Тема № 6. Электроизмерительные приборы и измерения
Электроизмерительные приборы — это специальные устройства, позволяющие получать значения некоторых параметров электрического тока. Любой электроизмеритель включается в исследуемую цепь (постоянно или с помощью щупов) и отображает на индикаторе значение параметра, для которого он предназначен.
Рис. 1. Подключение тестера к электрической цепи.
Принцип действия электроизмерительных приборов основан на том, что исследуемая цепь влияет на подключенный прибор, причем это влияние пропорционально исследуемому параметру. А прибор отображает результат этого влияния в форме, удобной для считывания оператором.
В зависимости от того, какое влияние оказывает цепь на измеритель, различные приборы классифицируются по следующим видам:
- работающие от проходящего через них тока;
- работающие от накопления заряда;
- работающие от взаимодействия с электрическим или магнитным полем;
- работающие от теплового действия измерительной цепи.
В подавляющем большинстве случаев электроизмерительные приборы работают от проходящего через них тока. Приборы остальных принципов менее удобны. В самом деле, для накопления заряда или появления заметного электрического поля в измерительной цепи должны существовать высокие напряжения порядка киловольт. А для существования заметного магнитного поля или выделения заметного количества тепла необходимо наличие высоких токов порядка десятков ампер и выше. При прохождении же тока через измеритель можно обеспечить чувствительность, достаточную для очень малых токов, при этом стоимость прибора будет не сильно высокой.
Если требуется определение напряжения, то используется закон Ома, известный в 11 классе. Подключая прибор к измеряемому напряжению через фиксированное сопротивление, можно получить значение напряжения. Точно так же можно измерить и другие параметры электрического тока: частоту, фазу, нелинейные искажения и другие.
Устройства для измерения
Измерительные аппараты применяются в разных областях домашнего хозяйства и в промышленных масштабах. Чаще приборы эксплуатируются на крупных предприятиях, которые связаны с распределением тепловой регенерации, электроэнергии. Современный рынок товаров и услуг предлагает потребителю огромное количество моделей.
Важно знать параметры электричества
Силу электротока интересно сравнивать с водным потоком. В стародавние времена реки загораживали бревнами, чтобы обеспечить напор, который бы вертел мельничное колесо. С увеличением скорости вращения, эффективность мельницы возрастала. Также и сила электротока характеризует ЭДС, производимую электричеством.
От большой силы тока нагреется проводка
Например, лампа, при повышении силы электричества в токовой цепи, будет светить более ярко. Поэтому необходимо знать, как называется прибор для измерения силы тока и мощности.
Мощность напрямую оказывает влияние на то, как электричество будет воздействовать на человеческий организм при касании. Сила тока (СТ) демонстрирует нагрузку на провод. Максимум токовой пропускной способности провода зависит от электропроводности и площади токопровода в сечении. Когда СТ окажется очень значительной, электропровод или электрический кабель будет перегреваться.
Важно! Это может спровоцировать плавку изоляционного слоя и, как результат — электрического замыкания.
Вот почему электропроводке всегда создают защиту от высоких нагрузок специальными выключателями (автомат) или предохраняющими элементами.
По значениям можно искать неисправности
С особенным трепетом к этому необходимо отнестись обладателям жилья со старой электропроводкой. При использовании всё большего числа приборов, аппаратов, провода подвергаются нагруженному состоянию.
По отношению значений СТ в разных цепях электрических устройств, можно говорить об их работе. Так, в фазах двигателя должны протекать электрические токи равнозначной мощности. В том случае, когда наблюдается разница, значит двигатель функционирует неправильно. Также можно видеть состояние работы нагревателя или системы «тёплый пол» — измеряется СТ во всех комплектующих.
Вам это будет интересно Измерительные клещи тока
Работа приборов основана на разных принципах
Амперметры
Измерить можно при помощи одной из разновидностей этого прибора:
- Электромагнитный. Внутри расположена катушка, по ней идет электроток и создает ЭДС. Оно затягивает в катушку металлический сердечник, который связан со стрелочкой. Чем выше будет СТ, тем активнее будет затягиваться сердечник и больше будет отклоняться стрелочка аппарата.
- Тепловой. В устройстве присутствует натянутая нить из металла, она связана со стрелочкой. Идущий электроток провоцирует нагревание нити, его уровень зависит от СТ. А чем активнее нагрев, тем нить становится длиннее, и больше отклонится стрелочка аппарата.
- Магнитоэлектрический. В устройстве присутствует магнитное поле, где симметрично располагается объединенная со стрелочкой электроприбора рамка с проволочной намоткой. При проходе через намотку электротока, конструкция под воздействием поля развернется на определенный угол, зависящий от СТ. А от угла поворачивания определяется расположение стрелочки, которая отмечает на шкале данные силы электротока.
- Электродинамичный. Внутри электроприбора имеются 2 катушки. Одна нестационарная. Когда по катушкам идет электроток (из-за формирующихся при этом электрических полей) подвижная повернется по отношению ко второй, и при этом уводит за собой стрелочку. От СТ зависит угол отклонения.
- Индукционный. Электроток идет через обмотки не двигающихся катушек, объединенных магнит-системой. В процессе формируется магнитное поле (вращается, бежит), действующее с определенной силой (в зависимости от СТ) на двигающийся цилиндрический или дисковой элемент из металла, связанный со счетчиком электроприбора.
- Электронный или цифровой. Во внутренней части расположена электрическая схема, данные выводятся на ЖК-дисплей.
Цифровые модели удобнее
Мультиметр
Так именуют универсальный измеритель значений электротока. Он может функционировать, как амперметр. Результаты замеров выводятся на ЖК-экране. Для функционирования необходимо электропитание от аккумулятора.
Механику можно использовать без батареек
Тестер
По типу работы, прибор аналоговый. Итоги замеров можно видеть на механическом табло за защитным стеклом при помощи стрелочки, аккумуляторы нужны только при присутствии омметра.
Вам это будет интересно Рейтинг лучших паяльных станций
Удобно мерить без вмешательства в схему
Токоизмерительные клещи
Они наиболее практичные. Ими зажимают места испытуемого проводника, после чего электроприбор покажет силу идущего в нем электротока. При этом важно принять во внимание, что кольцо должно быть исключительно в пределах проверяемого провода. Если закрепить несколько жил, аппарат покажет геометрию токов в них.
Первые три устройства для осуществления замеров подразумевают присутствие в цепи токовой нагрузки. Монтируются обязательно в разрыв электропровода. Для 1 фазы электросети, это подразумевает и фазу, так и «0». Для 3 фаз — исключительно фаза, потому что в «0» протекает геометрия токов всех фаз (при одной и той же нагрузке равняется 0).
Необходимо правильное подключение
Присутствует два обстоятельства:
- Различие вольтметра (чтобы определять электрическое напряжение) от амперметра состоит в том, что его запрещено применять без токовой нагрузки, иначе будет коротить.
- Щупами устройства разрешено прикасаться только к электропроводам или контактам, когда нет электричества, то есть проверяемая электролиния должна быть не под напряжением. Иначе между рядом расположенным щупом и проводящей ток жилой скорее всего будет наблюдаться дуга, которой хватит для плавки металлических элементов. Все измерители имеют диапазоны, которыми можно отрегулировать чувствительность.
На заметку. Электроток, потребляемый отдельными электроприборами, такими как телевизор и ПК, сберегающие энергию лампочки и светодиоды не синусоидальные. Некоторые измерители, принцип работы которых сориентирован на переменное электрическое напряжение, могут показывать СТ ошибочно.
Стоит работать в перчатках
Приборы магнитоэлектрической системы
Электроизмерительные приборы, основанные на прохождении тока, имеют много вариантов, которые называются «системами». Наиболее широко распространены приборы магнитоэлектрической системы. В таких приборах рамка с током помещается в магнитное поле постоянного магнита и удерживается в начальном положении пружинами. Если по рамке идет ток, то в результате возникающей силы Ампера рамка поворачивается до тех пор, пока возникшая сила не будет уравновешена силой пружины. С рамкой связана стрелка, и по углу поворота можно судить о проходящем через прибор токе.
Форма постоянного магнита сделана такой, чтобы магнитное поле, в котором поворачивается рамка, было бы почти однородным. Это позволяет добиться высокой линейности прибора.
Рис. 2. Магнитоэлектрическая система приборов.
Принцип работы и сфера применения
Уникальное строение прибора позволяет ему функционировать по простой схеме коммуникации. Вместе с постоянным магнитом на оси кронштейна располагается стальной якорь и закреплённая на нём стрелка. При воздействии на якорь постоянные магниты передают ему свои свойства. При этом позиция якоря располагается вдоль силовой линии, проходящей возле магнита.
Подобная позиция якоря задаёт нулевую отметку стрелки по градуированной шкале. Магнитный поток возникает при протекании тока от генератора или похожего источника по шине. Сохраняется прямой угол между силовыми линиями магнита и точкой расположения якоря. Силовой уровень взаимодействия потоков будет зависеть от величины и направления электрического тока, протекающего по шине. Именно на этот показатель отклоняется от нуля стрелка прибора.
Аналоговые и цифровые приборы используются во многих отраслях народного хозяйства и промышленности. Наиболее активная эксплуатация идёт на больших предприятиях, которые связаны с распределением и регенерацией тепловой, электрической энергии.
Агрегат широко применяется в следующих отраслях:
- радиоэлектроника;
- электротехника;
- энергетическая ветвь промышленности;
- строительство;
- транспортные сети;
- научно-исследовательские лаборатории.
Прибор используется не только в крупных предприятиях, но и в быту. Полезно иметь амперметр в личном автотранспорте. Он поможет в короткие сроки выявить неисправности электрооборудования даже в пути.
Прочие системы электроизмерительных приборов
Электроизмерительные приборы других видов и систем используются значительно реже, когда необходимы особенности этих приборов.
Например, нередко при измерении высоких напряжений слабой мощности недопустимо нагружать исследуемую цепь даже малым током. В этом случае используются системы электростатической системы, которые основаны на накоплении заряда: после заряда эти приборы не потребляют ток и не нагружают измеряемую цепь.
Особенности электроизмерительных приборов различных систем можно свести в таблицу:
Рис. 3. Таблица систем электроизмерительных приборов.
Эксплуатация устройства
Простое во внутреннем строении устройство требует соблюдения ряда правил эксплуатации:
- Техника прихотлива к условиям хранения. Для всех механических и аналоговых изделий недопустимы сильная тряска, удары, падение. Любое неблагоприятное воздействие может привести к появлению погрешности в работе.
- Используемый шунт должен быть немного ниже замеряемого тока. Закрепить его помогут специальные гайки.
- В момент подключения следует обеспечить отсутствие подачи тока на исследуемое устройство.
- Важным моментом является проверка полярностей.
- Устройство сгорит при подключении в электросеть без подачи нагрузки.
- Категорически запрещено касание оголенных проводков любыми незащищенными частями тела.
- Каждые 6 месяцев рекомендуется проверять технику в органах Госстандарта.
Амперметр требует последовательного соединения в электрической цепи с нагрузкой. При больших токах используется трансформатор, шунт, магнитный усилитель и милливольтметр. Из стандартного ряда могут быть выбраны первичные токи шунтов при условии стандартизации вторичного напряжения в районе 75 мВ. При высоком напряжении с отметкой более 1000 В в цепи переменного тока применяется гальваническая развязка амперметров, а в цепи постоянного — особые магнитные усилители.
Описание пульта измерения УКТ-03М:
Пульт измерения УКТ-03М конструктивно выполнен в виде самостоятельного прибора бесфутлярной конструкции в металлическом корпусе. На передней панели пульта размещаются кнопки выбора режимов измерения, включения питания пульта и табло ЖКИ индикатора. Кнопочные органы управления имеют следующие обозначения:
- «50Гц » — режим измерения первой гармоники тока 50 Гц;
- «150Гц» — режим измерения третьей гармоники тока 150 Гц;
- «Max» — режим измерения максимального значения тока;
- «ВКЛ» — включение питания пульта.
На передней панели пульта расположен также разъем для подключения соединительного кабеля.
Назначение измерительного устройства для контроля тока проводимости УКТ-03М:
Обеспечение надежной эксплуатации нелинейных ограничителей перенапряжений в качестве обязательной процедуры предусматривает периодический контроль рабочих параметров ОПН для предупреждения преждевременного старения нелинейных металлоксидных сопротивлений и связанных с этим аварийных ситуаций. Степень старения нелинейных металлоксидных сопротивлений может быть оценена по величине тока утечки, протекающего через ОПН при рабочем напряжении. Этот параметр определяется изготовителем и указывается в паспортных данных на ОПН.
Диагностическое устройство включает датчик тока ДТУ-03М, стационарно встраиваемый в заземляющий проводник ОПН и переносной прибор-анализатор тока утечки УКТ-03М, подключаемый к датчику на время измерений. Для реализации данной процедуры ОПН стационарно устанавливается на изолирующее основание. Прибор анализатор обеспечивает измерение действующего значения тока на частоте 50 Гц и 150 Гц, а также пикового значения тока в диапазоне от 0.1 до 10 мА.
Ограничитель перенапряжений может быть проверен в условиях эксплуатации под рабочим напряжением без операций с заземлением.
Компактный, переносной прибор-анализатор имеет автономное питание и не требует подключения внешнего источника питания для проведения измерений.
Обеспечивается полная безопасность процедуры измерений за счет гальванической развязки датчика тока и прибора-анализатора, надежная защита от протекания разрядного тока через ОПН, соблюдение требований ПУЭ, техники безопасности и охраны труда при проведении операций контроля.
Гарантируется надежность работы при воздействии внешних электромагнитных полей и помех от коронного разряда на подстанции.
Какими приборами измеряют работу электрического тока?
Для измерения работы электрического тока существуют специальные счетчики, внутри которых сочетаются три прибора: вольтметр, амперметр и часы.
- Написать правильный и достоверный ответ;
- Отвечать подробно и ясно, чтобы ответ принес наибольшую пользу;
- Писать грамотно, поскольку ответы без грамматических, орфографических и пунктуационных ошибок лучше воспринимаются.
- Списывать или копировать что-либо. Высоко ценятся ваши личные, уникальные ответы;
- Писать не по сути. «Я не знаю». «Думай сам». «Это же так просто» — подобные выражения не приносят пользы;
- Писать ответ ПРОПИСНЫМИ БУКВАМИ;
- Материться. Это невежливо и неэтично по отношению к другим пользователям.
Присоединяйся
Список предметов
Чтобы вопрос опубликовался, войди или зарегистрируйся
Восстановление пароля
Мы отправили письмо со ссылкой на смену пароля на username@mail.ru.
Если письма нет, проверь папку «Спам».
Чтобы вопрос опубликовался, войди или зарегистрируйся
Нужна регистрация на Учи.ру
«Ваш урок» теперь называется Учи.Ответы. Чтобы зайти на сайт, используй логин и пароль от Учи.ру. Если у тебя их нет, зарегистрируйся на платформе.
Мультиметр, какой лучше выбрать для дома и автомобиля: особенности и ТОП 5 моделей
В электрической цепи поломка может произойти по разным причинам. Независимо от сложности неисправности работоспособность сети всегда приходится восстанавливать. Упрощает этот процесс мультиметр, какой лучше выбрать из имеющегося ассортимента на рынке расскажем на примере популярных моделей. Читайте и узнаете, что представляет собой компактный прибор и основные критерии его подбора. Информация позволит выбрать подходящую модель и не разочароваться в приобретении.
Общие сведения
Мультиметр представляет собой компактный прибор в универсальном исполнении. Он предназначен для измерения силы тока, напряжения и даже сопротивления. Устройство позволяет быстро выполнить проверку электропроводов на обрыв.
Современный универсальный прибор заменяет сразу три специальных измерительных инструмента. Его использование позволит не покупать по отдельности вольтметр, амперметр и омметр. Чтобы не ошибиться и не разочароваться в приборе, нужно сначала узнать все его особенности, которые позволят определить лучший мультиметр.
Основные типы мультиметра
Производители выпускают две основные разновидности прибора – это цифровые и стрелочные модели. Второй вариант представляет собой аналоговые устройства. Некоторые электрики предпочитают пользоваться именно стрелочными моделями, потому что считают их более точными измерительными инструментами. Однако так утверждать можно только при сравнении устройств одного бренда.
Сейчас подавляющее большинство специалистов пользуются цифровыми устройствами. Они ничем не уступают аналоговым вариантам. Цифровые модели даже лучше, потому что позволяют удобнее считывать показатели. Ведь цифры практически невозможно перепутать тогда, как на стрелочном устройстве существует большая вероятность не заметить деление.
В приспособлении со стрелкой присутствует сразу несколько шкал. С ними придется сначала разобраться. После изучения удастся выполнить правильные измерения. Поэтому необходимо понять, какой лучше выбрать для дома мультиметр цифровой. Несмотря даже на то, что аналоговые варианты способны дольше функционировать от батареек.
Основные обязательные функции мультиметра
Уже в самом названии прибора заложена его многофункциональность. Однако есть несколько важных функций. Они обязательно должны присутствовать в каждом таком устройстве:
- Определение напряжения, позволяющее выявить его скачки, узнать минимальные и наибольшие значения. Приспособление в этом исполнении также может использоваться для замеров так называемой постоянки. Это напряжение аккумуляторных батарей.
- Замер тока – эта функция всегда присутствует в приборе, который способен определять напряжение.
- Так называемая прозвонка электрокабелей, позволяющая найти повреждения в цепи. Без этой функции устройство нет смысла покупать, так как она часто используется всеми пользователями. Прозвонка позволяет найти поврежденную токопроводящую жилу в проводе, когда ее целостность была нарушена, например, во время строительно-ремонтных работ.
- Определение величин сопротивления в электроцепи или на различной плате. Наличие этой функции нужно обязательно учитывать, когда решается, какой мультиметр выбрать для дома и автомобиля.
- Измерение температуры на контактах, чтобы определить их степень нагрева. Если они сильно греются, тогда у соединения слабый контакт. Измерение температуры позволяет быстро найти место, в котором, например, нужно раскрутить скрутку и зачистить жилы. После этого выполнить повторное соединение.
Перечисленные функции чаще всего используются. Поэтому они должны быть в каждом мультиметре. При этом не нужно забывать и о других возможностях данного измерительного инструмента.
Дополнительные функции мультиметров
Важным фактором, когда решают, какой лучше выбрать мультиметр для автомобиля и дома, также может стать наличие следующих функций у измерительного прибора:
- Бесконтактный способ обнаружения электропровода под напряжением, когда он проложен, например, под штукатуркой. Это позволяет выполнять бурение стены и других строительных конструкций дома без опасения, что будет нарушена скрытая проводка.
- Проверка транзисторов – функция, которую используют специалисты сервисных центров, где выполняется ремонт электронной техники. В конструкции мультиметров с такой возможностью имеется специальный транзисторный разъем с тремя контактами. Он позволяет очень быстро выполнить проверку. Времени на нее тратится гораздо меньше, чем при использовании отдельных омметров.
- Определение индуктивности путем замера сопротивления действию, когда электроток проходит через катушку.
- Проверка диодов – режим, позволяющий определить не только их работоспособность, но и минимальное пропускное напряжение, при котором электроток будет проходить через полупроводниковый элемент.
- Определение емкости конденсаторов путем пропуска через них переменного электротока. Функция используется, когда элемент для накопления электрозаряда не имеет маркировки. Ведь обычно она позволяет узнать емкость устройства.
Допустимая погрешность измерений мультиметром
Например, для силы тока и напряжения установлены разные значения максимальной погрешности. То же самое относится к другим измеряемым параметрам. Перед тем как выбрать мультиметр цифровой для дома, требуется обязательно сначала точно определиться, для чего будет использоваться прибор. Это позволит подобрать его оптимальный вариант с допустимой погрешностью. Часто у профессионального измерительного инструмента она меньше по сравнению с устройствами для домашнего использования.
Видео описание
О проверке погрешности мультиметров рассказывает специалист в этом видеоматериале:
Лучшие мультиметры в цифровом исполнении
Такие измерительные приборы обладают высокой точностью. Они отличаются небольшими размерами, простым управлением и имеют в конструкции жидкокристаллический экран, позволяющий удобно воспринимать информацию. Поэтому их применяют, чтобы получить максимально точные измерения во время монтажных и ремонтных работ.
Для упрощения выбора рассмотрим лучшие модели, доступные на рынке. Поможет подобрать мультиметры рейтинг по качеству, представленный ниже.
CEM DT-2008
Модель отличается удобным использованием. Она предназначена для применения в сложных условиях. Прорезиненное ударопрочное устройство оснащено светодиодной подсветкой и имеет подставку.
CEM DT-2008 автоматически отключается, если происходят скачки напряжения. Такая особенность увеличивает срок службы модели с точностью 4%. К достоинствам устройства относится:
- наличие инфракрасного дисплея;
- высокопрочный корпус;
- функция защиты от перегрузок.
CEM DT-2008 продается по высокой цене. Он предназначен для профессионального использования и отличается широким функционалом. Его часто приобретают энергетики и для работников жилищно-коммунального хозяйства.
IEK Universal M832
Эта модель стабильно функционирует и не представляет никакой опасности для пользователей. Устройство позволяет выполнять точную регулировку измеряемых диапазонов. Оно изготавливается в изолированном корпусе. Прибор представляет собой мультиметр с защитой от неправильного подключения.
Данный тестер можно использовать в сложных условиях. Он отличается небольшим весом и хорошей измерительной точностью. Его работоспособность сохраняется в течение минимум 10 лет. К основным отличительным чертам тестера относится:
- безопасность;
- долговечность;
- возможность автономной работы;
- хорошая точность измеряемых значений.
Однако прибор не используется при отрицательных температурах. Его выбирают в основном для дома. Он позволяет быстро измерять необходимые величины путем несложного переключения различных режимов. Пользователи также выбирают IEK M832 из-за корректного вывода информации на дисплей.
Видео описание
Об особенностях конструкции и использования мультиметра М832 рассказано в этом видео:
Elitech ММ 100
Данная портативная модель отличается наличием информативного жидкокристаллического экрана. Прибор позволяет не только измерять стандартные параметры электроцепи, но и проверять целостность транзисторов и работу диодов.
ММ 100 разработан для использования в сетях с максимальной величиной напряжения 1000 В. В устройстве имеются специальные предохранители, защищающие его от перегрузок. Отличительной чертой данного инструмента является возможность делать целых два измерения всего лишь за одну секунду. К его преимуществам относится:
- разрядность – 1999;
- присутствие защиты от перегрузок;
- невысокая стоимость;
- индикация полярности.
ММ 100 – энергозатратное устройство. Его покупают для домашнего применения. Небольшие размеры прибора не влияют на стабильность работы. Он быстро способен измерить степень зарядки аккумуляторной батареи. С его помощью удобно можно найти обрыв в электроцепи.
Bort BMM-1000N
Эта модель отличается наличием светодиодного экрана. Когда решает, какой лучше выбрать хороший мультиметр, нужно учитывать, что данное устройство способно измерять разные величины в широком диапазоне. Например, оно позволяет определить ток в пределах от 0-20 А.
BMM-1000N определяет точную емкость конденсатора, целостность диода, отсутствие обрывов в электроцепи. При этом его погрешность равна максимум 0,5%. Bort отличается:
- тремя измерениями в одну секунду;
- звуковым оповещением;
- быстрым измерением;
- очень высокой точностью.
Единственный недостаток этого прибора – относительно большие размеры. Его выбирают из-за универсальности, потому что устройство используют и в домашних условиях, и при проверке промышленных электросетей.
Mastech MAS 838
Данная модель уже много лет занимает лидирующие позиции среди всех мультиметров. Это не просто обычный тестер. Он позволяет измерять большое количество параметров. Его используют как в домашних условиях, так и в гараже. Он отлично выручает, когда происходят неполадки в работе электрических цепей автомобиля.
В конструкции устройства присутствует жидкокристаллический экран. На него выводятся точные значения проведенных измерений. На дисплее отображаются крупные числа, что позволяет удобно считывать вычисленные значения. Прибор выполняет тестирование даже транзисторов. К его достоинствам относится:
- память «HOLD»;
- наличие в комплекте чехла из резины и откидной подставки;
- доступная стоимость.
Значимым недостатком у MAS 838 является отсутствие защиты, когда осуществляется измерение сопротивления электроцепи, находящейся под напряжением. Несмотря на такой минус, Mastech еще долго будет пользоваться популярностью.
Видео описание
Об конструктивных особенностях и использовании китайского мультиметра рассказано в видеоматериале:
Коротко о главном
Мультиметр – это не просто обычный тестер, а многофункциональный прибор. Он позволяет быстро определять разные параметры электроцепи, а также проверять работу конденсаторов, диодов и других полупроводников.
Производители выпускают цифровые устройства и приспособления со стрелкой. Чаще предпочитают пользоваться первой разновидностью прибора. При его подборе учитывают допустимую погрешность, основные и дополнительные функции. Это проверка напряжения, целостности электрокабеля, замер тока, сопротивления, температуры на контактах. К востребованным моделям относится CEM DT-2008, IEK Universal M832 и Elitech ММ 100.
В чем измеряется работа тока
Приборы для измерения силы тока и электрического напряжения
Чтобы рассчитать работу, выполненную электротоком за тот или иной временной интервал, пользователь должен располагать приборами, предназначенными для замеров величин, произведение которых составляет искомую. Токовую силу принято замерять амперметром, напряжение на концах участка цепи – вольтметром. Оба обозначенных прибора выпускаются в разных вариантах исполнения: как в виде простых моделей для применения на школьных уроках физики, так и высокоточных образцов с цифровым дисплеем. На электросхеме по стандартам амперметр обозначается буквой А (символизирующей ампер – единицу измерения), взятой в кружок, а вольтметр – обведенной аналогичным образом латинской литерой V (вольт). Вместо кружка возможно использование изображения прибора с соответствующей буквой либо простых латинских литер, обозначающих соответствующие величины (U и I).
Амперметр, с помощью которого измеряют токовую силу, является одним из приборов, необходимых для вычисления работы электротока за определенный период времени в домашних или лабораторных условиях
Чтобы узнать, какую работу производит электрический ток за определенный промежуток времени, пользователь должен иметь два прибора, а также секундомер или его аналог (данная опция есть в большинстве мобильных телефонов, даже во многих кнопочных моделях). Измерительные приборы подсоединяются в цепь, засекается нужное время, и затем фиксируются показания амперметра и вольтметра. После этого остается перемножить три величины между собой. Вместо двух отдельных приборов можно воспользоваться цифровым мультиметром. В этом случае измерения придется проводить последовательно, каждый раз перенастраивая прибор на замер той или иной величины и записывая получающийся показатель. Измерив одну из величин, прибор нужно обязательно отсоединить от цепи, затем перевести в другой режим и подсоединить снова.
Чтобы найти работу, нужно замерить показания подсоединенных к цепи вольтметра и амперметра
Работа электрического тока – важная величина для оценки затрат электроэнергии для личного или корпоративного использования. Именно она фиксируется в показаниях счетчиков электричества, устанавливаемых в щиток или на дин-рейку. Трансформацию электротока из одной формы в другую, произошедшую в цепи за заданный временной интервал, можно оценить, проведя измерения силы тока и напряжения и перемножив три компонента произведения.
Закон Джоуля-Ленца
В случае, когда на участке цепи не совершается механическая работа, и ток не производит химических действий, происходит только нагревание проводника. Нагретый проводник отдает теплоту окружающим телам.
Закон, определяющий количество теплоты, которое выделяет проводник с током в окружающую среду, был впервые установлен экспериментально английским ученым Д. Джоулем (1818—1889) и русским Э.Х. Ленцем (1804—1865). Закон Джоуля—Ленца сформулирован следующим образом:
Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.
Количество теплоты измеряется в Джоулях (Дж).
Пример №2. Определить, какое количество теплоты было выделено за 2 минуты проводником при напряжении 12 В и сопротивлении 2 Ом.
Используем закон Ома и закон Джоуля—Ленца:
Тема 3. Потенциалы полей различных заряженных тел.
1. Электрон с начальной энергией W
движется издалека в вакууме по направлению к центру равномерно заряженного шара радиусаR. Полагая заряд шара отрицательным и равнымq, найдите минимальное расстояние г, на которое приблизится электрон к поверхности шара.
2. Найдите, чему равна работа при перенесении точечного заряда 20 нКл из бесконечности в точку, находящуюся на расстоянии 1 см от поверхности шара радиуса 1 см, заряженного с поверхностной плотностью заряда 1 нКл/см2.
3. Найдите работу (на единицу длины), которую нужно совершить, чтобы сблизить две одноименно заряженные длинные параллельные нити от расстояния 20 см до 10 см между ними. Линейная плотность зарядов каждой нити 3 мкКл/м. In 0,5 = — 0,69.
4. Тонкая прямая длинная нить равномерно заряжена с линейной плотностью заряда 2 мкКл/м. Найдите потенциал поля нити как функцию расстояния r
от нити. Вычислите потенциал на расстоянии 10 м, принявφ = на расстоянии 1 м.
5. В противоположных вершинах квадрата со стороной а
размещены два точечных заряда (+q) и (-2q), Найдите потенциал поля в каждой из незанятых вершин квадрата.
6. Тонкий стержень согнут в кольцо радиуса R,
равномерно заряженное с линейной плотностьют. Найдите потенциал поля в точке, расположенной на оси кольца на расстояниих от его центра.
равномерно распределен по полукольцу радиуса R. Найдите потенциал в центре полукольца.
8. Кольцо радиуса R
из тонкой проволоки имеет зарядq. Найдите потенциал электрического поля в центре кольца, считая, чтоφ= 0.
10 Электрическое поле создано двумя бесконечными параллельными плоскостями, заряженными с поверхностной плотностью 1 нКл/м2 и 5 нКл/м2. Найдите разность потенциалов между плоскостями, если расстояние между ними равно 5 мм.
11 Сфера радиуса R
равномерно заряжена с поверхностной плотностью заряда а. Найдите потенциал электрического поля на поверхности сферы, внутри и вне ее. Постройте графикφ(r). 12. Найдите потенциал в центре металлической сферы радиуса R,
заряженной однородно с поверхностной плотностью заряда σ.
13. Получите выражение для потенциала φ
поля плоского конденсатора в зависимости от координатых, направленной перпендикулярно пластинам конденсатора. Нарисуйте графики зависимостиφ (х), принявφ= 0:1) на первой пластине, 2) на второй пластине и 3) в плоскости, лежащей посередине между пластинами.
14 Тонкий стержень согнут в полукольцо и заряжен с линейной плотностью заряда 133 нКл/м. Найдите работу, которую надо совершить, чтобы перенести заряд 6,7 нКл из центра кривизны полукольца в бесконечность.
15.Кольцо радиуса R
заряжено с линейной плотностью заряда τ. Найдите работу сил поля по перемещению зарядаq из центра кольца в точку, находящуюся на оси кольца на расстоянии 3R от его центра.
16.Вдоль силовой линии электрического поля отрицательно заряженной протяженной плоскости движется электрон. Найдите минимальное расстояние, на которое он может приблизиться к плоскости, если на расстоянии 5 см от плоскости кинетическая энергия электрона 8 кДж, а поверхностная плотность заряда плоскости 35,4 Кл/м² .
17.Две одинаковые сферы радиуса R
заряжены зарядами+q и-q. Найдите напряженность и потенциал поля в точке, лежащей посередине прямой, соединяющей центры сфер, если расстояние между центрами равно 10R.
НЗ.Тонкий диск радиуса R
равномерно заряжен с поверхностной плотностью зарядаσ. Найдите потенциал поля в центре диска.
19.Найдите потенциалы в т. А
и С, считая, что потенциал в т.В равен 0.
Все точки лежат на одной силовой линии однородного электрического поля напряженностью 100 В/м.
см.Нарисуйте график зависимостиφ(х). 20.Три пластины расположены в вакууме параллельно друг другу. Расстояние от средней пластины до крайних d
и2d. На первой пластине равномерно распределен заряд с поверхностной плотностью +σ , на второй — (- 2σ ), на третьей — (- 3σ ). Найдите разность потенциалов между пластинами 1и 2,1 и 3,2 и 3.
21.Электрическое поле создано длинным цилиндром радиуса 1 см, равномерно заряженным с
линейной плотностью заряда 20 мКл/м. Найдите разность потенциалов двух точек этого поля, находящихся на расстояниях 0,5 см и 2 см от оси цилиндра в средней его части.
Единицы измерения
Основной единицей, которой принято выражать осуществляемую электротоком трансформацию, является джоуль. Данное наименование единица получила по фамилии английского физика, обосновавшего опытным путем закон сохранения энергии. В сокращенном виде джоуль пишется как «Дж». Выразить величину через другие единицы измерения можно, используя основную формулу: 1 Дж = 1 А*1В*1 с (ампер, вольт и секунда, соответственно).
Важно! Приборы учета затраченной электроэнергии используют иную единицу измерения – киловатт-час (указывается как кВт*ч). Связано это с тем, что джоуль является весьма некрупной единицей, а один киловатт-час равен 3600000 джоулей. Поскольку функционирование осветительных приборов и бытовой техники в жилой квартире или доме продолжается сотни часов ежемесячно, и в процессе этого реализуется значительная работа тока, киловатт-час является куда более адекватной данным условиям измерительной единицей
Поскольку функционирование осветительных приборов и бытовой техники в жилой квартире или доме продолжается сотни часов ежемесячно, и в процессе этого реализуется значительная работа тока, киловатт-час является куда более адекватной данным условиям измерительной единицей.
единица, в чём будет измеряться мощность, электрический заряд и теория определения
Сила тока представляет собой движение заряженных частиц в определённом направлении, во взятом проводнике. Многих физиков в прошлом волновал вопрос: в чём измеряется ток и как измерить то, что невидимо и неосязаемо. Но благодаря ряду открытий ситуация стала проясняться. Для того чтобы появилось движение заряженных частиц, нужно воздействие электрического поля.
В то же время заряженные частицы появляются постоянно, благодаря плотному контакту в любых веществах:
- проводники
- полупроводники
- диэлектрики.
Заряженные частицы способны совершать свободные движения в разных направлениях. Материалы, где свободно перемещаются заряженные частицы, называют проводниками: металл, растворы соли.
Материалы, где электрические частицы не могут перемещаться, называют диэлектриками: газ, кварц, дерево.
Материалы, которые имеют не только электронную, но и «дырочную» проводимость, которая зависит от многих внешних факторов (свет, температура, магнитные и электрические поля) называют полупроводниками: селен, кремний, германий.
Единицы измерения
Ток подразделяют на несколько разновидностей. Основные из них представлены таким образом:
- Постоянный -значение и направление не меняются во времени;
- Синусоидальный — величина меняется по синусоидальному закону;
- Высокочастотный — частота начинается с десятки килогерц;
- Периодический — значения которого повторяются во времени с одинаковой периодичностью;
Пульсирующий — изменяющий периодически значение во времени, отличное от нуля.
Учёные часто задавались вопросом, в каких единицах измеряется сила тока. Для измерения, пользуются физической величиной. Эта физическая величина равна отношению значения заряда Q, протёкшего за какое-то время через поперечное сечение проводника, к значению этого временного периода: I=Q/t. И измеряется в амперах и показывает обозначение силы тока: A.
Электрический ток в чём измеряется, в том и рассчитывается — на принципиальных схемах. Такое определение помогает рассчитать блоки питания определённой мощности.
В электрических цепях показатели рассчитывают по закону Ома, и именно это отвечает на вопрос чему равен ток. Сила I на определённом участке цепи прямо пропорциональна напряжению, подаваемому на него и обратно пропорциональна сопротивлению R участка цепи: I=U/R.
Разные значения
Если на участке цепи переменный ток, напряжение постоянно изменяется, поэтому если взять средние значения напряжения, то они будут равны нулю, а средняя мощность будет нулю не равна. Для этого стали применять такие понятия:
- мгновенные значения;
- амплитудные значение ;
- действующие значения.
Мгновенные значения -это те, которые имеют место в данный момент времени. Амплитудные значения — самые максимальные. Действующие значения определяются тепловым свойством тока, текущего через сечение проводника, а направление векторной величины совпадает с направлениями перемещения положительных частиц.
Для точных измерений нужны основные параметры: напряжение, мощность, сопротивление, частота.
Измерение мощности
Мощностью называют определённое количество работы, которое совершается за одну секунду времени.
Для измерения мощности была принята единица — ватт .
Следовательно, мощностью в 1 Вт называют силу в 1 А при значении напряжения в 1 В.
Для того чтобы вычислить мощность, нужно силу тока умножить на напряжение .
Если мощность обозначается буквой P, то формула примет вид:
Мощность вычисляется с помощью сопротивления. Часто бывают известны сила тока и сопротивление цепи, а напряжение, обычно, неизвестно.
Следовательно, воспользовавшись законом Ома :
получаем формулу: Р = I2*R
Определение частоты
Передвижение электронов в проводнике в одну сторону, а затем в другую принято называть одним колебанием. За одним колебанием следует другое. При таких колебаниях в проводнике происходит соответствующее колебание магнитного поля.
Время, затраченное на одно колебание, называют периодом и обозначают буквой Т. Период обозначают в секундах.
Одной из важных величин является частота. Она показывает число колебаний в секунду и обозначается буквой f. Название единицы частоты — герц, (Гц) .
Практическое применение
Электрический постоянный ток всегда имеет всегда одно направление, которое называют постоянным. Он широко применяется для питания электронных устройств.
Если ток меняет направление, его называют переменным, и он применяется для передачи энергии по проводам на большие расстояния.
Работа электрического тока
Проходя по цепи, ток совершает работу. Как например, водный поток направить течь, на лопасти генератора, то пон будет совершать работу, вращая лопасти. Так же и ток совершает работу, двигаясь по проводнику. И эта работа тем выше, чем больше величина сила тока и напряжения. Работа электрического тока, совершаемая на участке цепи, прямо пропорциональна силе тока, напряжению и времени действия тока. Работа электрического тока обозначается латинским символом A. Так как, произведение I×U есть мощность, то формулу работы электрического тока можно записать: A = P×t
Единицей измерения работы электрического тока, является ватт в секундах или в джоулях. Поэтому, если мы хотим вычислить, какую работу осуществил ток, идя по цепи в течение временного интервала, мы должны умножить мощность на время Рассмотрим практический пример, через реостат с сопротивлением 5 Ом идет ток силой 0,5 А. Нужно вычислить, какую работу совершит ток в течение четырех часов. Работа в течение одной секунды будет: P=I2R = 0,52×5= 0,25×5 =1,25 Вт,
Тогда за 4 часа t=14400 секунд. Следовательно: А = Р×t= 1,25×14 400= 18 000 вт-сек. Ватт-секунда или один джоуль считаетсяя слишком малой велечиной для измерения работы. Поэтому на практике применяют единицу, называемую ватт-час (втч). Один ватт-час это эквивалентно 3 600 Дж. В электротехнике используются и еще большие единицы, гектоваттчас (гвтч) и киловаттчас (квтч): 1 квтч =10 гвтч =1000 втч = 3600000 Дж, 1 гвтч =100 втч = 360 000 Дж, 1 втч = 3 600 Дж.
Мощность электрического тока
Как рассчитать сопротивление и мощность
Допустим, требуется подобрать токоограничивающий резистор для блока питания схемы освещения. Нам известно напряжение питания бортовой сети «U», равное 24 вольта и ток потребления «I» в 0,5 ампера, который нельзя превышать. По выражению (9) закона Ома вычислим сопротивление «R». R=24/0,5=48 Ом. На первый взгляд номинал резистора определен. Однако, этого недостаточно. Для надежной работы семы требуется выполнить расчет мощности по току потребления.
Согласно действию закона Джоуля — Ленца активная мощность «Р» прямо пропорционально зависит от тока «I», проходящего через проводник, и приложенного напряжения «U». Эта взаимосвязь описана формулой Р=24х0,5=12 Вт.
Проведенный расчет мощности резистора по току его потребления показывает, что в выбираемой схеме надо использовать сопротивление величиной 48 Ом и 12 Вт. Резистор меньшей мощности не выдержит приложенных нагрузок, будет греться и со временем сгорит. Этим примером показана зависимость того, как на мощность потребителя влияют ток нагрузки и напряжение в сети.
Что такое ЭДС: объяснение простыми словами
Под ЭДС понимается удельная работа сторонних сил по перемещению единичного заряда в контуре электрической цепи . Это понятие в электричестве предполагает множество физических толкований, относящихся к различным областям технических знаний. В электротехнике — это удельная работа сторонних сил, появляющаяся в индуктивных обмотках при наведении в них переменного поля. В химии она означает разность потенциалов, возникающее при электролизе, а также при реакциях, сопровождающихся разделением электрических зарядов.
В физике она соответствует электродвижущей силе, создаваемой на концах электрической термопары, например. Чтобы объяснить суть ЭДС простыми словами – потребуется рассмотреть каждый из вариантов ее трактовки. Прежде чем перейти к основной части статьи отметим, что ЭДС и напряжение очень близкие по смыслу понятия, но всё же несколько отличаются. Если сказать кратко, то ЭДС — на источнике питания без нагрузки, а когда к нему подключают нагрузку — это уже напряжение. Потому что количество вольт на ИП под нагрузкой почти всегда несколько меньше, чем без неё. Это связано с наличием внутреннего сопротивления таких источников питания, как трансформаторы и гальванические элементы.
Сторонние силы приводят в движение заряженные частицы внутри источников тока: генераторов, гальванических элементов, аккумуляторов и т. д. Происхождение сторонних сил может быть различным. В генераторах сторонние силы — это силы со стороны вихревого электрического поля, возникающего при изменении магнитного поля со временем, или Лоренца сила, действующая со стороны магнитного поля на электроны в движущемся проводнике; в гальванических элементах и аккумуляторах — это химические силы и т. д. Эдс определяет силу тока в цепи при заданном её сопротивлении (см. Ома закон). Измеряется эдс, как и напряжение, в вольтах.
Что такое ЭДС.
Откуда вообще берется электрический ток?
Несмотря на кажущуюся простоту вопроса, немногие способны дать на него вразумительный ответ. Конечно, в наши дни, когда технологии развиваются с неимоверной скоростью, человек особо не задумывается о таких элементарных вещах, как принцип действия электрического тока. Откуда берется электричество? Наверняка многие ответят «Ну, из розетки, ясное дело» или же просто пожмут плечами
А между тем, очень важно понимать, как происходит работа тока. Это следует знать не только ученым, но и людям, никак не связанным с миром наук, для их же всеобщего разностороннего развития. А вот уметь грамотно использовать принцип работы тока под силу не каждому
А вот уметь грамотно использовать принцип работы тока под силу не каждому.
Итак, для начала следует понять, что электричество не возникает ниоткуда: его вырабатывают специальные генераторы, которые находятся на различных электростанциях. Благодаря работе вращения лопастей турбин паром, полученным в результате нагрева воды углями или нефтью, возникает энергия, которая впоследствии с помощью генератора превращается в электричество. Генератор устроен очень просто: в центре устройства находится огромный и очень сильный магнит, который заставляет электрические заряды двигаться по медным проводам.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. На рисунке приведена схема электрической цепи, состоящей из источника тока, ключа и двух параллельно соединённых резисторов. Для измерения напряжения на резисторе \( R_2 \) вольтметр можно включить между точками
1) только Б и В 2) только А и В 3) Б и Г или Б и В 4) А и Г или А и В
2. На рисунке представлена электрическая цепь, состоящая из источника тока, резистора и двух амперметров. Сила тока, показываемая амперметром А1, равна 0,5 А. Амперметр А2 покажет силу тока
1) меньше 0,5 А 2) больше 0,5 А 3) 0,5 А 4) 0 А
3. Ученик исследовал зависимость силы тока в электроплитке от приложенного напряжения и получил следующие данные.
Проанализировав полученные значения, он высказал предположения:
А. Закон Ома справедлив для первых трёх измерений. Б. Закон Ома справедлив для последних трёх измерений.
Какая(-ие) из высказанных учеником гипотез верна(-ы)?
1) только А 2) только Б 3) и А, и Б 4) ни А, ни Б
4. На рисунке изображён график зависимости силы тока в проводнике от напряжения на его концах. Чему равно сопротивление проводника?
1) 0,25 Ом 2) 2 Ом 3) 4 Ом 4) 8 Ом
5. На диаграммах изображены значения силы тока и напряжения на концах двух проводников. Сравните сопротивления этих проводников.
1) \( R_1=R_2 \) 2) \( R_1=2R_2 \) 3) \( R_1=4R_2 \) 4) \( 4R_1=R_2 \)
6. На рисунке приведена столбчатая диаграмма. На ней представлены значения мощности тока для двух проводников (1) и (2) одинакового сопротивления. Сравните значения напряжения \( U_1 \) и \( U_2 \) на концах этих проводников.
1) \( U_2=\sqrt<3>U_1 \) 2) \( U_1=3U_2 \) 3) \( U_2=9U_1 \) 4) \( U_2=3U_1 \)
7. Необходимо экспериментально обнаружить зависимость электрического сопротивления круглого угольного стержня от его длины. Какую из указанных пар стержней можно использовать для этой цели?
1) А и Г 2) Б и В 3) Б и Г 4) В и Г
8. Два алюминиевых проводника одинаковой длины имеют разную площадь поперечного сечения: площадь поперечного сечения первого проводника 0,5 мм2, а второго проводника 4 мм2. Сопротивление какого из проводников больше и во сколько раз?
1) Сопротивление первого проводника в 64 раза больше, чем второго. 2) Сопротивление первого проводника в 8 раз больше, чем второго. 3) Сопротивление второго проводника в 64 раза больше, чем первого. 4) Сопротивление второго проводника в 8 раз больше, чем первого.
9. В течение 600 с через потребитель электрического тока проходит заряд 12 Кл. Чему равна сила тока в потребителе?
1) 0,02 А 2) 0,2 А 3) 5 А 4) 50 А
10. В таблице приведены результаты экспериментальных измерений площади поперечного сечения \( S \), длины \( L \) и электрического сопротивления \( R \) для трёх проводников, изготовленных из железа или никелина.
На основании проведённых измерений можно утверждать, что электрическое сопротивление проводника
1) зависит от материала проводника 2) не зависит от материала проводника 3) увеличивается при увеличении его длины 4) уменьшается при увеличении его площади поперечного сечения
11. Для изготовления резисторов использовался рулон нихромовой проволоки. Поочередно в цепь (см. рисунок) включали отрезки проволоки длиной 4 м, 8 м и 12 м. Для каждого случая измерялись напряжение и сила тока (см. таблицу).
Какой вывод можно сделать на основании проведённых исследований?
1) сопротивление проводника обратно пропорционально площади его поперечного сечения 2) сопротивление проводника прямо пропорционально его длине 3) сопротивление проводника зависит от силы тока в проводнике 4) сопротивление проводника зависит от напряжения на концах проводника 5) сила тока в проводнике обратно пропорциональна его сопротивлению
12. В справочнике физических свойств различных материалов представлена следующая таблица.
Используя данные таблицы, выберите из предложенного перечня два верных утверждения. Укажите их номера.
1) При равных размерах проводник из алюминия будет иметь меньшую массу и большее электрическое сопротивление по сравнению с проводником из меди. 2) Проводники из нихрома и латуни при одинаковых размерах будут иметь одинаковые электрические сопротивления. 3) Проводники из константана и никелина при одинаковых размерах будут иметь разные массы. 4) При замене никелиновой спирали электроплитки на нихромовую такого же размера электрическое сопротивление спирали уменьшится. 5) При равной площади поперечного сечения проводник из константана длиной 4 м будет иметь такое же электрическое сопротивление, что и проводник из никелина длиной 5 м.
Часть 2
13. Меняя электрическое напряжение на участке цепи, состоящем из никелинового проводника длиной 5 м, ученик полученные данные измерений силы тока и напряжения записал в таблицу. Чему равна площадь поперечного сечения проводника?
Откуда вообще берется электрический ток?
Несмотря на кажущуюся простоту вопроса, немногие способны дать на него вразумительный ответ. Конечно, в наши дни, когда технологии развиваются с неимоверной скоростью, человек особо не задумывается о таких элементарных вещах, как принцип действия электрического тока. Откуда берется электричество? Наверняка многие ответят «Ну, из розетки, ясное дело» или же просто пожмут плечами
А между тем, очень важно понимать, как происходит работа тока. Это следует знать не только ученым, но и людям, никак не связанным с миром наук, для их же всеобщего разностороннего развития
А вот уметь грамотно использовать принцип работы тока под силу не каждому.
Итак, для начала следует понять, что электричество не возникает ниоткуда: его вырабатывают специальные генераторы, которые находятся на различных электростанциях. Благодаря работе вращения лопастей турбин паром, полученным в результате нагрева воды углями или нефтью, возникает энергия, которая впоследствии с помощью генератора превращается в электричество. Генератор устроен очень просто: в центре устройства находится огромный и очень сильный магнит, который заставляет электрические заряды двигаться по медным проводам.
Ток в полупроводниках и его характеристики
Электрические свойства полупроводников сильно зависят от внешних условий: температуры, облучения светом. Для увеличения их собственной проводимости в состав структуры добавлены специальные примеси.
Поэтому внутри полупроводника ток создается за счет собственной и примесной проводимости внутреннего p-n перехода. Носителями зарядов полупроводника выступают электроны и дырки. Если плюсовой потенциал источника напряжения приложен к полюсу p, а минусовой — к n, то через p-n переход станет течь ток за счет созданного ими движения.
При обратном приложении полярности p-n переход остается закрытым. Поэтому на картинке выше в первом случае показана светящаяся лампочка, а во втором — потухшая.
Аналогичные p-n переходы работают в других полупроводниковых конструкциях: транзисторах, стабилитронах, тиристорах…
Все они рассчитаны на номинальное прохождение силы тока. Для этого прямо на их корпус наносится маркировка. По ней заходят в таблицы технических справочников и оценивают полупроводник по электрическим характеристикам.
В чём измеряется сила тока?
Основная единица-это, конечно,ампер.Но бывает что сила тока намного меньше одного ампера.Тогда для измерений используют такие единицы как миллиампер(одна тысячная доля ампера)и микроампер (одна миллионная доля ампера).
Сила тока измеряется в Амперах . Собственно, величина названа в честь французского физика Андре Ампера
Единицей измерения силы тока согласно международной системе измерений (СИ) является Ампер. Измеряется сила тока путем включения в участок электрической цепи, силу тока на котором мы хотим измерить, специального прибора — амперметра.
сила тока это направленное движение положительно заряженных частиц. она показывает какой заряд проходит через поперечное сечение проводника за единицу времени. измеряется в АМПЕРАХ, названа так в часть французского физика и математика Андре-Мари Ампера (1775-1836). прибор для измерения силы тока называется амперметром
Сила тока представляет собой физическую величину, равную отношению количества электрического заряда, который прошел через определнную поверхность, ко времени прохождения данного заряда. Измеряется сила тока в АМПЕРАХ (А).
Сила тока измеряется в Амперах.
Обычно в учебниках физики эта величина начинает появляться в 9 , а то и в 8 классе.
Обычно ученики проверяют силу тока с помощью приборов измерения Силы тока — Амперметров.
I — это сила тока в проводнике. Сила тока измеряется в Амперах, а так в сокращенном варианте ампер обозначается (А). Легко запомнить, так как это просто большая буква А.
Ампер — это единица измерения, которая названа именем в честь одного французского математика, а также физика по имени Андре-Мари Ампер.
Сила тока в системе СИ измеряется в Амперах. Для того, чтобы измерить эту физическую величину применяются специальные приборы, которые называются амперметры. Чтобы измерить силу тока прибор стоит включить в разрыв цепи.
Физическая величина под названием сила тока измерятся в Амперах. Эта еденица измерения названа именем французского математика и физика Андре-Мари Ампера. Так же хочется сказать, что есть специальный прибор, который измеряет силу тока и называется он Амперметр.
Сила тока- это направленное движение заряженных частиц. Сила тока измеряется в Амперах. Для этого используют особый прибор- амперметр. Ампер показывает, какой заряд проходит через поперечное сечение проводника за единицу времени.
Ампер — этой величиной измеряется сила тока, а обозначается сила тока буквой I.
Приборы, с помощью которых измеряют силу тока называются Амперметрами — ими пользуются электрики и другие работники чья работа связана с электрическим током.
Формула нахождения силы тока приведена ниже, где I — сила тока, U — напряжение, а Р — мощность.
Что такое мощность в электричестве
Механическая мощность как физическая величина равна отношению выполненной работы к некоторому промежутку времени. Поскольку понятие работы определяется количеством затраченной энергии, то и мощность допустимо представить как скорость преобразования энергий. Разобрав составляющие механической мощности, рассмотрим из чего складывается электрическая. Напряжение — выполняемая работа по перемещению одного кулона электрического заряда, а ток — количество проходящих кулонов за одну секунду. Произведение напряжения на ток показывает полный объем работы, выполненной за одну секунду.
Мощность электрического тока – количественная мера тока, характеризующая его энергетические свойства. Определяется основными параметрами – силой тока и напряжением. Измеряется мощность электрического тока прибором, который называется Ваттметр. Единица измерения — Ватт (Вт).
Проанализировав полученную формулу, можно заключить, что силовой показатель зависит одинаково от тока и напряжения. То есть, одно и тоже значение возможно получить при низком напряжении и большом тока, или при высоком напряжении и низком токе. Пользуясь зависимостью мощности от напряжения и силы тока, инженеры научились передавать электричество на большие расстояния путем преобразования энергии на понижающих и повышающих трансформаторных подстанциях.
Наука подразделяет электрическую мощность на:
- активную. Подразумевает преобразование мощности в тепловую, механическую и другие виды энергии. Показатель выражают в Ваттах и вычисляют по формуле U*I;
- реактивную. Эта величина характеризует электрические нагрузки, создаваемые в устройствах колебаниями энергии электромагнитного поля. Показатель выражается как вольт-ампер реактивный и представляет собой произведение напряжения на силу тука и угол сдвига.
Для простоты понимания смысла активной и реактивной мощности, обратимся к нагревательному оборудованию, где электрическая энергия преобразуется в тепловую.
Как измерить мощность
Знать силовые характеристики бытового оборудования необходимо всегда. Это требуется для расчета сечения проводки, учета расхода электроэнергии или электрификации дома. До начала монтажных работ такую информацию можно получить только путем сложения показателей мощности каждого отдельного устройства, добавив 10% запаса.
Определить потребляемую нагрузку дома поможет счетчик. Прибор показывает сколько киловатт было потрачено за один час работы оборудования. И для того чтобы убедиться в правильности показаний, владелец квартиры может проверить точность устройства с помощью электронных средств измерения. Сюда относится амперметр, вольтметр или мультиметр.
Также существуют ваттметры и варметры, которые показывают результаты измерений в ваттах. Во время снятия показания включенной оставить только активную нагрузку как лампочки и нагреватели. Далее померить токовое напряжение. В конце сверить показания счетчика с полученным результатом вычислений.