Параметры, определяющие тяжесть поражения электрическим током
Электрическая энергия используется для освещения, работы приборов, бытовой техники, производственного оборудования.
Человек ежедневно пользуется электричеством дома, на работе, на учебных занятиях. Привычка к постоянному использованию электричества притупляет чувство опасности, приводит чувство опасности, приводит к травмам и даже гибели людей.
Электрические травм разделяются на местные электротравмы и электрические удары.
Электрический удар — это возбуждение живых тканей проходящим через человека электрическим током, сопровождающееся судорожными сокращениями мышц. В зависимости от исхода различают четыре степени электрических ударов:
1) судорожное сокращение мышц без потери сознания;
2) судорожное сокращение мышц с потерей сознания, но с сохранившимся дыханием и работой сердца;
3) потеря сознания нарушение сердечной деятельности или дыхания (или того и другого вместе);
4) клиническая смерть, то есть отсутствие дыхания и кровообращения. Кроме остановки сердца и прекращения дыхания причиной смерти может быть электрический шок — тяжелая нервно-рефлекторная реакция организма на сильное раздражение электрически током.
Местные электротравмы
Местные электротравмы — это местные нарушения целостности тканей организма. К местным электротравмам относят: Электрический ожег — токовой и дуговой:
• токовой — связан с прохождением тока через тело человека и является следствием преобразования электрической энергии и тепловую.
• духовой — при высоких напряжениях электрической сети между проводником тока и телом человека может образоваться электрическая дуга, в результате возникает более тяжелый ожег, так как электрическая дуга обладает очень. большой температурой -свыше 3500°С.
Электрические знаки (метки) — пятна серого или бледно-желтого цвета на коже человека, образующиеся в месте контакта с проводником тока; как правило, знаки имеют круглую или овальную форму размерами 1-5 мм; эта травма не представляет серьезной опасности и достаточно быстро проходит.
Металлизация кожи — проникновение в верхние слои кожи мельчайших частичек металла, расплавившегося под действием электрической дуги; в зависимости от места поражения травма может быть очень болезненной; с течением времени поражения кожа сходит; поражение глаз может закончиться ухудшением или даже потерей зрения;
Электроофтальмия — поражение коньюктивы и кожи век по действием потока ультрафиолетовых лучей, испускаемых электрической дугой; по этой причине нельзя смотреть на сварочную электродугу; травма сопровождается сильной болью и резью в глазах, временной потерей зрения.
Механические повреждения возникают в результате резких судорожных сокращений мышц под действием проходящего через тело человека тока, при непроизвольных мышечных сокращениях могут произойти разрывы кожи, кровеносных сосудов, а также вывихи суставов, разрывы связок.
Параметры, определяющие тяжесть поражения током.
Основными факторами, определяющими степень поражения электрическим током являются: сила тока, протекающего через человека, и частота тока, а также время воздействия и путь протекания тока через тело человека.
Сила тока. Протекание через организм переменного тока промышленной частоты (50 Гц), широко используемого в промышленности и в быту, человек начинает ощущать при силе тока 0,6 -1,5 мА (мА — миллиампер, равный 0,001 А). Этот ток называют пороговым ощутимым током.
• С увеличением силы тока болезненные ощущения увеличиваются. При 10 — 15 мА судороги мышц руки становятся настолько сильными, что человек не может их преодолеть и освободиться от проводника тока. Таковой называется пороговым неотпускающим током.
• При токе величиной 25 — 50 мА происходят нарушения в работе легких и сердца. При его длительном воздействии может и произойти остановка сердца и прекращение дыхания. Начиная с величины 100 мА, протекание тока через человека вызывает судорожные неритмические сокращения сердца (фибрилляции). Такой ток называется пороговым фибрилляционным током. Ток более 5 А вызывает немедленную остановку сердца, минуя состояние фибрилляции.
Частота тока. Наиболее опасен ток промышленной частоты — 50 Гц. Постоянный ток и ток больших частот менее опасны, и пороговые значения для них больше. Так, для постоянного тока, пороговый ощутимый ток — 5 — 7 мА, пороговый неотпускающий ток — 50 — 80 мА, фибрилляционньй ток — 300 мА.
В чем опасность удара электрическим током
Иногда важно знать не то, какая сила тока может убить человека, а реакцию человека и внешнюю обстановку. Как правило, для человека получение удара от электрического тока происходит неожиданно. В силу этого человек может делать непроизвольные движения и необдуманные поступки.
Например, стоя на стремянке и получив удар током, человек может потерять равновесие и упасть с высоты и получить серьезные травмы. Неслучайно в правилах по технике безопасности приводится множество правил, как правильно работать с электроприборами.
Смертельная сила тока для человека определяется продолжительностью воздействия, чем больше продолжительность, тем большие травмы наносятся телу.
Находясь под действием тока, человек может испытывать болезненные ощущения, что может привести к шоку. Могут обостриться хронические заболевания или появиться новые. При более серьезной травме возможна временная, длительная или постоянная потеря трудоспособности.
Действие тока опасно еще и тем, что он действует на работу сердца и легких, в тяжелых случаях полностью останавливая их работу. Какая сила тока смертельна для человека, определяется путями прохождения электрического тока.
Путь протекания тока
Опасность поражения электрическим током зависит от пути протекания тока через тело человека. Наиболее опасен путь — правая рука — ноги (как раз правой рукой чаще всего работает человек). Затем по степени снижения опасности идут: левая рука — ноги, рука — рука, ноги — ноги.
При протекании электрического тока через человека в месте контакта с проводником верхний слой кожи быстро разрушается, электрическое сопротивление тела уменьшается, ток возрастает, и его отрицательное действие усугубляется.
Определяющую роль в поражающем действии играет величина силы электрического тока, протекающего через организм человека. Электрический ток возникает тогда, когда создается замкнутая электрическая цепь. По закону Ома сила электрического тока равна электрическому напряжению , деленному на сопротивление, электрической цепи.
Таким образом, чем больше напряжение, тем больше и опаснее электрический ток. Чем больше электрическое сопротивление цепи, тем меньше ток и опасность поражения человека.
Как правило, у нас используется напряжение 220 В. Существуют также электросети на 380, 660 и более вольт; во многих технических устройствах применяются напряжения в десятки тысяч вольт. Такие технические устройства представляют исключительно высокую опасность. Но и значительно меньше напряжения (220, 36 и даже 12 В) могут быть опасными в зависимости от условий и электрического сопротивления цепи.
Электрическое сопротивление цепи равно сумме сопротивлений всех участков, составляющих цепь (проводников, пола, обуви). В общее электрическое сопротивление входит и сопротивление тока человека.
Электрическое сопротивление тела человека при сухой, чистой и неповрежденной коже может изменяться в довольно широких пределах от 1 до 100 кОм (1 кОм = 1000 Ом), а иногда и больших. Электрическое сопротивление человека в основном определяет наружный слой кожи -эпидермис, состоящий из ороговевших клеток. Сопротивление внутренних тканей тела небольшое — всего лишь 300 — 500 Ом. Поэтому при нежной, влажной и потной коже или повреждении эпидермиса (ссадины, раны) электрическое сопротивление тела может быть очень небольшим. Человек с такой кожей наиболее уязвим для электрического тока. У девушек нежнее кожа и более тонкий слой эпидермиса, нежели у юношей; у мужчин, имеющих мозолистые руки, электрическое сопротивление тела может достигать очень больших величин, и опасность их поражения электротоком снижается. В расчетах на электробезопасность обычно принимают величину сопротивления тела в 1000 Ом.
Электрическое сопротивление изоляции проводников тока, если она не повреждена, составляет, как правило, 100 и более кОм.
Электрическое сопротивление обуви и основания (пола) зависит от материала, из которого сделаны основание и подошва обуви, и их состояния — сухие или мокрые (влажные).
Для защиты от протекания недопустимых токов, электросеть снабжается защитными устройствами, простейшими из которых являются электрические предохранители — пробки со способностью плавиться вставкой или пробки — автоматы, разрывающие цепь при протекании недопустимого тока. Применение пробок несоответствующего номинала не обеспечивает защиту.
Сопротивление человека и от чего оно зависит
Сопротивление тела человека чисто индивидуально и может сильно отличаться между индивидуумами. Складывается оно из сопротивления эпидермиса – наружного покрова и внутренних органов.
Чтобы вывести таблицы и схемы это значение условно принимается за 1 000 Ом или 1 кОм. Однако, это правило справедливо при непосредственном контакте тела.
Если ток проходит через ноги, сопротивление складывается из сопротивления тела, одежды, обуви и поверхности, на которой стоит человек. Поэтому если в первом случае смертельный ток для человека имеет одно значение, то во втором оно будет совершенно другим.
Кроме того, на сопротивление человека влияет множество других факторов. Например, здоровые сильные люди обладают большим сопротивлением, чем больные и слабые.
Вспотевшее тело уменьшает сопротивление, это же происходит, если человек возбужден или находится в подавленном состоянии. Поэтому очень сложно определить, какой ток будет проходить при тех или иных условиях. Тем не менее теоретически определено, каким будет смертельный ток для человека в амперах.
Заземление
Одним из самых распространенных методов защиты человека от поражения электрическим током является использование заземления. Заземление — это соединение корпуса электроустановки проводником с очень небольшим электрическим сопротивлением (не более 4 Ом) с землей.
При нарушении изоляции корпус установки окажется под напряжением, и ток через заземление начнет стекать в землю. При прикосновении человека к корпусу ток будет стекать в землю по двум ветвям цепи – через человека и через заземление.
Так как сопротивление человека намного больше сопротивления заземления (0,5 — 4 Ом), то через тело потечет значительно меньший ток, чем через заземление, то есть доля общего тока, стекающего через человека, будет мала. Это уменьшает опасность поражения электрическим током. Обязательное требование к заземлению — малое электрическое сопротивление заземляющего проводника.
Однако следует помнить, что заземление может не обеспечить достаточной защиты, особенно при высоких напряжениях и если заземление выносное, то есть точка стекания тока в землю удалена от установки.
Ток от заземления растекается по земле по гиперболическому закону. Чем ближе к заземлителю, тем выше потенциал земли. Поэтому, если человек находится на заземлителе или рядом с ним, потенциал основания, на котором он стоит, практически равен потенциалу корпуса установки. При прикосновении рукой к корпусу напряжение, под которым будет находиться человек (разность потенциалов между рукой и ногами), приблизится к нулю, то есть ток пройдет через человека очень небольшой или равный 0. Такое заземление обеспечивает высокую степень электробезопасности и называется контурным.
Опасные пути прохождения электрического тока через тело
Если рассматривать статистику, то около 40% ток поражает человека через руки. При этом через сердце проходит 3,3% от общего тока. В этом случае смертельный ток для человека повышается, увеличивая его шанс к выживанию.
На втором месте идет поражение через правую руку в одну или обе ноги. Поскольку большинство людей правши, то показатель составляет 20%. Процентное соотношение тока, проходящего через сердце, увеличивается более чем в два раза и достигает 6,7%. Значение смертельной силы тока для человека резко понижается, увеличивая шанс тяжелых травм или смерти.
Левшам, или людям, коснувшимся левой рукой находящейся под напряжением цепи, достается 17%. В этом случае через сердце проходит 3,7%, увеличивая их шанс на благополучный исход.
Самым безопасным является путь тока через ноги. Сердцу достается всего 0,4% от общего потока. Но такое поражение сравнительно редко, ему подвержены только 6% от общего числа всех пострадавших.
Самым тяжелым случаем является путь тока через голову. Если цепь соединяется через голову и ноги, то через сердечную мышцу проходит 6,8% всей силы тока. К счастью, таких случаев только 5%. Однако если цепь состоит из головы и рук, то на сердце обрушивается максимальный поток, составляющий 7%. Таких случаев зафиксировано 4%.
Зануление и защитное отключение
Кроме заземления для защиты от поражения электрическим током получили распространение такие методы, как зануливание и устройство защитного отключения.
Зануление применяется в электрических сетях, имеющих заземленный нулевой привод и заключается в соединении металлических частей (например, корпуса) электрического прибора или установки с нулевым защитным приводом, который в свою очередь электрически соединяется с нулевым рабочим приводом.
Защитное отключение — это система защиты, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения электрическим током. Работа защитного отключения заключается в следующем: чувствительный элемент (датчик) воспринимает значение контролируемого параметра сети и при отклонении этого параметра от допустимого значения подает сигнал на автоматический выключатель, который отключает электроустановку или обеспечивает электросеть.
Основным элементом схемы является датчик, роль которого в данной схеме выполняет защитное реле (реле напряжения). Один контакт реле соединен с. корпусом установки, а второй с выносным заземлением. При замыкании на корпус фазы он и защитное реле окажутся под напряжением. Если это напряжение превысит то, которое рассчитано (настроено) реле, оно срабатывает и размыкает цепь’ катушки питания, сердечник реле втягивается и размыкает цепь питания катушки автоматического выключателя. В результате электроустановка отключается от электросети. Защитное отключение применяется ‘в сетях с изолированной и заземленной нейтрально самостоятельно или в сочетании с заземлением или занулением.
Защита от статического электричества
Каждый из нас наверняка сталкивался со статическим электричеством. Заряды статического электричества часто образуются на одежде, особенно у синтетических материалов. Когда в сухую погоду Вы снимаете одежду (рубашку, кофту, свитер) из синтетического материала слышится потрескивание, а в темное время — заметны искры. Электролизация возникает при трении двух диэлектрических или диэлектрического и проводящего материалов, если последний изолирован. При разделении двух диэлектрических материалов происходит разделение электрических зарядов, причем материалы, имеющих большую диэлектрическую проницаемость, заряжается положительно, а меньшую -отрицательно.
Чем больше различаются диэлектрические свойства материалов, тем интенсивнее происходит разделение и накопление зарядов. Чем больше сила и скорость трения и больше различие электрических свойств, тем интенсивнее происходит образование электрических зарядов.
Например, электростатические заряды образуются на кузове двигающегося в сухую погоду автомобиля, если резина колес обладает хорошими изолирующими свойствами. В результате между кузовом и землей возникает электрическое напряжение, которое может достигнуть 10 кВ (киловольт) и привести к возникновению искры при выходе человека из автомобиля — разряд через человека на землю.
Кроме трения, причиной образования статических зарядов является электрическая индукция, в результате которой изолированные от земли тела во внешнем электрическом поле приобретают электрический заряд. Особенно велика индукционная электролизация электропроводящих объектов.
Например, на металлических предметах (автомобиль и т.п.), изолированных от земли, в сухую погоду под действием электрического поля высоковольтных линий электропередач или грозовых облаков могут образовываться значительные электрические заряды.
На экранах мониторов и телевизоров положительные заряды накапливаются под действием электронного пучка, создаваемого электронно-лучевой трубкой.
Опасность действия электрического тока на организм человека
Тело человека является проводником электрического тока. Электрический ток имеет существенные особенности, отличающие его от других вредных и опасных производственных факторов.
Первая особенность электрического тока в том, что он не обладает цветом, запахом, звуком, а поэтому человек не может с помощью собственных органов чувств определить наличие электрического тока.
Вторая особенность электрического тока в том, что получить электротравму можно без непосредственного контакта с токоведущими частями (например, при перемещении по земле (токопроводящему полу) вблизи поврежденной электроустановки, электроприемника (в случае замыкания на землю, пол), а также через электрическую дугу, разряд молнии
Третья особенность электрического тока в том, что проходя через тело человека, электрический ток оказывает свое действие не только в местах контактов и на пути прохождения через организм, но и вызывает рефлекторное воздействие, нарушая нормальную деятельность отдельных органов и систем организма человека (нервной, сердечно-сосудиетой, органов дыхания и др.)
Электрический ток, проходя через организм человека, оказывает биологическое, электрохимическое, тепловое и механическое действие.
Биологическое действие тока проявляется в раздражении и возбуждении тканей и органов. Вследствие этого наблюдаются судороги скелетных мышц, которые могут привести к остановке дыхания, отрывным переломам к вывихам конечностей, спазму голосовых связок.
Электролитическое действие тока проявляется в электролизе (разложении) жидкостей, в том числе крови, а также существенно изменяет функциональное состояние клеток.
Тепловое действие приводит к ожогам кожного покрова, а также гибели подлежащих тканей, вплоть до обугливания.
Механическое действие тока проявляется в расслоении тканей и даже отрывах частей тела.
Характерные виды местных электротравм — электрические ожоги, электрические знаки, металлизация кожи, электроофтальмия и механические повреждения.
Наиболее распространенные электротравмы — электрические ожоги. По глубине поражения все ожоги делятся на четыре степени:
— первая — покраснение и отек кожи;
— вторая — водяные пузыри;
— третья — омертвление поверхностных и глубоких слоев кожи;
— четвертая — обугливание кожи, поражение мышц, сухожилий и костей.
Металлизация кожи — проникновение в ее частичек металла, расплавившегося под действием электрической дуги.
Электроофтальмия — воспаление наружных оболочек глаз в результате воздействия мощного потока ультрафиолетовых лучей. Происходит чаще всего при проведении электросварочных работ.
Механические повреждения возникают в результате резких, непроизвольных, судорожных сокращений мышц под действием тока, проходящего через тело человека. При этом возможны разрывы кожи, кровеносных сосудов и нервной ткани, а также вывихи суставов и переломы костей.
Электрический удар — это возбуждение тканей организм проходящим через него электрическим током, сопровождающееся сокращением мышц.
Многообразие действия электрического тока на организм приводит к различным электротравмам. Условно все электротравмы можно разделить на местные и общие.
К местным электротравмам относятся местные повреждения организма или ярко выраженные местные нарушения целостности тканей тела, в том числе костных тканей, вызванные воздействием электрического тока или электрической дуги.
К наиболее характерным местным травмам относятся электрические ожоги, электрические знаки, металлизация кожи, механические повреждения и электроофтальмия.
Электрический ожог (покровный) возникает, как правило, в электроустановках до 1000 В. При более высоком напряжении возникает электрическая дуга или искра, что вызывает дуговой электрический ожог.
<center style=»text-align: justify;»> Токовый ожог участка тела является следствием преобразования энергии электрического тока, проходящего через этот участок, в тепловую. Этот ожог определяется величиной тока, временем его прохождения и сопротивлением участка тела, подвергшегося воздействию тока. Максимальное количество теплоты выделяется в месте контакта проводника с кожей. Поэтому в основном токовый ожог является ожогом кожи. Однако токовым ожогом могут быть повреждены и подкожные ткани. При токах высокой частоты наиболее подвержены токовым ожогам внутренние органы. </center>
Электрическая дуга вызывает обширные ожоги тела человека. При этом поражение носит тяжелый характер и нередко оканчивается смертью пострадавшего.
Электрические знаки воздействия тока представляют собой резко очерченные пятна серого или бледно-желтого цвета на поверхности тела человека. Обычно они имеют круглую или овальную форму и размеры 1—5 мм с углублением в центре. Пораженный участок кожи затвердевает подобно мозоли. Происходит омертвение верхнего слоя кожи. Поверхность знака сухая, не воспаленная. Электрические знаки безболезненны. С течением времени верхний слой кожи сходит и пораженное место приобретает первоначальный цвет, эластичность и чувствительность.
Металлизация кожи — проникновение в верхние слои кожи частичек металла, расплавившегося под действием электрической дуги. Такие случаи происходят при коротких замыканиях, отключения рубильников под нагрузкой. При этом брызги расплавившегося металла под действием возникших динамических сил и теплового потока разлетаются во все стороны с большой скоростью. Так как расплавившиеся частицы имеют высокую температуру, но небольшой запас теплоты, то они не способны прожечь одежду и поражают обычно открытые части тела — лицо, руки.
Пораженный участок кожи имеет шероховатую поверхность. Пострадавший ощущает на пораженном участке боль от ожогов и испытывает напряжения кожи от присутствия в ней инородного тела. Особенно опасно поражение расплавленным металлом глаз. Поэтому такие работы, как снятие и замена предохранителей, должны проводиться в защитных очках.
При постоянном токе металлизация кожи возможна и в результате электролиза, который возникает при плотном и относительно длительном контакте с токоведущей частью, находящейся под напряжением. В этом случае частички металла заносятся в кожу электрическим током, который одновременно разлагает органическую жидкость в тканях, образует в ней основные и кислотные ионы.
Механические повреждения являются следствием резких непроизвольных судорожных сокращений мышц под действием тока, проходящего через тело человека. В результате могут произойти разрывы сухожилий, кожи, кровеносных сосудов и нервной ткани. Могут иметь место также вывихи суставов, и даже переломы костей. Механические повреждения, вызванные судорожным сокращением мышц, происходят в основном в установках до 1000 В при длительном нахождении человека под напряжением.
Электроофтальмия возникает в результате воздействия потока ультрафиолетовых лучей (электрической дуги) на оболочку глаз, в результате чего их наружная оболочка воспаляется. Электроофтальмия развивается через 4-8 часов после облучения. При этом имеют место покраснение и воспаление кожи лица и слизистых оболочек век, слезотечение, гнойные выделения из глаз, спазмы век и частичная потеря зрения. Пострадавший испытывает головную боль и резкую боль в глазах, усиливающуюся на свету. В тяжелых случаях нарушается прозрачность роговой оболочки. Предупреждение электроофтальмии при обслуживании электроустановок обеспечивается применением защитных очков или щитков с обычным стеклом.
Общие электротравмы возникают при возбуждении живых тканей организма протекающим через него электрическим током и проявляются в непроизвольном судорожном сокращении мышц тела. При этом под угрозой поражения оказывается весь организм из-за нарушения нормальной работы различных его органов и систем, в том числе сердца, легких, центральной нервной системы и пр. К общим электротравмам относят электрические удары.
Электрический удар — это возбуждение тканей организм проходящим через него электрическим током, сопровождающееся сокращением мышц.
В зависимости от исхода воздействия тока на организм человека электрические удары можно разделить на следующие пять степеней:
I — судорожное, едва ощутимое сокращение мышц;
II — судорожное сокращение мышц, сопровождающееся сильными болями, без потери сознания;
III — судорожное сокращение мышц с потерей сознания, но с сохранившимися дыханием и работой сердца;
IV — потеря сознания и нарушение сердечной деятельности и дыхания;
V — отсутствие дыхания и остановка деятельности сердца (клиническая смерть).
Электрический удар может не привести к смерти человека, но вызвать такие расстройства в организме, которые могут проявиться через несколько часов или дней (появление аритмии сердца, стенокардии, рассеянности, ослабление памяти и внимания).
Различают два основных этапа смерти: клиническую и биологическую.
Клиническая смерть (внезапная смерть) — кратковременное переходное состояние от жизни к смерти, наступающее с момента прекращения деятельности сердца и легких. У человека, находящегося в состоянии клинической смерти, отсутствуют все признаки жизни: дыхание отсутствует, сердце не работает, болевые раздражения не вызывают реакции организма, зрачки глаз резко расширены и не реагируют на свет. Однако в этот период жизнь в организме еще полностью не угасла, т.е. ткани и клетки не сразу подвергаются распаду, и сохраняют жизнеспособность. Первыми начинают погибать очень чувствительные к кислородному голоданию клетки головного мозга. Через некоторое время (4-6 мин.) происходит множественный распад клеток головного мозга, что приводит к необратимым разрушениям и практически исключает возможность оживления организма. Однако если до окончания этого периода пострадавшему будет оказана первая медицинская помощь, то развитие смерти можно приостановить и сохранить жизнь человека.
Биологическая смерть — необратимое явление, которое характеризуется прекращением биологических процессов в клетках и тканях организма и распадом белковых структур. Биологическая смерть наступает по истечении клинической смерти (7-8 мин.).
Причинами смерти от электрического тока могут быть: прекращение работы сердца, остановка дыхания и электрический шок.
Воздействие тока на мышцу сердца может быть прямым, когда ток проходит непосредственно через область сердца, и рефлекторным, то есть через центральную нервную систему. В обоих случаях может произойти остановка сердца или возникнет его фибрилляция. Фибрилляция сердца — хаотическое разновременное сокращение волокон сердечной мышцы, при котором сердце не в состоянии гнать кровь по сосудам. Токи меньше 50 мА и больше 5 А частотой 50 Гц фибрилляции сердца, как правило, не вызывают.
Прекращение дыхания обычно происходит в результате непосредственного воздействия тока на мышцы грудной клетки, участвующие в процессе дыхания.
Электрический шок — своеобразная тяжелая нервно-рефлекторная реакция организма в ответ на чрезмерное раздражение электрическим током, сопровождающаяся глубокими расстройствами кровообращения, дыхания, обмена веществ и т.п. При шоке непосредственно после воздействия электрического тока у пострадавшего наступает кратковременная фаза возбуждения, когда он остро реагирует на возникшие боли, у него повышается кровяное давление. Вслед за этим наступает фаза торможения и истощение нервной системы, когда резко снижается кровяное давление, падает и учащается пульс, ослабевает дыхание, возникает депрессия. Шоковое состояние длится от нескольких десятков минут до суток. После этого может наступить или гибель человека или выздоровление, как результат активного лечебного вмешательства.
Исход воздействия тока на организм человека зависит от значения и длительности прохождение тока через его тело, рода и частоты тока, индивидуальных свойств человека, его психофизиологического состояния, сопротивления тела человека, напряжения и других факторов.
ФАКТОРЫ, ВЛИЯЮЩИЕ НА СТЕПЕНЬ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ
Тяжесть поражения электрическим током зависит от ряда факторов: величины силы, вида (рода) и частоты электрического тока, длительности его воздействия и пути прохождения через человека, условий окружающей среды, электрического сопротивления тела человека и его индивидуальных свойств.
Сила тока
Для характеристики воздействия электрического тока на человека установлены три критерия:
— пороговый ощутимый ток — наименьшее значение силы электрического тока, вызывающего при прохождении через организм человека ощутимые раздражения. Человек начинает ощущать ток малого значения (0,6-1,5 мА при переменном токе с частотой 50 Гц и 5-7 мА при постоянном токе) -происходит легкое дрожание рук;
— пороговый неотпускающий ток — наименьшее значение силы электрического тока (10-15 мА при частоте 50 Гц и 50-80 мА при постоянном токе), при котором человек не в состоянии преодолеть судороги мышц и не может разжать руку, в которой зажат проводник, или нарушить контакт с токоведущей частью;
— пороговый фибрилляционный ток — наименьшее значение силы тока (от 100 мА до 5 А при частоте 50 Гц и от 300 мА до 5 А при постоянном токе), вызывающего при прохождении через тело человека фибрилляцию сердца — хаотические и разновременные сокращения волокон сердечной мышцы, что может привести к его остановке
Принято считать, что электрический ток величиной 100 мА и выше является смертельным.
Вид тока
Предельно допустимое значение постоянного тока в 3-4 раза выше допустимого значения переменного, но только при напряжении не выше 260-300 В. При больших величинах напряжения постоянный ток более опасен для человека вследствие его электролитического действия; он также воздействует на сердечную деятельность человека.
Частота электрического тока
Принятая в энергетике частота электрического тока (50 Гц) представляет большую опасность возникновения судорог и фибрилляции желудочков сердца. Фибрилляция не является мускульной реакцией, она вызывается повторяющейся стимуляцией с максимальной чувствительностью при частоте 10 Гц. Кроме того, на производстве используется электрический ток других (не 50 Гц) частот. Опасность действия тока снижается с увеличением частоты, но это не значит, что ток частотой 500 Гц менее опасен, чем 50 Гц.
Продолжительность действия тока
Тяжесть поражения зависит от продолжительности действия электрического тока. Время прохождения электрического тока имеет решающее значение для определения степени поражения.
При длительном действии электрического тока снижается сопротивление кожи (из-за потовыделения) в местах контактов и внутренних органов вследствие электротехнических процессов, повышается вероятность прохождения тока в особенно опасный период сердечного цикла (фаза Т расслабления сердечной мышцы). Человек может выдержать смертельно опасный переменный ток 100 мА, если продолжительность действия тока не превысит 0,5 с.
Путь электрического тока через тело человека
Важнейшим условием поражения человека электрическим током является путь этого тока. Если на пути тока оказываются жизненно важные органы (сердце, легкие, головной мозг), то опасность смертельного поражения очень велика. Если же ток проходит иными путями, то воздействие его на жизненно важные органы может быть лишь рефлекторным. При этом опасность смертельного поражения хотя и сохраняется, но вероятность ее резко снижается.
Возможных путей прохождения тока в теле человека неисчислимое количество. Однако характерными можно считать следующие:
Наиболее опасными являются петли «голова — рука» и «голова — нога», когда ток может проходить не только через сердце, но и через головной и спинной мозг.
Сопротивление тела человека
Электропроводность различных тканей организма неодинакова. Наибольшую электропроводность имеют спинномозговая жидкость, сыворотка крови и лимфа, затем — цельная кровь и мышечная ткань. Плохо проводят электрический ток внутренние органы, имеющие плотную белковую основу, вещество мозга и жировая ткань. Наибольшим сопротивлением обладает кожа и, главным образом, ее верхний слой (эпидермис).
Сопротивление тела человека зависит от пола возраста людей: у женщин это сопротивление меньше, чем у мужчин, у детей меньше, чем у взрослых. Это объясняется толщиной и степенью огрубления верхнего слоя кожи.
Участки тела с наименьшим сопротивлением (т.е. более уязвимые):
— боковые поверхности шеи, виски;
— тыльная сторона ладони, поверхность ладони между большим и указательным пальцами;
Пороговые значения токов
На увеличение силы тока организм человека отвечает соответствующими реакциями. Можно выделить следующие основные реакции:
- — ощущение тока;
- — судорожное сокращение мышц;
- — фибрилляция сердца.
Минимальные значения токов, вызывающих основные реакции, называются пороговыми значениями токов.
В связи с этим различают токи:
- — ощутимый;
- — неотпускающий;
- — фибрилляционный.
Ощутимый ток — электрический ток, вызывающий при прохождении через организм ощутимые раздражения. Обычно человек начинает ощущать раздражающее действие переменного тока (50 Гц) при величине 0,5-1,5 мА. Такие токи называются пороговыми ощутимыми токами. При этих токах человек может самостоятельно отключиться от цепи.
Неотпускающий ток — электрический ток, вызывающий при прохождении через человека непреодолимых судорожных сокращений мышц руки, в которой зажат проводник. При таком токе человек уже не может самостоятельно разжать руку, в которой зажата токоведущая часть.
Токи 10-15 мА называются пороговыми неотпускающими. Затем, при повышении величины тока, действие его становится более сильным.
Наименьшее значение тока, которое может вызвать фибрилляцию сердца — 100 мА при частоте 50Гц, такой ток считается смертельно опасным.
Фибрилляция — беспорядочное сокращение (подергивание) волокон сердечной мышцы, при котором сердце не может обеспечить передвижение крови по сосудам.
Фибрилляционный ток — электрический ток, вызывающий при прохождении через организм фибрилляцию сердца.
Для каждого порогового значения тока существует минимальное допустимое время воздействия:
Ликбез. Человека убивает ТОК! (НЕ напряжение)
Попалась на глаза хорошая иллюстрация, отражающая суть заголовка этого поста. Увидев её на просторах интернета, вспомнил очередной спор в одном из РЛ чатов и решил написать эту статью.
Обратите внимание на рисунке на «I» (сила тока), которая как бы отражает «приложенную силу».
Ввиду того, что в повседневной жизни встречается «инфографика», предупреждающая об опасном напряжении, существует некое заблуждение, что убивает человека именно высокое напряжение, а это не совсем верно. Почему? В этом посте попробую внести некую ясность.
Обращаю ваше внимание, что «статическое электричество» имеет очень высокое напряжение и сталкиваемся мы с ним довольно часто. Снимаем свитер или шапку в зимнее время, погладили кошку, прикоснулись к дверной ручке. Это именно те «безобидные удары током», с которыми многие сталкиваются часто. Напряжение там от 1000 вольт и более, но человека оно не убивает!
Тот же самый электрошокер, может иметь напряжение миллион вольт, но при кратковременном воздействии не убивает.
На этом этапе предлагаю вспомнить «Закон Ома» из школьного курса физики (Закон Ома для участка цепи): «Сила тока на участке цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению участка цепи«. В виде формулы принято его записывать так: I= U/R , где I — сила тока, U — напряжение, R — сопротивление». Есть хорошая инфографика, позволяющая из этой формулы вывести визуально R — сопротивление и U — напряжение:
Так вот, напряжение может быть сколь угодно высоким или сколь угодно низким, но сила тока будет зависеть именно от сопротивления участка цепи по которому этот ток будет протекать!
При сухой чистой и неповрежденной коже сопротивление тела среднестатистического человека может колебаться в пределах 1’000 Ом – 20’000’000 Ом. При увлажнении кожного покрова, высокой влажности окружающего воздуха, а также возможных повреждений кожи сопротивление тела резко падает и может составлять менее 500 Ом. Всё это можно проверить самым обычным бытовым мультиметром.
Условно ток разделяется на три/четыре категории, по степени влияния на здоровье людей:
— «Ощутимый», который доставляет человеку ощутимые раздражения. Безопасная величина принята до 0,001 Ампер (1 миллиампер);
— «Отпускающий» — электрический ток, который ещё не вызывает непреодолимые судорожные сокращений мышц руки, в которой зажат проводник;
— «НЕотпускающий» — это такой ток, который вызывает при прохождении через человека непреодолимые судорожные сокращения мышц руки, в которой зажат проводник. (Для переменного тока частотой 50 Гц начинается от 0,01 Ампер (10 миллиампер);
— «Фибрилляционный» – вызывает фибрилляцию внутренних органов, прежде всего, сердца, что может привести к его остановке, сила такого тока превышает 0,1 Ампер (100 миллиампер). Именно он считается уже смертельным.
Таким образом, приняв условно сопротивление тела среднестатистического человека за 1000 Ом и подставив значения в Закон Ома выше, мы получаем (для бытовой сети переменного тока частотой 50 Гц), что опасное напряжение начинается от 10 Вольт, а смертельное напряжение от 100 Вольт!
Считается, что постоянный ток более безопасный, чем переменный. Это утверждение верно для сравнения постоянного тока и «бытового» переменного тока частотой 50 Гц в сетях до 500В. При напряжении выше 500 вольт опасность постоянного тока возрастает. Но одновременно ошибочным будет считать это утверждение, при других частотах (намного более 50 Гц), которые не редко встречаются в деятельности радиолюбителей. Например, на частотах, на которых осуществляется радиообмен имеет место быть пресловутый скин-эффект или поверхностный эффект (когда с ростом частоты большая часть тока течет по поверхности проводника). Т.е. ток как бы огибает самый опасный путь (сердце, мозг, органы дыхания), но тем не менее это вовсе не означает что он становится менее опасным для здоровья.
Абзац выше очень сильно урезан и сокращён, т.к. не позволяет в двух-трёх словах рассмотреть всю природу воздействия переменного тока на человека и сравнить с постоянным. Т.к. кроме закона Ома выше, где описано только активное сопротивление, существует ещё реактивное сопротивление (емкостное и индуктивное) и затронутый мельком скин-эффект.
Важным фактором является так же путь протекания тока по телу человека! Самым опасным путем протекания тока является направление нога-голова, рука-голова, так как при этом путь идет через сердце, мозг, органы дыхания.
Так же определяющим фактором поражения является не только, частота, величина напряжения и сила тока, но и ВРЕМЯ воздействия этого тока на организм! (Временной фактор)
Так же хочу отметить, что в нормативных документах нет понятия и тем более значений смертельного тока как такового, а приводятся лишь предельно допустимые значения токов для определенных условий поражения. Полагаю, что прочитав всё выше описанное для вас становится очевидным почему.
Я постарался использовать в своём посте минимум терминов и донести суть своими, простыми словами. Надеюсь, эта статья помогла внести некую ясность, избавится от заблуждений и понять, что «Человека убивает ТОК, а не напряжение«.
Спасибо за внимание!
Ну как так можно было опечататься? Исправьте, пожалуйста)
А мне кажется, что фразу «убивает ток, а не напряжение» нельзя произносить и вообще пытаться кому-то донести. Доебка на уровне граммар-наци. Электрики и так это знают, а обыватели не будуз замерять свое сопротивление и максимальный ток источника, перед тем, как куда-то лезть. Поэтому инфо-таблички «высокое НАПРЯЖЕНИЕ» куда полезнее — даже если источник не может выдать ток больше одного миллиампера, то тысяча вольт все равно тебе притно не сделает. И наоборот — источники тока на 100А 12В не такие уж и страшные. А вот эта ваша фраза карты путает.
картинка с Хабра
Разъединители высокого напряжения
При падениях назад удерживайте голову
Чаще всего говорят: «Прижимайте подбородок к груди». В целом это верно, но важно не просто прижать подбородок – важно удержать голову при ударе спиной, а это уже не всегда получается сделать. Нужно научиться вовремя напрягать мышцы шеи.
Когда мы тренируемся «на каскадерстве», у нас появляется дополнительная задача: надо быстро в нужный момент напрячься, а после удара тут же расслабиться, чтобы у зрителя создалось впечатление, что произошел удар головой (или что человек просто отключился).
В обычной жизни этого не требуется. Достаточно сразу же, как почувствовали, что падаете, прижать подбородок к груди и напрячь мышцы шеи.
На словах все просто, но это умение нужно еще отработать, иначе в нужный момент ничего не получится. Проще всего использовать разные подготовительные упражнения. Например, перекаты на спину и обратно. При перекате назад подбородок прижат, шея напряжена. Затылком пола или мата не касаемся.
Затем можно пробовать делать падения на спину на мягкую опору (диван, мат и т. п.). В обычной жизни нет нужды набивать спину, главное – удерживать голову в нужном положении, чтобы не удариться затылком.
Как вариант, можно использовать ограниченную поверхность, с которой голова будет свешиваться, – тогда уже кто-то из домашних может поставить ладонь на уровень поверхности, на которую падаете. И если при падении вы коснулись затылком руки, значит, могли коснуться и пола. Или же можно положить подушку поменьше, чтобы до нее было сантиметров 5–10. Если уж ее коснулись затылком при падении, то точно об асфальт бы ударились.
В общем, при помощи таких несложных упражнений можно потихоньку приучиться при любых падениях быстро реагировать и удерживать голову от удара.
Главное – перед тренировками не забывайте хорошо разминать шею, иначе можно потянуть мышцы. Нагрузка на шею будет очень хорошая.
Всем отличного настроения и жизни без травм!
Падая вперед – поворачивайте голову, чтобы не разбить лицо
Обычная привычка большинства людей при падении вперед, смотреть вперед, причем делать это до победного конца. Более подготовленные люди успевают поймать себя руками, чтобы не разбиться или не сильно разбиться, слабо подготовленные разбивают себе нос или выбивают зубы.
Я сам, когда только пришел учиться на каскадера, при разных падениях – с батута на мат, просто на пол из положения стоя и т.п., сначала смотрел на место падения в полете. Теперь же уже постарался отучить себя от такого действия.
Да, желательно видеть, куда падаешь, но уже в момент падения лучше успевать поворачивать голову направо или налево. Тем более, что мы обычно не просто так падаем, что-то случается в этот момент. Вы может быть и успеете поймать себя руками и не ударитесь лицом, но потом сверху может быть кто-то еще упадет или наступят на голову или еще что-то непредвиденное случится и всё, физиономия ударяется в пол с самыми неприятными последствиями. Да, правой или левой стороной головы тоже не очень приятно биться, но все же шансов что-то себе разбить намного меньше. Разве что виском очень неудачно ударитесь.
Чтобы наработать умение поворачивать голову при падении, достаточно просто потренироваться падать вперед из положения стоя на коленях. Падать лучше на что-нибудь мягкое, хоть на подушку, хоть на мягкие маты. Сначала можно поворачивать голову почти в самом начале падения, затем лучше учиться делать это попозже, может быть даже в последний момент.
Далее так же можно пробовать падать из положения стоя. Если вы начинаете отворачиваться от места падения автоматически, значит навык уже наработан и бояться уже не стоит.
Хотя, всегда нужно быть начеку, жизненные ситуации бывают очень разные.
Всем здоровья! И если уж случайно упали, то чтобы без всяких травм!
Проблема пожарной безопасности детских лабиринтов в торговых центрах
Вот эти детские лабиринты в торговых центрах.
Внутри сотня детей. Если в ТЦ будет пожар, такой лабиринт — это западня, из него не выбраться. Из него нет быстрых и заметных эвакуационных путей и нет аварийного способа сбросить сетку.
Нет никаких правил, обязывающих делать такие лабиринты с путями эвакуации при пожаре или с механизмом быстро избавиться от сетки. Такие требования разработают если будет первый инцидент и умрут люди. Но я хотел, чтобы требования разработали до инцидента. Упреждающий шаг, так сказать. Может быть, удастся спасти жизни таким образом.
Ну или вы просто будете более внимательны в выборе развлечений для своих детей.
Опасная работа
Экскаваторщик против высоковольтных кабелей
Хороший метод. Можно брать на вооружение
Давно хотел спросить про постоянный ток
Вот на заре электрификации Нью-Йорка, была борьба токов, постоянного vs переменного, Эдисон против Теслы. Постоянный проиграл потому что на большие расстояния в городах передавать его в то время получалось только с большими потерями, и Эдисону приходилось по всему городу генераторы ставить, чтоб своих клиентов не потерять в Нью-Йорке, короче не удобная система получилась и обанкротилась. Но сейчас все таки есть несколько ЛЭП по всему миру передающих постоянный ток на очень большие расстояния. Вопрос, на этих современных ЛЭП постоянного тока почему нет потерь электричества как в Эдисоновской системе Нью-Йорка? И даже по некоторым публикациям, на этих современных ЛЭП постоянного тока потери ниже чем на обычных высоковольтных ЛЭП. Чтот как то непонятно вся логика всего происходящего в развитии энергетики.
Как цвет купальника/ плавок может спасти жизнь
Прочитала интересную статью о новом исследовании, в котором протестировали как цвет купального костюма выглядит на поверхности бассейна и на дне, и соответственно на озере.
Сейчас самое время родителям прочесть статью и найти «правильный» цвет детям и себе.
Я знаю что только за последнюю неделю погибло 5 детей, 3е в бассейне, один в пруду, один в ванной, а сколько всего по стране, страшно представить.
Я писала в прошлом году пост, как пришлось спасать пацана на озере, спасли, ему повезло.
И если этот пост поможет кому то, то я буду рада.
Не буду занудствовать про правила на воде, про то что утонуть можно и тарелке с супом, про то что моргнуть нельзя когда твой ребёнок в воде, ну и тд, просто покажу картинки и вставлю ссылку на статью. Кто за хочет почитать пожалуйста.
Специально для ЛЛ: выбирайте яркие, неоновые цвета купальных костюмов, не берите белый и голубой цвета.
На море не поможет 🙄
1. Верхний ряд: На дне бассейна со светлым дном
Нижний ряд: если поверхность воды не спокойна
2. Верхний ряд: На дне бассейна с темным дном
Нижний ряд: если поверхность воды не спокойна
3. Верхний ряд: на поверхность воды
Средний ряд: вид с берега
Нижний ряд: вид с лодки или причала.
Глубина воды в данном эксперименте всего
46 см!
Советы «горе-выживальщиков», несущие реальную опасность для жизни
Нынче повсюду можно встретить «авторитетные» рекомендации касаемо того, как не отправиться к праотцам в той или иной опасной для жизни ситуации. Большинству таких советов уже не один десяток лет, что отнюдь не мешает им то и дело заново «всплывать» в инфопространстве, вводя в заблуждение доверчивых граждан. Давайте-ка отчасти или полностью развенчаем несколько особо популярных «мифов выживальщиков».
Поиск пищи и питание подножным кормом
Во многих телешоу и приключенческих книгах герой, волею судеб застрявший где-то вдали от цивилизации, первым делом отправляется на поиски еды. Самые одарённые, подражая непревзойдённому Беару Гриллсу, мигом начинают совать в рот все подряд ягоды, грибы, насекомых и прочую живность.
Такое поведение в корне неверно по двум причинам. Во-первых, прожить без еды можно довольно долго, а вот без воды и надёжного укрытия – отнюдь. Стало быть, именно их поисками и стоит заняться в первую очередь. Во-вторых, пищевое отравление, которое обязательно посетит ретивого потеряшку, либо прикончит его раньше срока, либо основательно выведет из строя. Прибавляем сюда обезвоживание вследствие рвоты и диареи.
Сок растений в качестве питья
В кино герои с наслаждением утоляют жажду соком кактусов, клубней различных растений, деревьев и прочей флоры, и отчасти это действительно может спасти жизнь в отсутствие более привычных источников влаги. Но лишь в том случае, если вы хорошо знакомы со свойствами конкретного растения! В противном случае см. пункт 1.
Где мох – там и Север!
Каждый с детства усвоил, что ориентироваться на местности можно с помощью мха: мол, север там, с какой стороны дерева или камня он произрастает. Страшно представить, сколько бедолаг заблудилось ещё больше, пытаясь следовать такой подсказке!
Разводим огонь трением палочек!
Все мы видели, как озябший герой, надёргав перьев из какой-нибудь ласточкиной задницы, после некоторых усилий добывает огонь трением палочек. Справедливости ради, способ вполне рабочий, но лишь при условии предварительных тренировок и выбора материалов для растопки.
Кипячёная вода абсолютно безопасна
А вот и нет, вернее, не совсем! Кипячение и правда убивает многих болезнетворных организмов, но никак не очищает воду от прочих загрязнений, в частности, химических и радиоактивных. В данной ситуации можно посоветовать лишь брать воду в тех источниках, возле которых видны следы жизнедеятельности других людей или животных.
Поедание снега как отличный способ утолить жажду
Главная опасность такого решения в экстремальных условиях, особенно при истощении организма, заключается в том, что для превращения снега или льда в воду вашему организму придётся потратить кучу драгоценной энергии.
100 граммов для храбрости и согрева
Одно из самых опасных заблуждений, от которого постоянно гибнут сотни людей! Согревание после возлияния – лишь иллюзия, которая в действительности имеет совершенно обратный эффект. Сосуды расширяются, происходит выброс тепла, вследствие чего человек быстрее замерзает.
Что касается «синей храбрости», то её правильней называть притуплением чувства опасности и усыплением бдительность, что очень даже не есть гут в экстримальных ситуациях.
Растирание при обморожении
Первыми отмерзают уши, нос, а также пальцы всех конечностей. Если начать их активно растирать (речь идёт именно о обморожении), наверняка повредятся и без того уже пострадавшие ткани.
Медвежьи дети
Электрическая дуга на разъединителях (часть 12)
Реле контроля напряжения и тока барьер-люкс
Три года назад установил в домашний электрощит реле контроля напряжения и тока.
Устройство безусловно полезное, но .
Месяц назад заметил, что реле пишет странную ошибку.
И почему то как будто на паузе, хотя потребитель не отсоединен.
По производителю БАРЬЕР ничего путного не нашел, кантора то ли украинская то ли питерская, инструкций не нашел, разве что нашел почти полный аналог ADECS ADC-0111-40.
При нажатии на кнопку ПУСК-СТОП отсчет времени есть, а отключения нет. тааак — разбираем устройство и видим начинку.
Плату с клеммами подключения, реле, искрогасящий конденсатор, шунт с датчиком тока.
Это низковольтная часть, модуль управления, питается от 220 вольт, с понижением через резистор и конденсатор до 12 вольт.
60-ти амперное поляризованное реле на 12 вольт.
Высоковольная часть на плате, виден диодный мост, несколько транзисторных ключей, диоды, стабилитроны и резисторы с конденсаторами.
Датчик Холла или датчик тока «спрятался» внутри витка толстого провода «фазы».
Место где подключалась нейтрать N — текстолит грелся и пожелтел.
«вот таким тонким проводником подключена нейтраль» — подумал я, а потом понял, что это своего рода «плавкий предохранитель».
Хотя в схожем приборе, клеммы соединены с платой достаточно добротными канатиками.
Еще немного высоковольтной части.
Схема, почти точно повторяющая мою.
Первым делом решил проверить работу поляризованного реле, поигрался с ним, меняя полярность замыкал и размыкал контакты — реле исправно!
Затем прозвонил резисторы на целостность и соответствие номиналам.
После проверил керамические конденсаторы на КЗ.
Выпаял с платы X2 конденсатор на 1 мКф, для замера его параметров, так как после кондера 220 вольт не шло на диодный мост.
Подробно про Х и Y конденсаторы описано в статье.
Мне стало интересно, что же могло случиться с конденсатором, и я его «разобрал».
Кусачками — получилось правда не очень.
Из-за постоянной работы под напряжением, емкость конденсатора упала ниже положенной и стала 0.2 мКф, что в 5 раз ниже заявленной.
Виновник найден и был куплен в ближайшем магазине за 85 рублей.
После установки на плату, прибор снова в работе.
Установил в щитовую и включил все потребители в квартире — 29 ампер.
Ремонтируйте вещи самостоятельно, учитесь новому.
Спасибо за внимание!
Чуть не утонули
На тему безопасности на воде. Сегодня я чуть не умерла, в прямом смысле. Но не одна, вместе со мной на тот свет чуть не отправились моя мать и 11-летняя дочь. Коротко, приехали на карьер недалеко от Питера. Карьер хороший:вода чистая, мусора на пляже нет, везде мелкий песок. Пошли с мамой и дочкой окунуться. Заходим в воду: мы с дочкой за руки, мама чуть дальше. Глубина набирается постепенно, дочь не самый уверенный человек на воде, поэтому я слежу, чтобы дальше чем по пояс не заходила. Сама тоже не мастер спорта: поэтому проплываю немного вперёд, буквально метра 1,5 и понимаю, что дна уже нет. Поворачиваюсь сказать дочери, чтобы сюда не ходила. И тут вижу, как в метре от меня, где ей только что было по пояс, она скрывается под водой. Бросаюсь к ней, вытягиваю, она в панике бьёт меня ногами,и мы обе оказываемся на глубине. И она начинает меня топить, в прямом смысле. Я знаю, что мне буквально надо протащить нас обеих небольшое расстояние до мелководья Но у нее паника, и она чуть ли не с ногами на меня забирается. Я пытаюсь ее вытолкнуть ближе к мелководью, понимаю:никак. Тонем обе: медленно и печально, в трёх метрах от берега. Тут моя мама замечает, что фигня какая-то, ловит мой взгляд и я из последних сил хриплю: "Возьми. ". Мама подплывает, хватает мою дочь, до мелководья где- то метр(!), но затащить туда ее нереально.ю, она начинает топить маму. (Для справки: я 168 см, моя мама 154 см, дочь 152). Я уже фактически без сил подплываю к ним: пытаемся с мамой вдвоем мелкую вытянуть. И . она начинает топить нас обеих. Я понимаю сейчас уже, что им не хватило роста нащупать это дно. Для них это глубина. Я же была как раз дальше, в карьерной яме. И мне не встать, и им. Я понимаю, что все, у меня даже нет сил пискнуть. И тут всю нашу возню замечает женщина, которая была недалеко от нас (до этого никто не реагировал). Как я понимаю, что очень шумно моя дочь хватала воздух ртом. Женщина начинает кричать и тут я вижу, как два мужика бросаются в воду к нам на помощь. Сначала вытащили мелкую, потом маму. Я вижу, что с ними все в порядке и постепенно восстаналиваю дыхание. Мне достаточно было слегка опереться на плечо мужчины, который вытянул меня с глубины. Вообщем, правило "техника безопасности пишется кровью" для меня обрело новый смысл. . Но, я хочу ещё раз обратить ваше внимание: 1. Вода не прощает ошибок. 2. Не знаешь дна, не суйся. Особенно с ребенком 3. Паника убивает 4. Утонуть можно рядом с берегом и всей семьёй. Осознание всего произошедшего накрыло меня только сейчас. Берегите себя, пожалуйста.Пост не для рейтинга, а скорее мой пропуск в "Лигу тупых".
Давай сделаем это по быстрому
Краткость не моё, сильно не пинайте.
Так как мой прошлый пост в лиге электриков неплохо зашёл, и число моих подписчиков увеличилось в три раза))), позволю себе опубликовать случай, имевший место некоторое время назад. Главный герой этого рассказа мой коллега, сейчас уже на пенсии.
Имена изменены, события реальны, совпадения не случайны.
Лето. Жара. Суббота.
Ефим Семёныч, принял смену, осмотрел оборудование, и расположился в объятиях дивана для несения трудовой вахты.
Во второй половине дня, неожиданно вышел звуковой сигнал на подстанции.
Путём осмотра было обнаружено, что в сети 35кв. выпала "земля", то есть образовалось однофазное короткое замыкание на землю. Следом раздался телефонный звонок из дачного кооператива, расположенного в полутора десятках километров. Звонивший председатель сообщил о том, что один из членов этого кооператива, устанавливая телевизионную антенну, допустил её соприкосновение с нижним проводом ВЛ-35кв.
И теперь там образовалась нездоровая канитель.
Здесь надо пояснить, что линия 35кв частично проходящая над дачным кооперативом, на некоторых участках, в силу особенностей рельефа и длинных пролётов проходит довольно низко от поверхности земли. Чуть выше линий 10 и 0,4кв.
Ефим Семёныч докладывает диспетчеру, делает запись в опер.журнале, вызывает водителя, и они вылетают на Уазике в юго-восточном направлении, для выяснения обстоятельств происшествия и принятия мер.
В спешке СИЗ были оставлены в месте хранения, одежда соответствовала сезону- сланцы, шорты, майка.
По прибытии на место было обнаружено, что антенна установленная на стойке из двух, соеденных между собой деревянных брусков, касается провода 35кв, а часть антенного кабеля расположенная на земле, горит (аки змея огненная).
Диспетчер потребовал начать подготовку к выводу ВЛ-35 в ремонт, но Ефим Семёныч решил сделать всё по быстрому, и позаимствовав у виновника шухера прорезиненные х/б перчатки и длинный сухой деревянный дрын, со всей дури шарахнул по стойке антенны (повыше). После чего антенна переместилась на ВЛ-0,4кв, проходящую неподалёку, вызвав фейерверк и соответственно КЗ всех четырёх проводов меж собой.
По телеку в это время шёл большой футбол (ЧМ-2014). Через пару минут к месту происшествия начали подтягиваться недовольные фанаты)))).
Видя такую группу "поддержки", Ефим Семёныч, сославшись на то, что КТП-10/0,4 и ВЛ-0,4 соответственно, абонентская и мы их не обслуживаем, покинул место происшествия.
Прибыв на базу и убедившись, что контроль изоляции сети 35кв в норме, он сообщил диспетчеру об устранении КЗ группой неустановленных, иннициативных лиц, из числа членов кооператива.
Соблюдайте технику безопасности и правила по охране труда при эксплуатации электроустановок.
Всем добра и здоровья.