Что называют проводниками второго рода
Перейти к содержимому

Что называют проводниками второго рода

  • автор:

Проводник второго рода

проводник, в котором ток обусловлен движением положительных и отрицательных ионов, например в электролитах.

  • Telegram
  • Whatsapp
  • Вконтакте
  • Одноклассники
  • Email

Еще термины по предмету «Материаловедение»

Элементарный заряд, элементарный электрический заряд

наименьший по абсолютному значению электрический заряд, равный заряду электрона: 1,60219⋅10-19 кулона.

Элементы симметрии

плоскости симметрии, оси симметрии и центра инверсии кристаллов.

Эпитаксиальная дислокация

дислокация, которая возникает в кристалле при его росте на подложке в результате несоответствия кристаллических решеток кристалла и подложки.

Похожие

  • Проводник первого рода
  • Проводник I рода
  • Проводник II рода
  • Ошибка второго рода
  • Сверхпроводник второго рода
  • Ошибки первого и второго рода
  • Вероятность ошибки второго рода
  • Стойкость к коллизиям второго рода
  • Микронапряжения, напряжения второго рода
  • Отпускная хрупкость второго рода
  • Полигонизация, возврат второго рода
  • Фазовый переход второго рода
  • Проводник
  • Внутренние напряжения второго рода (микронапряжения)
  • Род
  • Род (грамматический род)
  • Гамма-функция (эйлеров интеграл второго рода)
  • Проводник горения
  • Проводник, изолятор
  • Простой проводник

Научные статьи на тему «Проводник второго рода»

1. Магнитное поле сверхпроводников

Магнитные свойства идеальных проводников В проводнике с идеальной проводимостью, магнитный поток сквозь.
Наличие сверхпроводников второго рода предсказал в 1957 году А.А. Абрикосов.
При увеличении внешнего магнитного поля сверхпроводники первого и второго рода ведут себя по-разному.
У сверхпроводников второго рода поверхностная энергия отрицательна.
Данное дробление связано с внутренними свойствами сверхпроводников второго рода.

2. Энергетическая установка космического аппарата с вращающимися аккумуляторными батареями

Приведена классификация источников питания космического аппарата (КА), основные требования, предъявляемые к источникам питания КА и сравнительная оценка аккумуляторных батарей по удельной энергии. Показаны условия возникновения электростатических разрядов на поверхности КА и их характеристики. Рассматривается энергетическая установка, состоящая из вращающихся аккумуляторных батарей с использованием энергии электростатических зарядов для поддержания заданной частоты вращения. Представлены неко.

3. Введение в электрохимию

второго типа.
Электрохимическая система содержит следующие составляющие: проводник 1 рода (металлический), который.
Первый закон сформулирован так: Теорема 1 Если на границе раздела «проводник первого родапроводник.
второго рода» при прохождении постоянного электрического тока протекает одна и только одна электрохимическая.
Теорема 2 Если на границе раздела «проводник первого родапроводник второго рода» протекает одна

4. Группа «Защита»: штрихи к портрету городской неформальной организации 1988-1990 гг. (на примере г. Ростова-на-Дону)

В данной статье речь пойдёт не о действиях политических элит в условиях второго этапа перестройки (1988-1990 гг.), а о малых социальных группах (группа «Защита»), которые даже в масштабах большого советского города Ростова-на-Дону выглядели маргинальными. Такого рода группы принято было называть неформалами. В период перестройки неформалы стали проводниками идей реформаторского крыла КПСС, выступали самостоятельной общественно-политической силой в крупных городских политических центрах СССР Э.

Лучшие проводники электрического тока

Процессы в электропроводниках

При использовании электроприборов человек постоянно сталкивается с веществами, которые являются проводниками, полупроводниками и диэлектриками, не проводящими ток. Эти материалы отличаются степенью электропроводности. Для того чтобы работать с бытовой техникой, необходимо знать все их особенности и характеристику. Выбрать лучший проводник электрического тока можно из металлов.

Особенности понятия

Особенности понятия

Проводниками тока называют те вещества, в которых количество свободных электрических зарядов превышает число связанных. Они могут начинать двигаться под влиянием внешней силы. Состояние материалов может быть газообразным, твёрдым и жидким. Электричество может протекать по металлической проволоке, если её подключить между двумя проводниками с разными потенциалами.

Ток переносят электроны, не связанные между собой атомами. Именно они способны охарактеризовать способность предмета пропускать через себя электрические заряды, или величину проводимости тока. Её значение обратно пропорционально сопротивлению, она измеряется в сименсах: См = 1/Ом.

Основные носители электричества в природе — это ионы, дырки и электроны. Поэтому способность к проводимости делят на три вида:

  • ионную;
  • электронную;
  • дырочную.

Приложенное напряжение даёт возможность оценить качество проводника. Эту способность вещества называют ещё вольт-амперной характеристикой.

Первый и второй род

После того как получилось разобраться с тем, что проводит электрический ток, нужно узнать особенности некоторых веществ. Проводники могут быть разными — металлическая проволока, морская вода. Но в них ток различается, поэтому вещества делят на две группы:

  • первого рода, в которых электричество протекает по электронам;
  • второй вид — на основе ионов.

Первый и второй род

К первым относят все металлы и углерод. Ко второму роду относят щелочи, кислоты, соляные расплавы — электролиты. В них ток представляет упорядоченное движение отрицательных и положительных ионов. Электричество в таких материалах протекает при любом показателе напряжения. В обычных условиях хороший проводник электрического тока — это изделие из золота, серебра, алюминия или меди.

Их двух последних материалов изготавливают кабели, отличающиеся низкой стоимостью. Качественное жидкое вещество, проводящее ток — ртуть, а также ток хорошо протекает через углерод. Но это вещество не обладает гибкостью, поэтому на практике его не применяют. Хотя физики недавно смогли представить углерод в форме графена, что позволило из его нитей изготавливать шнуры.

У графеновых изделий сопротивление такое, что оно является недопустимым для проводников. Их позволительно использовать только в нагревателях. В этом случае металлические провода из никеля и хрома проигрывают, так как они не могут выдержать очень высокую температуру. Спирали в лампах дневного света изготавливают из вольфрама. Этот материал способен накаливаться, так как вещество является тугоплавким.

Процессы в электропроводниках

Проводники тока

Во время протекания электричества проводник попадает под определённое воздействие. Самое главное — это повышение температуры. А также выделяют некоторые химические реакции, которые могут изменить физические свойства вещества. Более всего такому влиянию подвергаются проводники второго рода. В них протекает химическая реакция, которую называют электролизом.

Ионы веществ около электрических полюсов получают необходимый заряд и восстанавливают исходное состояние, которое было у них до образования щелочи, кислоты или соли. С помощью электролиза химики и физики могут получать чистые химические вещества из природного сырья. Таким образом создают алюминий и другие виды металлов.

Что проводит электрический ток

Вещества первого и второго рода участвуют в других процессах, кроме проводимости электричества. К примеру, во время взаимодействия кислоты со свинцом возникает химическая реакция, которая вызывает выделение тока. По такому принципу работают все аккумуляторы. Проводники первой группы при контакте друг с другом могут изменяться. Медь и алюминий при эксплуатации нужно покрывать специальной оболочкой, иначе оба металла просто расплавятся. Влажный воздух приведёт к тому, что произойдёт электрохимическая реакция. Поэтому проводники покрывают слоем лака или другого защитного материала.

Некоторые проводники не могут оказывать электричеству сопротивление при холодном воздухе. Такое явление называют сверхпроводимостью, которая соответствует значению температуры, близкой к химическому состоянию жидкого гелия. Но исследования привели к тому, что есть новые проводники с высокими показателями температуры.

Такие вещества были открыты в 20 веке. Керамика из кислорода, бария, меди и лантана при обычных условиях не проводит ток, но после нагревания становится сверхпроводником. На практике выгодно использовать вещества, которые могут пропускать электричество при 58 градусах по Кельвину и выше — температуре, превышающей отметку кипения азота.

Жидкость и газы, проводящие ток, используют реже твёрдых веществ. Но и они необходимы для изготовления современных электрических приборов.

Особенности протекания тока в металлах. Электрический ток в металлах Все металлы являются проводниками электрического тока. Все металлы являются проводниками электрического тока. Строение металлов

Когда в обыденной жизни, мы слышим выражение электрический ток, то в первую очередь подразумевается под этим именно ток проводимости. Это всего лишь один из видов токов для среды, называемой проводниками.

Природа тока проводимости обусловлена свойством вещества под названием — проводники. Давайте разберёмся с тем, что такое проводники, как в них существует электрический ток и какие явления при этом происходят.

Начнём с того, что электрический ток определяется как поток электричества, а значит это поток зарядов, которые и несут то самое электричество в количественном измерении в кулонах (Кл).

Структура металлов

На предыдущих уроках мы изучили практически все понятия, связанные с возникновением электрического тока: электрические заряды, электрическое поле, источники тока, простейшие электрические цепи и электрические схемы. Теперь нам предстоит выяснить, как течёт электрический ток в металлах, какие действия оказывает электрический ток, а также направление тока.

Металлы, как мы выяснили из экспериментов на предыдущих уроках, хорошо проводят электрический ток. Для того чтобы пояснить этот факт, зададимся вопросом: а что же такое металлы?

Металлы, как правило, – это поликристаллические вещества (состоящие из множества кристаллов) (Рис. 1, 2).


)

Рис. 2. Структура железа ()

Проводники первого рода и проводники второго рода.

Проводники делятся на проводники первого рода и проводники второго рода. Проводники первого рода – металлы и их сплавы, а проводники второго рода — водные растворы кислот, солей и щелочей, сильно разряженные газы.

Твердые и жидкие проводники, прохождение через которые электрического тока не вызывает переноса вещества в виде ионов, называются проводниками первого рода. Электрический ток в проводниках первого рода осуществляется потоком электронов (электронная проводимость). К таким проводникам относятся твёрдые и жидкие металлы и некоторые неметаллы (графит, сульфиды цинка и свинца). Их удельное сопротивление r лежит в пределах 10–8 – 10–5 Ом×м. Температурный коэффициент проводимости отрицателен, то есть с ростом температуры электропроводность уменьшается.

Вещества, прохождение через которые электрического тока вызывает передвижение вещества в виде ионов (ионная проводимость), называются проводниками второго рода. Типичными проводниками второго рода являются растворы солей, кислот и оснований в воде и некоторых других растворителях, расплавленные соли и некоторые твёрдые соли. Температурный коэффициент электропроводности положителен.

Деление проводников в зависимости от типа проводимости (электронная или ионная) является условным. Известны твёрдые вещества со смешанной проводимостью, например Ag2S, ZnO, Cu2O и др. В некоторых солях при нагревании наблюдается переход от ионной проводимости к смешанной (CuCl).

Движение электронов в металлах до появления электрического поля

То есть, в металлах мы имеем дело с упорядоченной структурой атомов: каждый атом находится на своём конкретном месте.

Как мы уже знаем, вокруг ядра атомов движутся электроны.

Что же даёт возможность появления свободных электрических зарядов?

Дело в том, что дальние электроны (те, которые находятся на самых удалённых от ядра орбитах) довольно слабо связаны с ядром. Поэтому они могут довольно легко переходить от одного атома к другому. Такое беспорядочное движение электронов чем-то напоминает электронный газ. Если внутри металла нет электрического поля, то движение этих свободных электронов чем-то напоминает движение поднятого в воздух роя мошкары в летний день (Рис. 3).

Рис. 3. Движение электронов внутри металлического проводника ()

Ток смещения в диэлектрике

По определению вектора электрической индукции ($\overrightarrow$):

где $<\varepsilon >_0$ — электрическая постоянная, $\overrightarrow$ — вектор напряженность, $\overrightarrow

$ — вектор поляризации. Следовательно, ток смещения можно записать как:

где величина $\frac<\partial \overrightarrow

><\partial t>$ — плотность тока поляризации. Токи поляризации — токи, которые вызваны движением связанных зарядов, которые принципиально не отличаются от свободных зарядов. Поэтому нет ни чего странного, что токи поляризации порождают магнитное поле. Принципиальная новизна содержится в утверждении, что вторая часть тока смещения ($<\varepsilon >_0\frac<\partial \overrightarrow><\partial t>$), не связанная с движением зарядов, также порождает магнитное поле. Получается, что в вакууме, любое изменение электрического поля по времени вызывает магнитное поле.

Задай вопрос специалистам и получи ответ уже через 15 минут!

Однако, надо заметить, что сам термин «ток смещения» для диэлектриков имеет какое-то обоснование, так как в них действительно происходит смещение зарядов в атомах и молекулах. Но этот термин применяется и к вакууму, где зарядов нет, значит, нет их смещения.

Электрический ток в металлах

Электроны, перескакивая от одного атома к другому, движутся в том направлении, куда им указывает электрическое поле. Это движение и называется электрическим током в металлах.

Мы знаем, что электрический ток – это направленное, упорядоченное движение заряженных частиц. В металлах в роли движущихся заряженных частиц выступают электроны. В других веществах это могут быть ионы или ионы и электроны.

Движение заряженных частиц (в металлах – электронов) происходит очень медленно (доли миллиметров в секунду). Возникает вопрос: почему же, когда мы нажимаем на выключатель, лампочка загорается практически мгновенно?

Дело в том, что внутри проводников с огромной скоростью (со скоростью света – приблизительно 300 000 километров в секунду) распространяется электрическое поле.

При замыкании цепи поле распространяется практически мгновенно. А уже вслед за полем начинают медленно двигаться электроны, причём сразу по всей цепи. Эту ситуацию можно сравнить с движением воды в водопроводе. Воду заставляет двигаться давление в трубах, которое при открытии крана распространяется практически мгновенно, заставляя «ближайшую» к крану воду выливаться. При этом по трубам движется вся вода под этим самым давлением. Получается, что давление – это аналог электрического поля, а вода – аналог электронов. Как только прекращается действие электрического поля, сразу прекращается упорядоченное движение электрических зарядов.

Как направлено электричество (движение)

Движение тока может осуществляться двумя путями. Направление перемещения заряженных частиц связывают с движением электронов, имеющих положительный заряд. Когда ток возникает благодаря отрицательным электронам, тогда направление принимают противоположным их движению. Это характерно для проводников из металла. Но ток может возникать и в жидкости, и газе, в которых частицы свободно передвигаются по любой траектории из-за отсутствия прочной связи между ними. В этом случае носителям тока будут положительные ионы и отрицательные электроны, а электрический ток идет от «плюса» к «минусу».

Вам это будет интересно Особенности DC тока

Опыт Рикке

Возникает логичный вопрос: а не изменяется ли проводник из-за того, что из него «ушли» электроны? Опыт по подтверждению того, что все электроны одинаковые, был проведён немецким учёным Рикке (Рис. 4) тогда, когда на трамвайных линиях использовали три разных проводника: алюминиевый и два медных.

Рис. 4. Карл Виктор Рикке (


)

Рикке в течение года наблюдал за последовательным соединением трёх проводников: медь + алюминий + медь. Поскольку ток в трамвайных линиях течёт довольно большой, то эксперимент позволял дать однозначный ответ: одинаковы ли электроны, которые являются носителями отрицательного заряда в разных проводниках.

За год масса проводников не изменилась, диффузии не произошло, то есть структура проводников осталась неизменной. Из этого следовал вывод, что электроны могут переходить из одного проводника в другой, но структура их при этом не изменится.

Виды токов

Потоки электронов, имеющиеся в проводящих материалах, могут двигаться всё время в одну сторону либо постоянно менять своё направление. В первом случае они формируют переменный, а во втором – постоянный токи.

Электрическое поле – это?

Переменные потоки образуются под воздействием меняющихся по своей величине и знаку напряжений, прикладываемых к концам проводника, а для получения постоянного токового сигнала используется разность потенциалов одной полярности.

Обратите внимание! Меняющиеся токи протекают по электропроводке любой квартиры, а примером второй разновидности может служить однонаправленное движение электронов в аккумуляторах или батарейках.

Исторически сложилось так, что в цепи постоянного потока за его направление принято считать движение от «плюса» источника питания к его «минусу». Хотя в действительности носители отрицательного заряда перемещаются в прямо противоположном направлении (от «минуса» к «плюсу»). Но принятое ранее условное направление настолько закрепилось в сознании людей, что его оставили неизменным, полагая абсолютно условным значение этого параметра.

Постоянный ток

Постоянный ток

Для того чтобы разобраться с тем, куда текут переменные токи, следует отталкиваться непосредственно от их определения. В этой ситуации под воздействием переменного потенциала (напряжения) они меняют своё направление с определённой периодичностью.

Важно! В российских бытовых сетях переменное напряжение имеет частоту 50 Герц. С соответствующей периодичностью меняет своё направление и текущий по электропроводке ток.

В зарубежных электрических сетях (в США и Японии, в частности) данная частота составляет 60 Герц, что несколько повышает эффективность с одновременным возрастанием потерь в питающих линиях.

Переменный ток (график)

Переменный ток (график)

Действия тока

Поговорим теперь о том, какое действие оказывает электрический ток. За счёт чего он получил такое широкое применение в быту и технике?

Можно выделить три основных действия электрического тока:

1. Тепловое. При прохождении тока проводник нагревается. Это одно из самых главных действий тока, которое используется человеком. Самый простой пример – некоторые бытовые обогреватели (Рис. 5).

Рис. 5. Электрообогреватель ()

2. Химическое. Проводник может изменять химический состав при прохождении по нему тока. В частности, при помощи электрического тока добывают некоторые металлы в чистом виде, выделяя их из различных соединений. К примеру, таким образом получают алюминий (Рис. 6).

Рис. 6. Электролизный цех алюминиевого width=»670″ height=»446″[/img])

3. Магнитное. Если по проводнику течёт ток, то магнитная стрелка вблизи такого проводника изменит своё положение.

Электрическая проводимость

Проводимость металлов

Как уже отмечалось в прошлой главе, металлы являются самой распространенной средой, проводящей электрический ток. И носителями зарядов являются свободные электроны. В связи с этим существует особая терминология, в соответствии с которой проводимость металлов называется электронной проводимостью, а сами электроны металла – электронами проводимости.
Этот факт ни в коей мере не постулировался, а был проверен и доказан независимо многими учеными разными методами. Например, немецкий физик Карл Рикке проводил опыт по пропусканию тока в 0,1 А в течении года через три отполированных цилиндра: одного алюминиевого и двух медных. По истечению эксперимента (а за это время по цепи прошел огромный заряд в ) никаких изменений в структуре цилиндров не произошло, за исключением небольшой диффузии (рис. 1). А если бы носителями заряда были не электроны, а ионы, то тогда был бы перенос вещества одного цилиндра в вещество другого, и, конечно же, в результате столь длительного эксперимента, химическое строение цилиндров изменилось бы.

Рис. 1. Схема опыта Рикке

Еще одним опытом по подтверждению электронной проводимости металлов стал опыт 1912 года российских ученых Мангельштама и Папалекси, спустя небольшое время проведенный также англичанами Стюартом и Толменом. В ходе этого опыта катушка с большим количеством витков быстро вращалась, а затем резко тормозилась. В результате чего замкнутый вместе с ней в цепь гальванометр показывал наличие небольшого тока (рис. 2).

Рис. 2. Схема опыта Мангельштама-Папалекси

Дело в том, что вместе с раскручиваемой катушкой вращаются, конечно же, и находящиеся в металле электроны. Когда же катушка тормозится, электроны некоторое время продолжают двигаться внутри катушки по инерции, производя таким образом ток.

Сверхпроводимость

Определение. Сверхпроводимость – явление, когда сопротивление проводника становится близким к нулю.

Открытию явления сверхпроводимости предшествовало получение в 1908 году голландцем Камерлингом Оннесом (рис. 4) жидкого гелия. Помещая образец проводника в жидкий гелий, стало возможным наблюдать поведение проводников при сверхнизких температурах (близко к 0 ). И в 1911 году Оннес установил, что ртуть при температуре около 4 К резко приобретает сопротивление, равное нулю.

Рис. 4. Камерлинг Оннес (Источник)

Его опытам с ртутью предшествовали опыты с платиной, в результате которых он установил, что чем чище вещество (чем меньше в нем примесей), тем быстрее уменьшается его сопротивление с уменьшением температуры. Благодаря жидкому состоянию ртути при нормальных условиях, этот металл очень легко было очистить от примесей. И была установлена следующая зависимость удельного сопротивления ртути от низких температур: линейное снижение прерывается скачком к нулю (рис. 5):

Явление сверхпроводимости объясняется с точки зрения квантовой физики.

Электронный газ

Чтобы оценить, как много в металле тех самых электронов проводимости, нужно понимать, что каждый атом металла обеспечивает как минимум один свободный электрон. В среднем, концентрация электронов проводимости составляет:

И в качестве модели поведения свободных электронов можно принять модель газа. Каждый электрон электронного газа ведет себя, как отдельно взятая молекула газа. При появлении внешнего электрического поля на хаотическое движение электронов накладывается упорядоченное движение. Именно это движение и обуславливает электрический ток.

по какому признаку грунты разделяют на проводники первого или второго рода

Проводники – вещества, проводящие электрический ток благодаря наличию в них большого количества зарядов, способных свободно перемещаться (в отличие от изоляторов). Они бывают I (первого) и II (второго) рода. Электропроводность проводников I рода не сопровождается химическими процессами, она обусловлена электронами. К проводникам I рода относятся: чистые металлы, т. е. металлы без примесей, сплавы, некоторые соли, оксиды и ряд органических веществ. На электродах, выполненных из проводников I рода, происходит процесс переноса катиона металла в раствор или из раствора на поверхность металла. К проводникам II рода относятся электролиты. В них прохождение тока связано с химическими процессами и обусловлено движением положительных и отрицательных ионов.
После подстановки численных значений Е 0 и b 0 при 25 о С:

Каломельные электроды – это ртуть, покрытая пастой из каломели, и ртуть, находящаяся в контакте с раствором КСl.

Электродная реакция сводится к восстановлению каломели до металлической ртути и аниона хлора:

Потенциал каломельного электрода обратим по отношению к ионам хлора и определяется их активностью:

При 25 о С потенциал каломельного электрода находят по уравнению:

Ртутно-сульфатные электроды SО4 2 – /Нg2SО4, Нg аналогичны каломельным с той лишь разницей, что ртуть здесь покрыта слоем пасты из Нg и закисного сульфата ртути, а в качестве раствора используется Н2SО4. Потенциал ртутно-сульфатного электрода при 25 о С выражается уравнением:

Хлорсеребряный электрод представляет собой систему Сl – /АgСl, Аg, а его потенциалу отвечает уравнение:

ЕСl – /АgСl, Аg = Е 0 Сl – /АgСl, Аg – b lg а Сl–

Шпаргалки к экзаменам и зачётам

студентам и школьникам

Электрохимическая система, ее составные части. Проводники первого и второго рода. Законы электролиза.

Взаимное превращение химической и электрической форм энергии совершается только в электрохимических системах, поэтому их изучение составляет предмет электрохимии. Электрохимическая система содержит следующие составные части :

1. Реагенты, а также ионизированные или способствующие ионизации реагентов вещества, обеспечивающие прохождение электрического тока; эта часть системы является ионным проводником электричества (проводник второго рода) и называется электролитом.

3. Металлический проводник (проводник первого рода), соединяющий электроды и обеспечивающий прохождение тока между ними; он называется внешней цепью.

Электрохимическая система, в которой за счёт внешней электрической энергии совершаются химические превращения, называется электролизёром или электролитической ванной. Электрод, принимающий электроны от участников реакции, называется анодом. Электрод, отдающий электроны участникам реакции, – катодом. Часть электролита, примыкающая к аноду, называется анолитом; примыкающая к катоду – католитом.

Поскольку потеря электронов отвечает реакции окисления, а их приобретение – реакции восстановления, то можно сказать, что анод – это электрод, на котором происходит окисление, а катод – электрод, на котором происходит восстановление. Поэтому анод одновременно является отрицательным, а катод – положительным полюсом химического источника тока.

Применение на практике

Если принять во внимание вышесказанное, то стоит отметить, что ток по кабелю протекает и распределяется, словно по внешнему диаметру трубы. Это вызвано особенностями распределения электронов в проводящем теле

Любопытно, что при протекании токов в системах с током высокой частоты наблюдается скин-эффект. Это и есть распределение зарядов по поверхности проводников. Но в этом случае наблюдается ещё более тонкий «проводящий» слой.

Что это значит? Это говорит о том, что для протекания тока аналогичной величины с сетевой частотой в 50 Гц и с частотой 50 кГц в высокочастотной цепи потребуется большее сечение токопроводящей жилы. На практике это наблюдают в импульсных блоках питания. В их трансформаторах как раз такие токи и протекают. Для увеличения площади сечения либо выбирают толстый провод, либо мотают обмотки несколькими жилками сразу.

Описанная в предыдущем разделе зависимость распределения плотности от формы поверхности на практике используется в системах молниезащиты. Известно, что для защиты от поражения молнией устанавливают один из видов молниезащиты, например громоотвод. На его поверхности скапливаются заряженные частицы, благодаря чему разряд происходит именно в него, что опять же подтверждает сказанное об их распределении.

Напоследок рекомендуем просмотреть видео, на котором простыми словами объясняется и наглядно показывается, как распределяются заряды в проводнике:

Это все, что мы хотели рассказать вам по поводу того, как происходит распределение зарядов в проводнике при протекании тока. Надеемся, предоставленная информация была для вас понятной и полезной!

Проводники первого и второго рода

8. Проводники первого и второго рода

Проводники – вещества, проводящие электрический ток благодаря наличию в них большого количества зарядов, способных свободно перемещаться (в отличие от изоляторов). Они бывают I (первого) и II (второго) рода. Электропроводность проводников I рода не сопровождается химическими процессами, она обусловлена электронами. К проводникам I рода относятся: чистые металлы, т. е. металлы без примесей, сплавы, некоторые соли, оксиды и ряд органических веществ. На электродах, выполненных из проводников I рода, происходит процесс переноса катиона металла в раствор или из раствора на поверхность металла. К проводникам II рода относятся электролиты. В них прохождение тока связано с химическими процессами и обусловлено движением положительных и отрицательных ионов.

После подстановки численных значений Е 0 и b 0 при 25 o С:

Каломельные электроды – это ртуть, покрытая пастой из каломели, и ртуть, находящаяся в контакте с раствором KCl.

Электродная реакция сводится к восстановлению каломели до металлической ртути и аниона хлора:

Потенциал каломельного электрода обратим по отношению к ионам хлора и определяется их активностью:

При 25 о С потенциал каломельного электрода находят по уравнению:

Ртутно-сульфатные электроды SO 4 2 – /Hg 2SO 4, Hg аналогичны каломельным с той лишь разницей, что ртуть здесь покрыта слоем пасты из Hg и закисного сульфата ртути, а в качестве раствора используется H 2SO 4. Потенциал ртутно-сульфатного электрода при 25 o С выражается уравнением:

Хлорсеребряный электрод представляет собой систему Cl – /AgCl, Ag, а его потенциалу отвечает уравнение:

ECl – /AgCl, Ag = E 0 Cl – /AgCl, Ag – b lg a Cl–

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Два рода электричества

2. Два рода электричества Производя различные опыты над электричеством, люди выяснили основные его свойства. Прежде всего они открыли, что существует два рода электричества. Одно получается при натирании мехом стекла, драгоценных камней и некоторых других материалов —

Проводники и изоляторы

5. Проводники и изоляторы Все вещества, предметы, тела можно разделить на две группы — проводники электричества и электрические изоляторы.Чем отличаются проводники от изоляторов?Чтобы ответить на этот вопрос, сделаем следующий опыт с электроскопом. Возьмём два

Глава первая. ВЕЧНЫЙ ДВИГАТЕЛЬ ПЕРВОГО РОДА: ОТ РАННИХ ПОПЫТОК ДО «ОПЫТНЫХ ОБРАЗЦОВ»

Глава первая. ВЕЧНЫЙ ДВИГАТЕЛЬ ПЕРВОГО РОДА: ОТ РАННИХ ПОПЫТОК ДО «ОПЫТНЫХ ОБРАЗЦОВ» Мартын: Что такое perpetuum mobile? Бертольд: Perpetuum mobile, то есть вечное движение. Если найду вечное движение, то я не вижу границ творчеству человеческому… видишь ли, добрый мой Мартын: делать

Значение перемещения электронов в электрической схеме

Понимание того, как идет в цепи ток, необходимо при составлении такого графического изображения расположения электронных деталей, как схема

Важно понимать, откуда течет ток, для того чтобы правильно располагать на схеме, затем соединять различные радиоэлектронные элементы. Если для таких радиодеталей, как конденсатор, резистор, полярность подключения не имеет значения, то полупроводниковый транзистор,

диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать.

Таким образом, знание физической сущности направления течения заряженных частиц в проводнике, электролите, полупроводнике позволит любому человеку не только расширить свой кругозор, но и применять его на практике при монтаже электропроводки, пайке различных электронных блоков и схем. Также подобная информация поможет разобраться в том, почему произошла поломка того или иного электроприбора, как ее устранить и предотвратить в будущем.

2.4. Грунт как проводник

Основным электрическим параметром верхних слоев земли является удельное электрическое сопротивление грунта

измеряется в омметрах (Ом»м). Иногда для удобства пользуются величиной, обратной удельному электрическому сопротивлению. Такую величину называют удельной электрической проводимостью фунта. Удельная проводимость и удельное сопротивление связаны между собой известной зависимостью:

У различных грунтов меняется в очень широких пределах – от тысячных долей Ом м у самородных металлов до многих миллиардов Ом м у таких изоляторов как кварц, слюда, полевые шпаты и др. Грунты разделяют на электронные проводники – т.е. проводники 1-го рода, в которых заряды переносятся свободными электронами, и на ионные проводники – т.е. проводники 2-го рода, в которых электрический заряд переносится ионами, которые находятся в растворах, заполнивших поры и трещины грунта. К первой группе грунтов относят наибольшее количество пород – таких как самородные металлы, сульфит, графит, антрацит. Ко второй – все остальные грунты, с которыми приходится иметь дело при инженерно-геологических изысканиях.

Однако, следует заметить, что в реальных породах всегда присутствуют оба рода проводимости, но в зависимости от того, какой род доминирует, их и относят к 1-й или 2-й группе.

Эффект Ганна

Наличие падающего участка на вольт-амперной характеристике приводит к интересному явлению, обнаруженному американским инженером Джоном Ганном.

Приложим к образцу GaAs

длиной
L
напряжение
U
такое, чтобы оказаться на падающем участке зависимости
j
(
Е
). Предположим, что сначала электрическое поле в образце однородно и равно \(

\frac\). Пусть по какой-либо причине в тонком слое
АВ
образца поле
Е
оказалось чуть больше, чем в остальном объеме образца (рис. 4). Тогда скорость дрейфа электронов \(

u = \frac\) внутри слоя
АВ
окажется меньше, чем снаружи. Поэтому к границе
А
будет подлетать больше электронов, чем улетать от нее, а у границы
В
— наоборот. Вблизи
А
возникнет избыток отрицательного заряда, а вблизи
В
— положительного. Следовательно, в слое
АВ
появится дополнительное электрическое поле, направленное в ту же сторону, что и исходное. Увеличение поля приведет к тому, что дрейфовая скорость электронов внутри слоя еще уменьшится, и поле там еще больше возрастет.


Рис. 4
Таким образом, однородное распределение электрического поля на падающем участке j

(
Е
) невозможно: любая сколь угодно слабая неоднородность
Е
, случайно возникшая в образце, не рассасывается, а нарастает. В результате образуется узкая область (размером
δ
) сильного поля, которая называется электрическим доменом. При этом, так как напряжение
U
на образце задано, т. е.
\(

E_2 \delta + E_1 (L — \delta) = U_0 = \operatorname,\)
рост поля E

2 в домене сопровождается уменьшением поля
E
1 вне его. Наступит момент, когда
E
1 <
E
a и
E
2 >
E
b (см. рис. 3). Скорость дрейфа электронов вне домена начнет уменьшаться, а внутри — увеличиваться. Рост поля
E
2 в домене прекратится, когда эти скорости сравняются, и плотности токов в домене и в образце станут одинаковыми:
\(

j(E_1) = j(E_2) = j_0.\)
Из двух последних равенств следует, что установившаяся в образце плотность тока j

зависит от толщины домена
δ
.

Обычно домен возникает вблизи катода (за счет вплавления контактов здесь больше неоднородностей) и, увлекаемый потоком электронов, начинает двигаться к аноду со скоростью \(

u_0 = \frac\). Пока он движется вдоль образца, его размер не меняется, а значит, не меняется и ток j

. Вблизи анода домен начинает исчезать, его толщина уменьшается, и ток в образце возрастает. Одновременно увеличивается поле
E
1 вне домена. Как только
E
1 достигнет значения
E
a, у катода зарождается новый домен, ток начинает уменьшаться, и этот процесс периодически повторяется (рис. 5). Период колебаний тока в образце — \(

, мы получаем переменный ток частоты \(

f = \frac<1> = \frac\). Это совсем уж непохоже на закон Ома. В арсениде галлия (
GaAs
)
u
≈ 105 м/с. Используя небольшие образцы длиной от одного до ста микрон, можно менять частоту переменного тока в диапазоне
f

109 — 1011 Гц. На основе эффекта Ганна работает большинство современных генераторов сверхвысоких частот (СВЧ). Эти приборы используются, например, для определения постами ГАИ скорости движения автомобилей и в телевизионном вещании через искусственные спутники Земли.

Методика, техника и объёмы работ.

Во время прохождения практики применяют наиболее рас­пространенные в инженерно-гидрогеологической геофизике методы электро­разведки.

Методом сопротивления изучают геологический разрез по горизонтали (электропрофилирование) и на глубину (вертикальное электрическое зонди­рование). Метод обладает высокой информативностью, позволяет определять как геометрию геоэлектрического разреза (положение в изучаемом: объеме границ геологических образований, различающихся по величине удельного электрического сопротивления, и их конфигурацию), так и величину изучае­мого параметра (удельного электрического сопротивления).

Электропрофилирование осуществлено с помощью симметричной установки А2М2N9B и было выполнено по 7 профилям, длиной 100м, с шагом точек наблюдений через 10м. 6 опорных точек были отмечены колышками по периметру планшета с соответствующими надписями на них. В аномальных зонах ЭП выполнены детализационные измерения с шагом 5м.

Электропрофилирование выполнено при помощи электроразведочной аппаратуры ЭРП-1 совместного российско-украинского производства (г.Севастополь). В неё входят 2 электроприбора (генератор и измеритель), 4 электрода – 2 токовых и 2 приёмных.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *