такой линии, большую часть времени проводит в пространстве между двумя соседними атомами.

Однако валентные электроны отнюдь не «привязаны намертво» к соответствующим парам атомов. Происходит перекрытие электронных оболочек всех соседних атомов, так что любой валентный электрон есть общее достояние всех атомов-соседей. От некоторого атома 1 такой электрон может перейти к соседнему с ним атому 2, затем — к соседнему с ним атому 3 и так далее. Валентные электроны могут перемещаться по всему пространству кристалла — они, как говорят, принадлежат всему кристаллу (а не какой-либо одной атомной паре).

Тем не менее, валентные электроны кремния не являются свободными (как это имеет место в металле). В полупроводнике связь валентных электронов с атомами гораздо прочнее, чем в металле; ковалентные связи кремния не разрываются при невысоких температурах. Энергии электронов оказывается недостаточно для того, чтобы под действием внешнего электрического поля начать упорядоченное движение от меньшего потенциала к большему. Поэтому при достаточно низких температурах полупроводники близки к диэлектрикам — они не проводят электрический ток.

Собственная проводимость

Если включить в электрическую цепь полупроводниковый элемент и начать его нагревать, то сила тока в цепи возрастает. Следовательно, сопротивление полупроводника уменьшается с ростом температуры. Почему это происходит?

При повышении температуры тепловые колебания атомов кремния становятся интенсивнее, и энергия валентных электронов возрастает. У некоторых электронов энергия достигает значений, достаточных для разрыва ковалентных связей. Такие электроны покидают свои атомы и становятся свободными (или электронами проводимости) — точно так же, как в металле. Во внешнем электрическом поле свободные электроны начинают упорядоченное движение, образуя электрический ток.

Чем выше температура кремния, тем больше энергия электронов, и тем большее количество ковалентных связей не выдерживает и рвётся. Число свободных электронов в кристалле кремния возрастает, что и приводит к уменьшению его сопротивления.

Разрыв ковалентных связей и появление свободных электронов показан на рис. 5 . На месте разорванной ковалентной связи образуется дырка — вакантное место для электрона. Дырка имеет положительный заряд, поскольку с уходом отрицательно заряженного электрона остаётся нескомпенсированный положительный заряд ядра атома кремния.

Рис. 5. Образование свободных электронов и дырок

Дырки не остаются на месте — они могут блуждать по кристаллу. Дело в том, что один из соседних валентных электронов, «путешествуя» между атомами, может перескочить на образовавшееся вакантное место, заполнив дырку; тогда дырка в этом месте исчезнет, но появится в том месте, откуда электрон пришёл.

При отсутствии внешнего электрического поля перемещение дырок носит случайный характер, ибо валентные электроны блуждают между атомами хаотически. Однако в электрическом поле начинается направленное движение дырок. Почему? Понять это несложно.

На рис. 6 изображён полупроводник, помещённый в электрическое поле . В левой части рисунка — начальное положение дырки.

Рис. 6. Движение дырки в электрическом поле

Куда сместится дырка? Ясно, что наиболее вероятны перескоки «электрон > дырка» в направлении против линий поля (то есть к «плюсам», создающим поле). Один из таких перескоков показан в средней части рисунка: электрон прыгнул влево, заполнив вакансию, а дырка, соответственно, сместилась вправо. Следующий возможный скачок электрона, вызванный электрическим полем, изображён в правой части рисунка; в результате этого скачка дырка заняла новое место, расположенное ещё правее.

Мы видим, что дырка в целом перемещается по направлению линий поля — то есть туда, куда и полагается двигаться положительным зарядам. Подчеркнём ещё раз, что направленное движение дырки вдоль поля вызвано перескоками валентных электронов от атома к атому, происходящими преимущественно в направлении против поля.

Таким образом, в кристалле кремния имеется два типа носителей заряда: свободные электроны и дырки. При наложении внешнего электрического поля появляется электрический ток, вызванный их упорядоченным встречным движением: свободные электроны перемещаются противоположно вектору напряжённости поля , а дырки — в направлении вектора .

Возникновение тока за счёт движения свободных электронов называется электронной проводимостью, или проводимостью n-типа. Процесс упорядоченного перемещения дырок называется дырочной проводимостью,или проводимостью p-типа (от первых букв латинских слов negativus (отрицательный) и positivus (положительный)). Обе проводимости — электронная и дырочная — вместе называются собственной проводимостью полупроводника.

Каждый уход электрона с разорванной ковалентной связи порождает пару «свободный электрон–дырка». Поэтому концентрация свободных электронов в кристалле чистого кремния равна концентрации дырок. Соответственно, при нагревании кристалла увеличивается концентрация не только свободных электронов, но и дырок, что приводит к возрастанию собственной проводимости полупроводника за счёт увеличения как электронной, так и дырочной проводимости.

Наряду с образованием пар «свободный электрон–дырка» идёт и обратный процесс: рекомбинация свободных электронов и дырок. А именно, свободный электрон, встречаясь с дыркой, заполняет эту вакансию, восстанавливая разорванную ковалентную связь и превращаясь в валентный электрон. Таким образом, в полупроводнике устанавливается динамическое равновесие: среднее число разрывов ковалентных связей и образующихся электронно-дырочных пар в единицу времени равно среднему числу рекомбинирующих электронов и дырок. Это состояние динамического равновесия определяет равновесную концентрацию свободных электронов и дырок в полупроводнике при данных условиях.

Изменение внешних условий смещает состояние динамического равновесия в ту или иную сторону. Равновесное значение концентрации носителей заряда при этом, естественно, изменяется. Например, число свободных электронов и дырок возрастает при нагревании полупроводника или при его освещении.

При комнатной температуре концентрация свободных электронов и дырок в кремнии приблизительно равно см . Концентрация же атомов кремния — порядка см . Иными словами, на атомов кремния приходится лишь один свободный электрон! Это очень мало. В металлах, например, концентрация свободных электронов примерно равна концентрации атомов. Соответственно, собственная проводимость кремния и других полупроводников при нормальных условиях мала по сравнению с проводимостью металлов.

Примесная проводимость

Важнейшей особенностью полупроводников является то, что их удельное сопротивление может быть уменьшено на несколько порядков в результате введения даже весьма незначительного количества примесей. Помимо собственной проводимости у полупроводника возникает доминирующая примесная проводимость. Именно благодаря этому факту полупроводниковые приборы нашли столь широкое применение в науке и технике.
Предположим, например, что в расплав кремния добавлено немного пятивалентного мышьяка . После кристаллизации расплава оказывается, что атомы мышьяка занимают места в некоторых узлах сформировавшейся кристаллической решётки кремния.

На внешнем электронном уровне атома мышьяка имеется пять электронов. Четыре из них образуют ковалентные связи с ближайшими соседями — атомами кремния (рис. 7 ). Какова судьба пятого электрона, не занятого в этих связях?

Рис. 7. Полупроводник n-типа

А пятый электрон становится свободным! Дело в том, что энергия связи этого «лишнего» электрона с атомом мышьяка, расположенным в кристалле кремния, гораздо меньше энергии связи валентных электронов с атомами кремния. Поэтому уже при комнатной температуре почти все атомы мышьяка в результате теплового движения остаются без пятого электрона, превращаясь в положительные ионы. А кристалл кремния, соответственно, наполняется свободными электронами, которые отцепились от атомов мышьяка.

Наполнение кристалла свободными электронами для нас не новость: мы видели это и выше, когда нагревался чистый кремний (без каких-либо примесей). Но сейчас ситуация принципиально иная: появление свободного электрона, ушедшего из атома мышьяка, не сопровождается появлением подвижной дырки. Почему? Причина та же — связь валентных электронов с атомами кремния гораздо прочнее, чем с атомом мышьяка на пятой вакансии, поэтому электроны соседних атомов кремния и не стремятся эту вакансию заполнить. Вакансия, таким образом, остаётся на месте, она как бы «приморожена» к атому мышьяка и не участвует в создании тока.

Таким образом, внедрение атомов пятивалентного мышьяка в кристаллическую решётку кремния создаёт электронную проводимость, но не приводит к симметричному появлению дырочной проводимости. Главная роль в создании тока теперь принадлежит свободным электронам, которые в данном случае называются основными носителями заряда.

Механизм собственной проводимости, разумеется, продолжает работать и при наличии примеси: ковалентные связи по-прежнему рвутся за счёт теплового движения, порождая свободные электроны и дырки. Но теперь дырок оказывается гораздо меньше, чем свободных электронов, которые в большом количестве предоставлены атомами мышьяка. Поэтому дырки в данном случае будут неосновными носителями заряда.

Примеси, атомы которых отдают свободные электроны без появления равного количества подвижных дырок, называются донорными. Например, пятивалентный мышьяк — донорная примесь. При наличии в полупроводнике донорной примеси основными носителями заряда являются свободные электроны, а неосновными — дырки; иными словами, концентрация свободных электронов намного превышает концентрацию дырок. Поэтому полупроводники с донорными примесями называются электронными полупроводниками, или полупроводниками n-типа (или просто n-полупроводниками).

А насколько, интересно, концентрация свободных электронов может превышать концентрацию дырок в n-полупроводнике? Давайте проведём простой расчёт.

Предположим, что примесь составляет , то есть на тысячу атомов кремния приходится один атом мышьяка. Концентрация атомов кремния, как мы помним, порядка см .

Концентрация атомов мышьяка, соответственно, будет в тысячу раз меньше: см . Такой же окажется и концентрация свободных электронов, отданных примесью — ведь каждый атом мышьяка отдаёт по электрону. А теперь вспомним, что концентрация электронно-дырочных пар, появляющихся при разрывах ковалентных связей кремния, при комнатной температуре примерно равна см . Чувствуете разницу? Концентрация свободных электронов в данном случае больше концентрации дырок на порядков, то есть в миллиард раз! Соответственно, в миллиард раз уменьшается удельное сопротивление кремниевого полупроводника при введении столь небольшого количества примеси.

Приведённый расчёт показывает, что в полупроводниках n-типа основную роль действительно играет электронная проводимость. На фоне столь колоссального превосходства численности свободных электронов вклад движения дырок в общую проводимость пренебрежимо мал.

Можно, наоборот, создать полупроводник с преобладанием дырочной проводимости. Так получится, если в кристалл кремния внедрить трёхвалентную примесь — например, индий . Результат такого внедрения показан на рис. 8 .

Рис. 8. Полупроводник p-типа

Что происходит в этом случае? На внешнем электронном уровне атома индия расположены три электрона, которые формируют ковалентные связи с тремя окружающими атомами кремния. Для четвёртого соседнего атома кремния у атома индия уже не хватает электрона, и в этом месте возникает дырка.

И дырка эта не простая, а особенная — с весьма большой энергией связи. Когда в неё попадёт электрон из соседнего атома кремния, он в ней «застрянет навеки», ибо притяжение электрона к атому индия весьма велико — больше, чем к атомам кремния. Атом индия превратится в отрицательный ион, а в том месте, откуда электрон пришёл, возникнет дырка — но теперь уже обыкновенная подвижная дырка в виде разорванной ковалентной связи в кристаллической решётке кремния. Эта дырка обычным образом начнёт блуждать по кристаллу за счёт «эстафетной» передачи валентных электронов от одного атома кремния к другому.

И так, каждый примесный атом индия порождает дырку, но не приводит к симметричному появлению свободного электрона. Такие примеси, атомы которых захватывают «намертво» электроны и тем самым создают в кристалле подвижную дырку, называются акцепторными.

Трёхвалентный индий — пример акцепторной примеси.

 

Если в кристалл чистого кремния ввести акцепторную примесь, то число дырок, порождённых примесью, будет намного больше числа свободных электронов, возникших за счёт разрыва ковалентных связей между атомами кремния. Полупроводник с акцепторной примесью — это дырочный полупроводник, или полупроводник p-типа (или просто p-полупроводник).

Дырки играют главную роль при создании тока в p-полупроводнике; дырки — основные носители заряда. Свободные электроны — неосновные носители заряда в p-полупроводнике. Движение свободных электронов в данном случае не вносит существенного вклада: электрический ток обеспечивается в первую очередь дырочной проводимостью.

p–n-переход

Место контакта двух полупроводников с различными типами проводимости (электронной и дырочной) называется электронно-дырочным переходом, или p–n-переходом. В области p–n-перехода возникает интересное и очень важное явление — односторонняя проводимость.

На рис. 9 изображён контакт областей p- и n-типа; цветные кружочки — это дырки и свободные электроны, которые являются основными (или неосновными) носителями заряда в соответствующих областях.

Рис. 9. Запирающий слой p–n-перехода

Совершая тепловое движение, носители заряда проникают через границу раздела областей.

Свободные электроны переходят из n-области в p-область и рекомбинируют там с дырками; дырки же диффундируют из p-области в n-область и рекомбинируют там с электронами.

В результате этих процессов в электронном полупроводнике около границы контакта остаётся нескомпенсированный заряд положительных ионов донорной примеси, а в дырочном полупроводнике (также вблизи границы) возникает нескомпенсированный отрицательный заряд ионов акцепторной примеси. Эти нескомпенсированные объёмные заряды образуют так называемый запирающий слой , внутреннее электрическое поле которого препятствует дальнейшей диффузии свободных электронов и дырок через границу контакта.

Подключим теперь к нашему полупроводниковому элементу источник тока, подав «плюс» источника на n-полупроводник, а «минус» — на p-полупроводник (рис. 10 ).

Рис. 10. Включение в обратном направлении: тока нет

Мы видим, что внешнее электрическое поле уводит основные носители заряда дальше от границы контакта. Ширина запирающего слоя увеличивается, его электрическое поле возрастает. Сопротивление запирающего слоя велико, и основные носители не в состоянии преодолеть p–n-переход. Электрическое поле позволяет переходить границу лишь неосновным носителям, однако ввиду очень малой концентрации неосновных носителей создаваемый ими ток пренебрежимо мал.

Рассмотренная схема называется включением p–n-перехода в обратном направлении. Электрического тока основных носителей нет; имеется лишь ничтожно малый ток неосновных носителей. В данном случае p–n-переход оказывается закрытым.

Теперь поменяем полярность подключения и подадим «плюс» на p-полупроводник, а «минус»—на n-полупроводник (рис. 11 ). Эта схема называется включением в прямом направлении.

Рис. 11. Включение в прямом направлении: ток идёт

В этом случае внешнее электрическое поле направлено против запирающего поля и открывает путь основным носителям через p–n-переход. Запирающий слой становится тоньше, его сопротивление уменьшается.

Происходит массовое перемещение свободных электронов из n-области в p-область, а дырки, в свою очередь, дружно устремляются из p-области в n-область.

В цепи возникает ток , вызванный движением основных носителей заряда (Теперь, правда, электрическое поле препятствует току неосновных носителей, но этот ничтожный фактор не оказывает заметного влияния на общую проводимость).

Односторонняя проводимость p–n-перехода используется в полупроводниковых диодах. Диодом называется устройство, проводящие ток в лишь одном направлении; в противоположном направлении ток через диод не проходит (диод, как говорят, закрыт). Схематическое изображение диода показано на рис. 12 .

В данном случае диод открыт в направлении слева направо: заряды как бы текут вдоль стрелки (видите её на рисунке?). В направлении справа налево заряды словно упираются в стенку — диод закрыт.

Спасибо за то, что пользуйтесь нашими публикациями. Информация на странице «Полупроводники» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ. Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими статьями из данного раздела.

Как и почему изменяется электрическое сопротивление полупроводников

При изменении температуры изменяется проводимость чистых металлов, сплавов и полупроводников.

Экспериментально установлено, что при повышении температуры сопротивление металлов увеличивается. При не слишком низких температурах сопротивление металлов растет пропорционально абсолютной температуре Т:

где – сопротивление при температуре , — постоянный коэффициент, приблизительно равный 1/273 К -1 .

Соотношение (1) можно представить в виде

где – температура в o С, т.е. температурная зависимость сопротивления металлов линейна (рис.2).

Причинами электрического сопротивления в металлах являются посторонние примеси и физические дефекты кристаллической решетки металла, а также тепловое движение атомов металла, амплитуда колебаний которых зависит от температуры. Подвижность свободных носителей заряда (электронов) уменьшается при повышении температуры из-за возрастания числа столкновений с атомами кристаллической решетки металла, что приводит к росту сопротивления.

У полупроводников с ростом температуры подвижности носителей заряда (электронов и дырок) тоже падают, но это не играет заметной роли, т.к. рост концентрации является преобладающим. В результате сопротивление полупроводников с увеличением температуры Т практически уменьшается по экспоненциальному закону (рис.2):

где R , b – константы, зависящие от природы полупроводника, e – основание натуральных логарифмов.

На рис.2 приведена зависимость электрического сопротивления полупроводников от температуры, эта зависимость носит резко выраженный характер.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения:
Да какие ж вы математики, если запаролиться нормально не можете.
8459 — | 7349 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock! и обновите страницу (F5)

Полупроводниками считаются вещества, обладающие электрическими свойствами, которые ставят их в промежуточное положение между диэлектрическими материалами и проводниками. Электропроводность полупроводников зависит от многих факторов. Прежде всего, это температура, а также количество примесей, содержащихся в них. Свое влияние оказывает ионизирующее и световое излучение.

Для того, чтобы появился электрический ток, необходимо наличие подвижных частиц, переносящих заряды. Электропроводность того или иного вещества зависит от количества таких носителей на единицу объема. В диэлектриках они практически отсутствуют, а в полупроводниках свободные носители присутствуют лишь в небольшом количестве. Следовательно, удельное сопротивление полупроводников очень высокое, а в диэлектриках оно еще больше. Существуют различные виды этих материалов, обладающих собственными специфическими свойствами.

Зависимость проводимости полупроводников от температуры и освещенности

Полупроводники – это вещества, сопротивление которых убывает с повышением температуры, изменения освещенности, наличия примесей.
При нагревании полупроводникового термистора сила тока в цепи растет, что указывает на уменьшение его сопротивления.

При освещении полупроводникового фоторезистора сила тока в цепи растет, что указывает на уменьшение его сопротивления.

Типичными полупроводниками являются кристаллы германия (Ge) и кремния (Si).

Принцип работы термосопротивления

Датчик подключают в цепь со стабилизированным источником питания и подходящим по классу точности прибором (вольтметром, амперметром). С помощью этой простой схемы будет определяться измеряемый параметр по регистрации соответствующих электрических величин. Принцип работы обусловлен зависимостью сопротивления проводника от температуры проводника при нагреве или охлаждении.

В металлах движению свободных электронов создают препятствия примеси. На прохождение заряженных частиц оказывает влияние состояние кристаллической решетки. По мере снижения температуры амплитуда колебаний молекул уменьшается. При достижении определенного уровня возникает сверхпроводимость, когда сопротивление становится пренебрежительно малой величиной. Нагрев провоцирует обратные реакции компонентов молекулярной решетки. Соответствующим образом ухудшается проводимость.

Собственная проводимость полупроводников

В идеальном кристалле германия при низкой температуре атомы объединены ковалентной связью: свободных носителей заряда нет. При увеличении температуры энергия электронов увеличивается и происходит разрыв ковалентной связи, а на их месте образуется свободное вакантное место – положительная дырка.

В идеальном кристалле четырехвалентного германия при низкой температуре атомы объединены ковалентной связью: свободных носителей заряда нет. Четыре валентных электрона связаны с четырьмя соседними атомами. При увеличении температуры энергия электронов увеличивается и происходит разрыв ковалентной связи, а на их месте образуется положительная дырка.

В чистом полупроводнике электрический ток создается равным количеством электронов и дырок. Такой тип проводимости называется собственной проводимостью полупроводников.

Электрическое сопротивление проводника

Электрическое сопротивление — физическая величина, которая показывает, какое препятствие создается току при его прохождении по проводнику. Единицами измерения служат Омы, в честь Георга Ома. В своем законе он вывел формулу для нахождения сопротивления, которая приведена ниже.

Рассмотрим сопротивление проводников на примере металлов. Металлы имеют внутреннее строение в виде кристаллической решетки. Эта решетка имеет строгую упорядоченность, а её узлами являются положительно заряженные ионы. Носителями заряда в металле выступают “свободные” электроны, которые не принадлежат определенному атому, а хаотично перемещаются между узлами решетки.

Из квантовой физики известно, что движение электронов в металле это распространение электромагнитной волны в твердом теле. То есть электрон в проводнике движется со скоростью света (практически), и доказано, что он проявляет свойства не только как частица, но еще и как волна. А сопротивление металла возникает в результате рассеяния электромагнитных волн (то есть электронов) на тепловых колебаниях решетки и её дефектах. При столкновении электронов с узлами кристаллической решетки часть энергии передается узлам, вследствие чего выделяется энергия. Эту энергию можно вычислить при постоянном токе, благодаря закону Джоуля-Ленца – Q=I2Rt. Как видите чем больше сопротивление, тем больше энергии выделяется.

Удельное сопротивление

Существует такое важное понятие как удельное сопротивление, это тоже самое сопротивление, только в единице длины. У каждого металла оно свое, например у меди оно равно 0,0175 Ом*мм2/м, у алюминия 0,0271 Ом*мм2/м . Это значит, брусок из меди длиной 1 м и площадью поперечного сечения 1 мм2 будет иметь сопротивление 0,0175 Ом, а такой же брусок, но из алюминия будет иметь сопротивление 0,0271 Ом. Выходит что электропроводность меди выше чем у алюминия. У каждого металла удельное сопротивление свое, а рассчитать сопротивление всего проводника можно по формуле

где p – удельное сопротивление металла, l – длина проводника, s – площадь поперечного сечения.

Значения удельных сопротивлений приведены в таблице удельных сопротивлений металлов (20°C)

Вещество p, Ом*мм2/2 α,10-3 1/K
Алюминий 0.0271 3.8
Вольфрам 0.055 4.2
Железо 0.098 6
Золото 0.023 4
Латунь 0.025-0.06 1
Манганин 0.42-0.48 0,002-0,05
Медь 0.0175 4.1
Никель 0.1 2.7
Константан 0.44-0.52 0.02
Нихром 1.1 0.15
Серебро 0.016 4
Цинк 0.059 2.7

Кроме удельного сопротивления в таблице есть значения ТКС, об этом коэффициенте чуть позже.

Зависимость удельного сопротивления от деформаций

При холодной обработке металлов давлением, металл испытывает пластическую деформацию. При пластической деформации кристаллическая решетка искажается, количество дефектов становится больше. С увеличением дефектов кристаллической решетки, сопротивление течению электронов по проводнику растет, следовательно, удельное сопротивление металла увеличивается. К примеру, проволоку изготавливают методом протяжки, это значит, что металл испытывает пластическую деформацию, в результате чего, удельное сопротивление растет. На практике для уменьшения сопротивления применяют рекристаллизационный отжиг, это сложный технологический процесс, после которого кристаллическая решетка как бы, “расправляется” и количество дефектов уменьшается, следовательно, и сопротивление металла тоже.

При растяжении или сжатии, металл испытывает упругую деформацию. При упругой деформации вызванной растяжением, амплитуды тепловых колебаний узлов кристаллической решетки увеличиваются, следовательно, электроны испытывают большие затруднения, и в связи с этим, увеличивается удельное сопротивление. При упругой деформации вызванной сжатием, амплитуды тепловых колебаний узлов уменьшаются, следовательно, электронам проще двигаться, и удельное сопротивление уменьшается.

Влияние температуры на удельное сопротивление

Как мы уже выяснили выше, причиной сопротивления в металле являются узлы кристаллической решетки и их колебания. Так вот, при увеличении температуры, тепловые колебания узлов увеличиваются, а значит, удельное сопротивление также увеличивается. Существует такая величина как температурный коэффициент сопротивления (ТКС), который показывает насколько увеличивается, или уменьшается удельное сопротивление металла при нагреве или охлаждении. Например, температурный коэффициент меди при 20 градусах по цельсию равен 4.1 · 10 − 3 1/градус. Это означает что при нагреве, к примеру, медной проволоки на 1 градус цельсия, её удельное сопротивление увеличится на 4.1 · 10 − 3 Ом. Удельное сопротивление при изменении температуры можно вычислить по формуле

где r – это удельное сопротивление после нагрева, r0 – удельное сопротивление до нагрева, a – температурный коэффициент сопротивления, t2 – температура до нагрева, t1 — температура после нагрева.

Подставив наши значения, мы получим: r=0,0175*(1+0.0041*(154-20))=0,0271 Ом*мм2/м. Как видите наш брусок из меди длиной 1 м и площадью поперечного сечения 1 мм2, после нагрева до 154 градусов, имел бы сопротивление, как у такого же бруска, только из алюминия и при температуре равной 20 градусов цельсия.

Свойство изменения сопротивления при изменении температуры, используется в термометрах сопротивления. Эти приборы могут измерять температуру основываясь на показаниях сопротивления. У термометров сопротивления высокая точность измерений, но малые диапазоны температур.

На практике, свойства проводников препятствовать прохождению тока используются очень широко. Примером может служить лампа накаливания, где нить из вольфрама, нагревается за счет высокого сопротивления металла, большой длины и узкого сечения. Или любой нагревательный прибор, где спираль разогревается благодаря высокому сопротивлению. В электротехнике, элемент главным свойством которого является сопротивление, называется – резистор. Резистор применяется практически в любой электрической схеме.

Примесная проводимость полупроводников

При внесении примеси электрическая проводимость полупроводников увеличивается. Такой полупроводник обладает примесной проводимостью.

При добавлении донорной примеси (с большей валентностью) в полупроводнике образуются лишние электроны. Например, если в четырехвалентный кристалл германия добавить пятивалентный мышьяк, то четыре электрона мышьяка образуют ковалентные связи, а пятый остается свободным. Проводимость становится электронной, а полупроводник называют полупроводником n-типа.

При добавлении акцепторной примеси (с меньшей валентностью) в полупроводнике образуются лишние дырки. Например, если в четырехвалентный кристалл германия ввести трехвалентный индий, то одна ковалентная связь останется незавершенной. Проводимость становится дырочной, а полупроводник называют полупроводником p-типа.

Платиновые измерители температуры

Несмотря на сравнительно высокую стоимость, достаточно часто производители применяют именно этот материал. Почему выбирают это решение, понятно из перечня следующих преимуществ:

  • использование платины позволяет получить линейный график зависимости удельного сопротивления от температуры;
  • температурный коэффициент серийных (эталонных) изделий составляет 0,00385 (0,003925) °C-1;
  • рабочий диапазон в °C – от -196 до +600.

Упомянутый в списке температурный коэффициент (Тк) рассчитывают по формуле:

Тк = (Rи – Rб)/((Ти – Тб) * 1/Rб),

  • Rи (Rб) – измеренное (базовое) сопротивление;
  • Ти (Тб) – соответствующие значения температуры.

Из выражения понятно, что уменьшение коэффициента сопровождается увеличением точности. Базовое электрическое сопротивление определяют при T=0°C.

Полупроводниковые приборы и их применение

Полупроводниковый диод

Прибор, в котором используется p-n-переход, называется полупроводниковым диодом.

Электрический ток через контакт полупроводников p-n-типа:

Идет значительный ток.

Ток практически отсутствует.

Вольт-амперная характеристика p-n-перехода.

Правая часть графика соответствует прямому направлению тока, а левая – обратному.

Полупроводниковый диод используется как выпрямитель переменного тока.

Транзистор

Транзистор имеет два p-n-перехода и используется как усилитель мощности в радиоэлектронных устройствах. Транзистор состоит из двух полупроводников p-типа и одного n-типа или двух полупроводников n-типа и одного p-типа. Эти переходы делят полупроводник на три области, называемые эмиттер, база, коллектор.

Электронно-дырочный переход

Электронно-дырочный переход (сокращенно р-n-переход) возникает в полупроводниковом кристалле, имеющем одновременно области с n-типа (содержит донорные примеси) и р-типа (с акцепторными примесями) прово-димостями на границе между этими областями.

Допустим, у нас есть кристалл, в котором слева находится область полупроводника с дырочной (p-типа), а справа — с электронной (n-типа) проводимостью (рис. 10). Благодаря тепловому движению при образовании контакта электроны из полупроводника n-типа будут диффундировать в область р-типа. При этом в области n-типа останется нескомпенсированный положительный ион донора. Перейдя в область с дырочной проводимостью, электрон очень быстро рекомбинирует с дыркой, при этом в области р-типа образуется нескомпенсированный ион акцептора.

Аналогично электронам дырки из области р-типа диффундируют в электронную область, оставляя в дырочной области нескомпенсированный отрицательно заряженный ион акцептора. Перейдя в электронную область, дырка рекомбинирует с электроном. В результате этого в электронной области образуется нескомпенсированный положительный ион донора.

В результате диффузии на границе между этими областями образуется двойной электрический слой разноименно заряженных ионов, толщина l

которого не превышает долей микрометра.

Между слоями ионов возникает электрическое поле с напряженностью Ei

. Электрическое поле электронно-дырочного перехода (р-n-переход) препятствует дальнейшему переходу электронов и дырок через границу раздела двух полупроводников. Запирающий слой имеет повышенное сопротивление по сравнению с остальными объемами полупроводников.

Внешнее электрическое поле с напряженностью E

влияет на сопротивление запирающего электрического поля. Если n-полупроводник подключен к отрицательному полюсу источника, а плюс источника соединен с p-полупроводником, то под действием электрического поля электроны в n-полупроводнике и дырки в p-полупроводнике будут двигаться навстречу друг другу к границе раздела полупроводников (рис. 11). Электроны, переходя границу, «заполняют» дырки. При таком прямом направлении внешнего электрического поля толщина запирающего слоя и его сопротивление непрерывно уменьшаются. В этом направлении электрический ток проходит через р-n-переход.

Рассмотренное направление p-n-перехода называют прямым

. Зависимость силы тока от напряжения, т.е.
вольт-амперная характеристика
прямого перехода, изображена на рис. 12 сплошной линией.

Если n-полупроводник соединен с положительным полюсом источника, а p-полупроводник — с отрицательным, то электроны в n-полупроводнике и дырки в p-полупроводнике под действием электрического поля будут перемещаться от границы раздела в противоположные стороны (рис. 13). Это приводит к утолщению запирающего слоя и увеличению его сопротивления. Направление внешнего электрического поля, расширяющее запирающий слой, называется запирающим

(
обратным
). При таком направлении внешнего поля электрический ток основных носителей заряда через контакт двух п- и p-полупроводников не проходит.

Ток через p-n-переход теперь обусловлен электронами, которые есть в полупроводнике p-типа, и дырками из полупроводника n-типа. Но неосновными носителей заряда очень мало, поэтому проводимость перехода оказывается незначительной, а его сопротивление — большим. Рассмотренное направление p-n-перехода называют обратным

, его вольт-амперная характеристика изображена на рис. 12 штриховой линией.

Обратите внимание, что масштаб измерения силы тока при прямом и обратном переходах отличаются в тысячу раз.

Заметим, что при определенном напряжении, приложенном в обратном направлении, происходит пробой

(т.е. разрушение) p-n-перехода.

Интегральные схемы

На основе полупроводниковых кристаллов создаются интегральные схемы, в которых сотни тысяч элементов соединяются в единую электрическую цепь.

Полупроводники используются при создании:

фоторезисторов, которые находят применение в автоматических выключателях света, индикаторах на ИСЗ;

термисторах, используемых для измерения температуры, в пожарной сигнализации, реле времени;

фотоэлементах, используемых в солнечных батареях;

фотодиодах, используемых для измерения интенсивности света;

фототранзисторах, используемых в различных датчиках;

светодиодах, используемых в качестве источника инфракрасного излучения, знаковых индикаторах, полупроводниковых лазерах.

Подведем итог

Полупроводники по электропроводности занимают промежуточное положение между диэлектриками и проводниками. К полупроводникам относится большая группа веществ (Si, Ge и др.). В отличие от металлов с ростом температуры удельное сопротивление полупроводников уменьшается.

Проводимость полупроводников обусловлена наличием свободных электронов и дырок. В чистом кристалле электроны и дырки присутствуют в равном количестве. Такой полупроводник обладает собственной проводимостью.

При наличии примесей в полупроводниках возникает примесная проводимость. При добавлении донорной примеси с валентностью на единицу больше, чем у полупроводника, один электрон остается свободным. Получается полупроводник n-типа.

Если же добавить акцепторную примесь с валентностью на единицу меньше, чем у полупроводника, то в таком полупроводнике концентрация дырок превышает концентрацию электронов. Получается полупроводник p-типа.

Область контакта полупроводников двух типов называется p-n-переходом. Важным свойством p-n-перехода является его односторонняя проводимость. Данное свойство используется в работе полупроводникового диода.

Полупроводники используются при создании транзисторов, термисторов, светодиодов, фотоэлементов, интегральных схем.

В настоящее время полупроводниковые приборы находят широкое применение в радиотехнике, автоматике, вычислительной технике, телемеханике.

Роль проводника тока

Если к веществу или материалу обладающему проводящей способностью, подключить источник ЭДС, то по нему начинает протекать электрический ток. Свободные электроны вещества при этом начинают направленное движение от отрицательного полюса к положительному, т.к они являются носителями отрицательного заряда.

Во время направленного движения электроны ударяются об атомы материала и передают им некоторую часть своей энергии, из-за этого происходит нагрев проводника по которому проходит ток. А электроны после столкновения замедляют свое движение. Но электрическое поле их опять ускоряет, поэтому они продолжают свое направленное движение к плюсу.

Этот процесс может идти практически бесконечно, пока вокруг проводника имеется электрическое поле созданное источником электродвижущей силы. Получается, что чем больше препятствий попадется на пути следования электронов, тем выше значение сопротивления.

В различных веществах имеется разное количество свободных электронов, а атомы, между которыми свободные носители заряда перемещаются, обладают различным местом расположения. Поэтому сопр. проводников току зависит, в первую очередь от материала, из которого они сделаны, от площади и длины поперечного сечения.

Если сравнить два проводника сделанные из одинакового материала, то более длинный имеет большее R при равных площадях поперечных сечений, а с большим поперечным сечением имеет более низкое сопр. при равных длинах. Рассмотрим практический пример: Подключим лампочку накаливания на 60Вт в розетку с сетевым напряжением. Спираль лампочки начинает создавать потоку электронов с потенциалом в 220В некоторое препятствие.

Если эта преграда на пути электронов окажется слишком маленькой лампочка перегорит. Если слишком большое – накальная нить будет гореть очень слабо. А вот если оно будет “оптимальное, тогда лампочка будет гореть нормально, выделяя при этом и тепло. Вырабатываемое тепло называют “потерянной” энергией, так как часть энергию затрагивается на никому ненужный нагрев.

Что такое электрическое удельное сопротивление? Из формулы закона Ома можно записать, что электрическое сопротивление является физической величиной, которую можно вычислить как отношение напряжения в проводнике к силе протекающего в нем тока.

Итак, исходя из опыта с лампочкой чуть выше можно сделать вывод, что электрическое сопротивление проводника является физической величиной, которая указывает на свойство вещества преобразовывать электрическую энергию в тепловую.

(R= ρ × l)/S

ρ — удельное сопротивление материала проводника, Ом·м, l — длина, м, и S — площадь сечения, м2. Удельное электрическое сопротивление является также физической величиной, которая равна сопротивлению метрового проводника с площадью сечения в один метр квадратный. На практике, сечение измеряют в квадратных миллиметрах.


Сопротивление различных металлов

Поэтому и удельное электрическое сопротивление проще считать в Ом × мм2 / м, а площадь подставлять в мм2. Формула выше говорит о том, что удельное сопр. прямо пропорционально удельному сопр. материала, из которого он сделан, а также его длине и обратно пропорционально площади поперечного сечения проводника.

Сопр. проводников зависит также от температуры. Так у элементов из металла с повышением температуры R увеличивается. Зависимость эта сложная, но в относительно узких пределах температурного изменения (примерно до 200° Цельсия) можно условно считать, что для каждого металла существует определенный, так называемый температурный, коэффициент сопротивления (альфа), который выражает определенный прирост сопротивления дельта r при изменении температуры на один градус цельсия, отнесенный к 1 ом начального значения сопротивления. Таким образом, температурный коэффициент удельного сопротивления будет равен α = r2-r1/r1(T2-T1) и прирост сопр. будет равен Δr=r2-r1=αr2(T2-T1)

Например, у медного линейного провода при температуре T1 = 15° r1 = 50 ом, а при температуре T2 = 75° — r2 — 62 ом. Поэтому, дельта при изменении температуры на 75 — 15 = 60° будет равно 62 — 50 = 12 ом. Т.е, дельта, соответствующий изменению температуры на 1°, равен: 12/60=0,2 От чего зависит удельное сопротивление.

Во-первых, от материала проводника. Чем больше значение ρ, тем хуже будет пропускная токовая способность. Во-вторых, от длины провода – с увеличением длины сопротивление увеличивается. В-третьих, от толщины. У более толстого проводника, более низкое сопротивление. И в-четвертых, от температуры проводника.

Если он из металла, то их удельное сопротивление возрастает с ростом температуры. В исключение можно поместить специальные сплавы – их электрическое удельное сопр. практически не изменяется при нагревании. Например: никелин, константан и манганин. А вот у жидкостей с нагревом, удельное сопротивление уменьшается.

Связь с удельной проводимостью в изотропных материалах, выражется формулой: ρ = 1 / σ Где σ – удельная проводимость. Явление сверхпроводимости Предположим температуру материала будем уменьшать, то удельное сопротивление при этом будет также снижаться. Есть предел, до которого можно снизить температуру – абсолютный нуль.


Проводник в разрезе

В численном выражении равен —273°С. Ниже этого значения температур просто не существует. При этом значении удельное сопротивление любого проводника будет равно нулю. так как при абсолютном нуле атомы кристаллической решетки полностью перестают колебаться. В результате электронное облако проходит между узлами решетки, не соударяясь с ними. Удельное сопр. материала становится равным нулю, что открывает возможности для получения бесконечно огромных токовых уровней в проводниках малого сечения. Явление сверхпроводимости открывает фантастические перспективы для развития электротехники и электронной техники. Но пока еще имеются некоторые сложности, связанные с получением в быту сверхмалых температурных значений, требуемых для создания нужного эффекта. Когда эти проблемы смогут преодолеть, электротехника шагнет на принципиально новый уровень развития.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *