От чего зависит сила индукционного тока
Перейти к содержимому

От чего зависит сила индукционного тока

  • автор:

 

Лекция № 15

С оленоид подключен к гальванометру. Если в соленоид вдвигать (или выдвигать) постоянный магнит, то в моменты вдвигания (или выдвигания) наблюдается отклонение стрелки гальванометра, т.е. в соленоиде индуцируется ЭДС.

Н аправление отклонения стрелки при вдвигании и выдвигании противоположны. Если постоянный магнит развернуть так, чтобы полюса поменялись местами, то и

направление отклонения стрелки изменится на противоположное.

О тклонение стрелки гальванометра тем больше, чем больше скорость движения магнита относительно соленоида. Такой же эффект будет, если постоянный магнит оставить неподвижным, а относительно его перемещать соленоид.

Один соленоид (K1) подключен к источнику тока. Другой соленоид (К2) подключен к гальванометру. Отклонение стрелки гальванометра наблюдается в моменты включения или выключения тока, в моменты его увеличения или уменьшения или при перемещении катушек друг относительно друга.

При включении и выключении стрелка отклоняется в разные стороны, т.е. знак индуцированной ЭДС в этих случаях различен. Такой же эффект — наведение в катушке К2 ЭДС различного знака — наблюдается при увеличении или уменьшении тока в катушке K1 : при сближении или удалении катушек.

В опытах Фарадея было открыто явление электромагнитной индукции. Оно заключается в том, что:

в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает электрический ток, получивший название индукционного.

Основные свойства индукционного тока:

Индукционный ток возникает всегда, когда происходит изменение сцепленного с контуром потока магнитной индукции.

Сила индукционного тока не зависит от способа изменения потока магнитной индукции, а определяется лишь скоростью его изменения.

Открытие явления электромагнитной индукции:

показало взаимосвязь между электрическим и магнитным полем;

предложило способ получения электрического тока с помощью магнитного поля.

15.2. Закон электромагнитной индукции (закон Фарадея)

Обобщая результаты опытов, Фарадей показал, что всякий раз, когда происходит изменение сцепленного с контуром потока магнитной индукции, в контуре возникает индукционный ток.

Возникновение индукционного тока указывает на наличие в цепи электродвижущей силы. Эта ЭДС называется ЭДС электромагнитной индукции.

Закон Фарадея:

ЭДС электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром:

ЭДС индукции :

( Магнитный поток )

где α – угол между вектором магнитной индукции В и нормалью n к площади контура.

ЭДС электромагнитной индукции возникает при всяком изменении магнитного потока во времени. Таким образом, ЭДС индукции возникает как при изменении индукции В, площади контура S, так и при изменении угла α. ЭДС индукции – первая производная магнитного потока по времени:

Для замкнутого контура магнитный поток Ф есть ни что иное, как потокосцепление ψ этого контура . Поэтому закон Фарадея часто записывается в виде

Е сли контур является замкнутым, то по нему начинает протекать электрический, так называемый

индукционный ток:

где R – сопротивление контура.

Ток возникает из-за изменения магнитного потока. Направление индукционного тока определяется по правилу Ленца:

Правило Ленца

Индукционный ток всегда имеет такое направление, что создаваемый этим током магнитный поток препятствовал изменению магнитного потока, вызвавшего этот ток. Ток имеет такое направление, чтобы препятствовать причине, вызвавшей его.

Индукционный ток

ИНДУКЦИОННЫЙ ТОК — это электрический ток, возникающий при изменении потока магнитной индукции в замкнутом проводящем контуре. Это явление носит название электромагнитной индукции. Хотите узнать какое направление индукционного тока? Росиндуктор — это торговый информационный портал, где вы найдете информацию про ток.

Индукционный ток правило

Индукционный ток правило

Определяющее направление индукционного тока правило звучит следующим образом: «Индукционный ток направлен так, чтобы своим магнитным полем противодействовать изменению магнитного потока, которым он вызван». Правая рука развернута ладонью навстречу магнит¬ным силовым линиям, при этом большой палец направлен в сторону движения проводника, а четыре пальца по-казывают, в каком направлении будет течь индукционный ток. Перемещая проводник, мы перемещаем вместе с проводчиком все электроны, заключенные в нем, а при перемещении в магнитном поле электрических зарядов на них будет действовать сила по правилу левой руки.

Направление индукционного тока

Направление индукционного тока, как и его величина, определяется правилом Ленца, в котором говорится, что направление индукционного тока всегда ослабляет действие фактора, возбудившего ток. При изменении потока магнитного поля через контур направление индукционного тока будет таким, чтобы скомпенсировать эти изменения. Когда магнитное поле возбуждающее ток в контуре создается в другом контуре, направление индукционного тока зависит от характера изменений: при увеличении внешнего тока индукционный ток имеет противоположное направление, при уменьшении — направлен в ту же сторону и стремиться усилить поток.

Направление индукционного токаНаправление индукционного тока

Индукционный ток в катушке

Катушка с индукционным током имеет два полюса (северный и южный), которые определяются в зависимости от направления тока: индукционные линии выходят из северного полюса. Приближение магнита к катушке вызывает появление тока с направлением, отталкивающим магнит. При удалении магнита ток в катушке имеет направление, способствующее притягиванию магнита.

Индукционный ток в катушке Индукционный ток в катушке

Индукционный ток возникает

Индукционный ток возникает в замкнутом контуре, находящемся в переменном магнитном поле. Контур может быть как неподвижным (помещенным в изменяющийся поток магнитной индукции), так и движущимся (движение контура вызывает изменение магнитного потока). Возникновение индукционного тока обуславливает вихревое электрическое поле, которое возбуждается под воздействием магнитного поля.

Индукционный ток возникает

Как создать индукционный ток

О том, как создать кратковременный индукционный ток можно узнать из школьного курса физики.

Для этого есть несколько способов:

  • — перемещение постоянного магнита или электромагнита относительно катушки,
  • — перемещение сердечника относительно вставленного в катушку электромагнита,
  • — замыкание и размыкание цепи,
  • — регулирование тока в цепи.

Как создать индукционный ток Как создать индукционный ток

Сила индукционного тока

Основной закон электродинамики (закон Фарадея) гласит, что сила индукционного тока для любого контура равна скорости изменения магнитного потока, проходящего через контур, взятой со знаком минус. Сила индукционного тока носит название электродвижущей силы.

Электромагнитная индукция

Опыт Эрстеда показал, что электрический ток создаёт в окружающем пространстве магнитное поле. Майкл Фарадей пришёл к мысли, что может существовать и обратный эффект: магнитное поле, в свою очередь, порождает электрический ток.

Иными словами, пусть в магнитном поле находится замкнутый проводник; не будет ли в этом проводнике возникать электрический ток под действием магнитного поля?

Через десять лет поисков и экспериментов Фарадею наконец удалось этот эффект обнаружить. В 1831 году он поставил следующие опыты.

1. На одну и ту же деревянную основу были намотаны две катушки; витки второй катушки были проложены между витками первой и изолированы. Выводы первой катушки подключались к источнику тока, выводы второй катушки — к гальванометру (гальванометр — чувствительный прибор для измерения малых токов). Таким образом, получались два контура: «источник тока — первая катушка» и «вторая катушка — гальванометр».

Электрического контакта между контурами не было, только лишь магнитное поле первой катушки пронизывало вторую катушку.

При замыкании цепи первой катушки гальванометр регистрировал короткий и слабый импульс тока во второй катушке.

Когда по первой катушке протекал постоянный ток, никакого тока во второй катушке не возникало.

При размыкании цепи первой катушки снова возникал короткий и слабый импульс тока во второй катушке, но на сей раз в обратном направлении по сравнению с током при замыкании цепи.

Меняющееся во времени магнитное поле первой катушки порождает (или, как говорят, индуцирует) электрический ток во второй катушке. Этот ток называется индукционным током.

Если магнитное поле первой катушки увеличивается (в момент нарастания тока при замыкании цепи), то индукционный ток во второй катушке течёт в одном направлении.

Если магнитное поле первой катушки уменьшается (в момент убывания тока при размыкании цепи), то индукционный ток во второй катушке течёт в другом направлении.

Если магнитное поле первой катушки не меняется (постоянный ток через неё), то индукционного тока во второй катушке нет.

Обнаруженное явление Фарадей назвал электромагнитной индукцией (т. е. «наведение электричества магнетизмом»).

2. Для подтверждения догадки о том, что индукционный ток порождается переменным магнитным полем, Фарадей перемещал катушки друг относительно друга. Цепь первой катушки всё время оставалась замкнутой, по ней протекал постоянный ток, но за счёт перемещения (сближения или удаления) вторая катушка оказывалась в переменном магнитном поле первой катушки.

Гальванометр снова фиксировал ток во второй катушке. Индукционный ток имел одно направление при сближении катушек, и другое — при их удалении. При этом сила индукционного тока была тем больше, чем быстрее перемещались катушки.

3. Первая катушка была заменена постоянным магнитом. При внесении магнита внутрь второй катушки возникал индукционный ток. При выдвигании магнита снова появлялся ток, но в другом направлении. И опять-таки сила индукционного тока была тем больше, чем быстрее двигался магнит.

Эти и последующие опыты показали, что индукционный ток в проводящем контуре возникает во всех тех случаях, когда меняется «количество линий» магнитного поля, пронизывающих контур. Сила индукционного тока оказывается тем больше, чем быстрее меняется это количество линий. Направление тока будет одним при увеличении количества линий сквозь контур, и другим — при их уменьшении.

Замечательно, что для величины силы тока в данном контуре важна лишь скорость изменения количества линий. Что конкретно при этом происходит, роли не играет — меняется ли само поле, пронизывающее неподвижный контур, или же контур перемещается из области с одной густотой линий в область с другой густотой.

Такова суть закона электромагнитной индукции. Но, чтобы написать формулу и производить расчёты, нужно чётко формализовать расплывчатое понятие «количество линий поля сквозь контур».

Магнитный поток

Понятие магнитного потока как раз и является характеристикой количества линий магнитного поля, пронизывающих контур.

Для простоты мы ограничиваемся случаем однородного магнитного поля. Рассмотрим контур площади , находящийся в магнитном поле с индукцией .

Пусть сначала магнитное поле перпендикулярно плоскости контура (рис. 1 ).

В этом случае магнитный поток определяется очень просто — как произведение индукции магнитного поля на площадь контура:

Теперь рассмотрим общий случай, когда вектор образует угол с нормалью к плоскости контура (рис. 2 ).

Мы видим, что теперь сквозь контур «протекает» лишь перпендикулярная составляющая вектора магнитной индукции (а та составляющая, которая параллельна контуру, не «течёт» сквозь него). Поэтому, согласно формуле (1), имеем . Но , поэтому

Это и есть общее определение магнитного потока в случае однородного магнитного поля. Обратите внимание, что если вектор параллелен плоскости контура (то есть ), то магнитный поток становится равным нулю.

А как определить магнитный поток, если поле не является однородным? Укажем лишь идею. Поверхность контура разбивается на очень большое число очень маленьких площадок, в пределах которых поле можно считать однородным. Для каждой площадки вычисляем свой маленький магнитный поток по формуле (2) , а затем все эти магнитные потоки суммируем.

Единицей измерения магнитного потока является вебер (Вб). Как видим,

Почему же магнитный поток характеризует «количество линий» магнитного поля, пронизывающих контур? Очень просто. «Количество линий» определяется их густотой (а значит, величиной — ведь чем больше индукция, тем гуще линии) и «эффективной» площадью, пронизываемой полем (а это есть не что иное, как ). Но множители и как раз и образуют магнитный поток!

Теперь мы можем дать более чёткое определение явления электромагнитной индукции, открытого Фарадеем.

Электромагнитная индукция — это явление возникновения электрического тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего контур.

ЭДС индукции

Каков механизм возникновения индукционного тока? Это мы обсудим позже. Пока ясно одно: при изменении магнитного потока, проходящего через контур, на свободные заряды в контуре действуют некоторые силы — сторонние силы, вызывающие движение зарядов.

Как мы знаем, работа сторонних сил по перемещению единичного положительного заряда вокруг контура называется электродвижущей силой (ЭДС): . В нашем случае, когда меняется магнитный поток сквозь контур, соответствующая ЭДС называется ЭДС индукции и обозначается .

Итак, ЭДС индукции — это работа сторонних сил, возникающих при изменении магнитного потока через контур, по перемещению единичного положительного заряда вокруг контура.

Природу сторонних сил, возникающих в данном случае в контуре, мы скоро выясним.

Закон электромагнитной индукции Фарадея

Сила индукционного тока в опытах Фарадея оказывалась тем больше, чем быстрее менялся магнитный поток через контур.

Если за малое время изменение магнитного потока равно , то скорость изменения магнитного потока — это дробь (или, что тоже самое, производная магнитного потока по времени).

Опыты показали, что сила индукционного тока прямо пропорциональна модулю скорости изменения магнитного потока:

Модуль поставлен для того, чтобы не связываться пока с отрицательными величинами (ведь при убывании магнитного потока будет ). Впоследствии мы это модуль снимем.

Из закона Ома для полной цепи мы в то же время имеем: . Поэтому ЭДС индукции прямо пропорциональна скорости изменения магнитного потока:

ЭДС измеряется в вольтах. Но и скорость изменения магнитного потока также измеряется в вольтах! Действительно, из (3) мы видим, что Вб/с = В. Стало быть, единицы измерения обеих частей пропорциональности (4) совпадают, поэтому коэффициент пропорциональности — величина безразмерная. В системе СИ она полагается равной единице, и мы получаем:

Это и есть закон электромагнитной индукции или закон Фарадея. Дадим его словесную формулировку.

Закон электромагнитной индукции Фарадея. При изменении магнитного потока, пронизывающего контур, в этом контуре возникает ЭДС индукции, равная модулю скорости изменения магнитного потока.

Правило Ленца

Магнитный поток, изменение которого приводит к появлению индукционного тока в контуре, мы будем называть внешним магнитным потоком. А само магнитное поле, которое создаёт этот магнитный поток, мы будем называть внешним магнитным полем.

Зачем нам эти термины? Дело в том, что индукционный ток, возникающий в контуре, создаёт своё собственное магнитное поле, которое по принципу суперпозиции складывается с внешним магнитным полем.

Соответственно, наряду с внешним магнитным потоком через контур будет проходить собственный магнитный поток, создаваемый магнитным полем индукционного тока.

Оказывается, эти два магнитных потока — собственный и внешний — связаны между собой строго определённым образом.

Правило Ленца . Индукционный ток всегда имеет такое направление, что собственный магнитный поток препятствует изменению внешнего магнитного потока .

Правило Ленца позволяет находить направление индукционного тока в любой ситуации.

Рассмотрим некоторые примеры применения правила Ленца.

Предположим, что контур пронизывается магнитным полем, которое возрастает со временем (рис. (3) ). Например, мы приближаем снизу к контуру магнит, северный полюс которого направлен в данном случае вверх, к контуру.

Магнитный поток через контур увеличивается. Индукционный ток будет иметь такое направление, чтобы создаваемый им магнитный поток препятствовал увеличению внешнего магнитного потока. Для этого магнитное поле, создаваемое индукционным током, должно быть направлено против внешнего магнитного поля.

Индукционный ток течёт против часовой стрелки, если смотреть со стороны создаваемого им магнитного поля. В данном случае ток будет направлен по часовой стрелке, если смотреть сверху, со стороны внешнего магнитного поля, как и показано на (рис. (3) ).

Рис. 3. Магнитный поток возрастает

Теперь предположим, что магнитное поле, пронизывающее контур, уменьшается со временем (рис. 4 ). Например, мы удаляем магнит вниз от контура, а северный полюс магнита направлен на контур.

Рис. 4. Магнитный поток убывает

Магнитный поток через контур уменьшается. Индукционный ток будет иметь такое направление, чтобы его собственный магнитный поток поддерживал внешний магнитный поток, препятствуя его убыванию. Для этого магнитное поле индукционного тока должно быть направлено в ту же сторону , что и внешнее магнитное поле.

В этом случае индукционный ток потечёт против часовой стрелки, если смотреть сверху, со стороны обоих магнитных полей.

Взаимодействие магнита с контуром

Итак, приближение или удаление магнита приводит к появлению в контуре индукционного тока, направление которого определяется правилом Ленца. Но ведь магнитное поле действует на ток! Появится сила Ампера, действующая на контур со стороны поля магнита. Куда будет направлена эта сила?

Если вы хотите хорошо разобраться в правиле Ленца и в определении направления силы Ампера, попробуйте ответить на данный вопрос самостоятельно. Это не очень простое упражнение и отличная задача для С1 на ЕГЭ. Рассмотрите четыре возможных случая.

1. Магнит приближаем к контуру, северный полюс направлен на контур.
2. Магнит удаляем от контура, северный полюс направлен на контур.
3. Магнит приближаем к контуру, южный полюс направлен на контур.
4. Магнит удаляем от контура, южный полюс направлен на контур.

Не забывайте, что поле магнита не однородно: линии поля расходятся от северного полюса и сходятся к южному. Это очень существенно для определения результирующей силы Ампера. Результат получается следующий.

Если приближать магнит, то контур отталкивается от магнита. Если удалять магнит, то контур притягивается к магниту. Таким образом, если контур подвешен на нити, то он всегда будет отклоняться в сторону движения магнита, словно следуя за ним. Расположение полюсов магнита при этом роли не играет .

Уж во всяком случае вы должны запомнить этот факт — вдруг такой вопрос попадётся в части А1

Результат этот можно объяснить и из совершенно общих соображений — при помощи закона сохранения энергии.

Допустим, мы приближаем магнит к контуру. В контуре появляется индукционный ток. Но для создания тока надо совершить работу! Кто её совершает? В конечном счёте — мы, перемещая магнит. Мы совершаем положительную механическую работу, которая преобразуется в положительную работу возникающих в контуре сторонних сил, создающих индукционный ток.

Итак, наша работа по перемещению магнита должна быть положительна . Это значит, что мы, приближая магнит, должны преодолевать силу взаимодействия магнита с контуром, которая, стало быть, является силой отталкивания .

Теперь удаляем магнит. Повторите, пожалуйста, эти рассуждения и убедитесь, что между магнитом и контуром должна возникнуть сила притяжения.

Закон Фарадея + Правило Ленца = Снятие модуля

Выше мы обещали снять модуль в законе Фарадея (5) . Правило Ленца позволяет это сделать. Но сначала нам нужно будет договориться о знаке ЭДС индукции — ведь без модуля, стоящего в правой части (5) , величина ЭДС может получаться как положительной, так и отрицательной.

Прежде всего, фиксируется одно из двух возможных направлений обхода контура. Это направление объявляется положительным . Противоположное направление обхода контура называется, соответственно, отрицательным . Какое именно направление обхода мы берём в качестве положительного, роли не играет — важно лишь сделать этот выбор.

Магнитный поток через контур считается положительным 0)’ alt='(\Phi > 0)’ /> , если магнитное поле, пронизывающее контур, направлено туда, глядя откуда обход контура в положительном направлении совершается против часовой стрелки. Если же с конца вектора магнитной индукции положительное направление обхода видится по часовой стрелке, то магнитный поток считается отрицательным .

ЭДС индукции считается положительной 0)’ alt='(\mathcal E_i > 0)’ /> , если индукционный ток течёт в положительном направлении. В этом случае направление сторонних сил, возникающих в контуре при изменении магнитного потока через него, совпадает с положительным направлением обхода контура.

Наоборот, ЭДС индукции считается отрицательной , если индукционный ток течёт в отрицательном направлении. Сторонние силы в данном случае также будут действовать вдоль отрицательного направления обхода контура.

Итак, пусть контур находится в магнитном поле . Фиксируем направление положительного обхода контура. Предположим, что магнитное поле направлено туда, глядя откуда положительный обход совершается против часовой стрелки. Тогда магнитный поток положителен: 0′ alt=’\Phi > 0′ /> .

Предположим, далее, что магнитный поток увеличивается 0)’ alt='(\Delta \Phi / \Delta t > 0)’ /> . Согласно правилу Ленца индукционный ток потечёт в отрицательном направлении (рис. 5 ).

Рис. 5. Магнитный поток возрастает

Стало быть, в данном случае имеем . Знак ЭДС индукции оказался противоположен знаку скорости изменения магнитного потока. Проверим это в другой ситуации.

А именно, предположим теперь, что магнитный поток убывает . По правилу Ленца индукционный ток потечёт в положительном направлении. Стало быть, 0′ alt=’\mathcal E_i > 0′ /> (рис. 6 ).

Рис. 6. Магнитный поток возрастает 0′ alt=’\Rightarrow \mathcal E_i > 0′ />

Таков в действительности общий факт: при нашей договорённости о знаках правило Ленца всегда приводит к тому, что знак ЭДС индукции противоположен знаку скорости изменения магнитного потока :

Тем самым ликвидирован знак модуля в законе электромагнитной индукции Фарадея.

Вихревое электрическое поле

Рассмотрим неподвижный контур, находящийся в переменном магнитном поле. Каков же механизм возникновения индукционного тока в контуре? А именно, какие силы вызывают движение свободных зарядов, какова природа этих сторонних сил?

Пытаясь ответить на эти вопросы, великий английский физик Максвелл открыл фундаментальное свойство природы: меняющееся во времени магнитное поле порождает поле электрическое . Именно это электрическое поле и действует на свободные заряды, вызывая индукционный ток.

Линии возникающего электрического поля оказываются замкнутыми, в связи с чем оно было названо вихревым электрическим полем . Линии вихревого электрического поля идут вокруг линий магнитного поля и направлены следующим образом.

Пусть магнитное поле увеличивается. Если в нём находится проводящий контур, то индукционный ток потечёт в соответствии с правилом Ленца — по часовой стрелке, если смотреть с конца вектора . Значит, туда же направлена и сила, действующая со стороны вихревого электрического поля на положительные свободные заряды контура; значит, именно туда направлен вектор напряжённости вихревого электрического поля.

Итак, линии напряжённости вихревого электрического поля направлены в данном случае по часовой стрелке (смотрим с конца вектора , (рис. 7 ).

Рис. 7. Вихревое электрическое поле при увеличении магнитного поля

Наоборот, если магнитное поле убывает, то линии напряжённости вихревого электрического поля направлены против часовой стрелки (рис. 8 ).

Рис. 8. Вихревое электрическое поле при уменьшении магнитного поля

Теперь мы можем глубже понять явление электромагнитной индукции. Суть его состоит именно в том, что переменное магнитное поле порождает вихревое электрическое поле. Данный эффект не зависит от того, присутствует ли в магнитном поле замкнутый проводящий контур или нет; с помощью контура мы лишь обнаруживаем это явление, наблюдая индукционный ток.

Вихревое электрическое поле по некоторым свойствам отличается от уже известных нам электрических полей: электростатического поля и стационарного поля зарядов, образующих постоянный ток.

1. Линии вихревого поля замкнуты, тогда как линии электростатического и стационарного полей начинаются на положительных зарядах и оканчиваются на отрицательных.
2. Вихревое поле непотенциально: его работа перемещению заряда по замкнутому контуру не равна нулю. Иначе вихревое поле не могло бы создавать электрический ток! В то же время, как мы знаем, электростатическое и стационарное поля являются потенциальными.

Итак, ЭДС индукции в неподвижном контуре — это работа вихревого электрического поля по перемещению единичного положительного заряда вокруг контура .

Пусть, например, контур является кольцом радиуса и пронизывается однородным переменным магнитным полем. Тогда напряжённость вихревого электрического поля одинакова во всех точках кольца. Работа силы , с которой вихревое поле действует на заряд , равна:

Следовательно, для ЭДС индукции получаем:

ЭДС индукции в движущемся проводнике

Если проводник перемещается в постоянном магнитном поле, то в нём также появляется ЭДС индукции. Однако причиной теперь служит не вихревое электрическое поле (оно не возникает — ведь магнитное поле постоянно), а действие силы Лоренца на свободные заряды проводника.

Рассмотрим ситуацию, которая часто встречается в задачах. В горизонтальной плоскости расположены параллельные рельсы, расстояние между которыми равно . Рельсы находятся в вертикальном однородном магнитном поле . По рельсам движется тонкий проводящий стержень со скоростью ; он всё время остаётся перпендикулярным рельсам (рис. 9 ).

Рис. 9. Движение проводника в магнитном поле

Возьмём внутри стержня положительный свободный заряд . Вследствие движения этого заряда вместе со стержнем со скоростью на заряд будет действовать сила Лоренца:

Направлена эта сила вдоль оси стержня, как показано на рисунке (убедитесь в этом сами — не забывайте правило часовой стрелки или левой руки!).

Сила Лоренца играет в данном случае роль сторонней силы: она приводит в движение свободные заряды стержня. При перемещении заряда от точки к точке наша сторонняя сила совершит работу:

(Длину стержня мы также считаем равной .) Стало быть, ЭДС индукции в стержне окажется равной:

Таким образом, стержень аналогичен источнику тока с положительной клеммой и отрицательной клеммой . Внутри стержня за счёт действия сторонней силы Лоренца происходит разделение зарядов: положительные заряды двигаются к точке , отрицательные — к точке .

Допустим сначала,что рельсы непроводят ток.Тогда движение зарядов в стержне постепенно прекратится. Ведь по мере накопления положительных зарядов на торце и отрицательных зарядов на торце будет возрастать кулоновская сила, с которой положительный свободный заряд отталкивается от и притягивается к — и в какой-то момент эта кулоновская сила уравновесит силу Лоренца. Между концами стержня установится разность потенциалов, равная ЭДС индукции (7) .

Теперь предположим, что рельсы и перемычка являются проводящими. Тогда в цепи возникнет индукционный ток; он пойдёт в направлении (от «плюса источника» к «минусу» N). Предположим, что сопротивление стержня равно (это аналог внутреннего сопротивления источника тока), а сопротивление участка равно (сопротивление внешней цепи). Тогда сила индукционного тока найдётся по закону Ома для полной цепи:

Замечательно, что выражение (7) для ЭДС индукции можно получить также с помощью закона Фарадея. Сделаем это.
За время наш стержень проходит путь и занимает положение (рис. 9 ). Площадь контура возрастает на величину площади прямоугольника :

Магнитный поток через контур увеличивается. Приращение магнитного потока равно:

Скорость изменения магнитного потока положительна и равна ЭДС индукции:

Мы получили тот же самый результат, что и в (7) . Направление индукционного тока, заметим, подчиняется правилу Ленца. Действительно, раз ток течёт в направлении , то его магнитное поле направлено противоположно внешнему полю и, стало быть, препятствует возрастанию магнитного потока через контур.

На этом примере мы видим, что в ситуациях, когда проводник движется в магнитном поле, можно действовать двояко: либо с привлечением силы Лоренца как сторонней силы, либо с помощью закона Фарадея. Результаты будут получаться одинаковые.

 

Спасибо за то, что пользуйтесь нашими материалами. Информация на странице «Электромагнитная индукция» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ. Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Электромагнитная индукция. Оптика

Магнитный поток $Ф$, пронизывающий контур, равен произведению модуля вектора индукции магнитного поля $В↖<→>$ на площадь $S$, ограниченную этим контуром, и на косинус угла а между нормалью к плоскости контура $n↖<→>$ и вектором $B↖<→>$.

Произведение $Bcosα=B_n$ является проекцией вектора магнитной индукции на нормаль к плоскости контура, поэтому

Магнитный поток пропорционален числу линий магнитной индукции, пронизывающих поверхность контура, и характеризует распределение магнитного поля на поверхности, ограниченной замкнутым контуром.

Единицей магнитного потока в СИ является вебер (Вб). Магнитный поток в $1$ Вб создается однородным магнитным полем с индукцией $1$ Тл через поверхность площадью $1$ м 2 , расположенную перпендикулярно вектору магнитной индукции.

Закон электромагнитной индукции Фарадея

М. Фарадеем было установлено, что сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром:

Возникновение тока в замкнутом контуре означает наличие сторонних сил, работа которых по перемещению единичного заряда в контуре называется электродвижущей силой (ЭДС). Это означает, что при изменении потока через поверхность, ограниченную замкнутым контуром, в контуре возникает ЭДС $ε_1$ которую называют ЭДС индукции. Согласно закону Ома для замкнутой цепи, $I_i=<ε_i>/$.

Следовательно, ЭДС индукции пропорциональна $<∆Ф>/<∆t>$, поскольку сопротивление $R$ не зависит от изменения магнитного потока.

Закон электромагнитной индукции формулируется так:

ЭДС индукции $ε_1$ в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

Применение правила Ленца к замкнутому контуру с положительной нормалью приводит к выражению:

Формула $ε_1=-<∆Ф>/<∆t>$ выражает основной закон электромагнитной индукции.

На рис. внешнее магнитное поле индукции $В$ возрастает со временем и направлено вдоль положительной нормали к контуру с током.

Индуцированный ток противоположен выбранному направлению обхода в соответствии с индуцированным магнитным полем $В’$.

Описанные выше опыты свидетельствуют о том, что электромагнитная индукция — это возникновение электрического поля и электрического тока при изменении во времени магнитного поля или при движении проводника в магнитном поле. Эти два типа эффектов электромагнитной индукции отличаются физической природой процессов, отвечающих за их возникновение. Первый тип обусловлен наведением вихревого электрического поля переменным магнитным полем, второй — действием сил Лоренца на движущиеся заряды в стационарном магнитном поле. В обоих случаях выполняется основной закон индукции, выраженный формулой $ε_1=-<∆Ф>/<∆t>$.

Вихревое электрическое поле

В первом типе электромагнитной индукции ЭДС возникает в неподвижном замкнутом проводнике при любом изменении магнитного поля.

С другой стороны, известно, что возникновение электродвижущей силы в любой цепи связано со сторонними силами, действующими на заряды в этой цепи. Под сторонними силами имеются в виду силы неэлектростатического характера. Какова же природа этих сил в данном случае?

Результаты различных экспериментов по электромагнитной индукции показали, что ЭДС индукции не зависит ни от материала проводника (металл, электролит и т. д.), ни от его состояния (например, величины и распределения температуры). Отсюда следует вывод, что сторонние силы связаны с самим магнитным полем.

Анализ явления электромагнитной индукции привел Дж. Максвелла к заключению, что причиной появления ЭДС индукции является электрическое поле, отличающееся от электростатического поля следующими особенностями.

1. Возникновение поля никак не связано с наличием проводников; оно существует в пространстве, окружающем переменное магнитное поле, независимо от наличия в нем проводников; проводники являются лишь индикаторами поля (если проводник замкнут, по нему течет ток).

2. Это поле не является электростатическим, поскольку силовые линии электростатического поля всегда разомкнуты, они начинаются и заканчиваются на зарядах, и напряжение по замкнутому контуру в электростатическом поле равно нулю; электростатическое поле не может поддерживать движение зарядов в замкнутом контуре, т. е. привести к возникновению ЭДС.

3. В противоположность последнему индуцированное переменным магнитным полем электрическое поле является вихревым (как и магнитное поле); оно имеет замкнутые силовые линии, приводит к возникновению ЭДС индукции, приводящей в движение заряды по замкнутым проводам.

4. В отличие от электростатического поля, работа сил вихревого электрического поля и электрическое напряжение по замкнутому контуру не равны нулю, а значение напряжения между двумя точками определяется не только их взаимным положением, но и формой контура, соединяющего эти точки.

Все вышеизложенное позволяет сделать вывод, который выражает первое основное положение теории Максвелла: любое изменение магнитного поля вызывает появление вихревого электрического поля.

Направление силовых линий напряженности $Е↖<→>$ совпадает с направлением индукционного тока. Работа вихревого электрического поля при перемещении единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике. Чем быстрее меняется индукция магнитного поля, тем больше напряженность индуцированного электрического поля.

Вихревые токи (токи Фуко). В массивном проводнике, находящемся в переменном магнитном поле, вихревое электрическое поле вызывает индукционный ток. Поскольку линии напряженности $Е↖<→>$ замкнуты, то и линии тока внутри этого массивного проводника замкнуты, поэтому они называются вихревыми токами, или токами Фуко. В 1855 г. Ж. Б. Л. Фуко обнаружил нагревание ферромагнитных сердечников, а также других металлических тел в переменном магнитном поле. Он объяснил этот эффект возбуждением индукционных токов. Фуко предложил способ уменьшения потерь энергии за счет нагрева — изготавливать сердечники и другие магнитопроводы в виде пластин, разделенных тонкими изолирующими пленками, и ориентировать поверхности этих пластин перпендикулярно вектору напряженности вихревого электрического поля (т. е. чтобы они пересекали возможные линии вихревых токов).

Нагрев вихревыми токами массивных проводников используется в индукционных печах для плавки металлов и изготовления сплавов.

ЭДС индукции в движущихся проводниках

ЭДС индукции в проводниках, движущихся в постоянном магнитном поле, соответствует второму типу электромагнитной индукции, обусловленному не переменным внешним магнитным полем, а действием сил Лоренца на свободные заряды проводника.

ЭДС индукции, возникающая на концах проводника длиной $l$, движущегося с постоянной скоростью $υ↖<→>$ под некоторым углом $α$ к вектору индукции $В↖<→>$ однородного магнитного поля, равна:

где $А$ — работа силы Лоренца по перемещению заряда $q$ на пути $l, F_L$ — сила Лоренца, действующая на движущийся заряд.

Если такой проводник входит в состав замкнутой цепи, остальные части которой неподвижны, то в цепи возникает электрический ток. Сила тока равна:

где $R$ — сопротивление нагрузки (лампочки); $r$ — сопротивление проводника, играющего роль внутреннего сопротивления источника тока (сопротивлением соединяющих проводников пренебрегаем).

С другой стороны, ту же ЭДС индукции можно получить, используя основной закон электромагнитной индукции $ε_i=-<∆Ф>/<∆t>$ и формулу $Ф=B_S$:

В данном случае изменение потока осуществляется не за счет изменения индукции поля, а за счет изменения площади контура, равного $∆S=-lυ∆t$. В результате получим:

Самоиндукция. Индуктивность

Индуктивность, или коэффициент самоиндукции (от лат. inductio — наведение, возбуждение) — это параметр электрической цепи, который определяет ЭДС самоиндукции, наводимой в цепи при изменении протекающего по ней тока или (и) ее деформации.

Термином «индуктивность» обозначают также катушку самоиндукции, которая определяет индуктивные свойства цепи.

Самоиндукция — возникновение ЭДС индукции в проводящем контуре при изменении в нем силы тока. Самоиндукция была открыта в 1832 г. американским ученым Дж. Генри. Независимо от него в 1835 г. это явление открыл М. Фарадей.

ЭДС индукции возникает при изменении магнитного потока. Если это изменение вызывается собственным током, то говорят об ЭДС самоиндукции:

где $L$ — индуктивность контура, или его коэффициент самоиндукции.

Индуктивность — это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на $1$А за $1$с.

Индуктивность, как и электроемкость, зависит от геометрии проводника — его размеров и формы, но не зависит от силы тока в проводнике. Так, индуктивность прямого провода гораздо меньше индуктивности того же провода, свернутого в спираль.

Расчеты показывают, что индуктивность описанного выше соленоида в воздухе определяется по формуле:

где $μ_0$ — магнитная постоянная, $N$ — число витков соленоида, $l$ — длина соленоида, $S$ — площадь поперечного сечения.

Кроме того, индуктивность зависит от магнитных свойств среды, в которой находится проводник, а именно от его магнитной проницаемости, которая определяется по формуле:

где $L_0$ — индуктивность контура в вакууме, $L$ — индуктивность контура в однородном веществе, заполняющем магнитное поле.

Единицей индуктивности в СИ является генри (Гн): $1$ Гн$ =1$В$·$с/А.

Токи замыкания и размыкания

При любом включении и выключении тока в цепи наблюдаются так называемые экстратоки самоиндукции (экстратоки замыкания и размыкания), возникающие в цепи вследствие явления самоиндукции и препятствующие, согласно правилу Ленца, нарастанию либо убыванию тока в цепи. На рисунке показана схема соединения двух одинаковых ламп. Одна из них подключена к источнику через резистор $R$, а другая — последовательно соединена с катушкой $L$ с железным сердечником.

При замыкании цепи первая лампа вспыхивает практически мгновенно, а вторая — с заметным опозданием. Это вызвано тем, что ЭДС самоиндукции в цепи этой лампы велика, и сила тока не сразу достигает своего максимального значения.

При размыкании ключа в катушке $L$ возникает ЭДС самоиндукции, поддерживающая первоначальный ток. В результате в момент размыкания через гальванометр течет ток (светлая стрелка), направленный против начального тока до размыкания (черная стрелка). При этом ЭДС самоиндукции может быть гораздо больше ЭДС батареи элементов, что будет проявляться в том, что экстраток размыкания будет существенно превышать стационарный ток при замкнутом ключе.

Индуктивность характеризует инерционность цепи по отношению к изменению в ней тока, и ее можно рассматривать как электродинамический аналог массы тела в механике, являющейся мерой инертности тела. При этом ток $I$ играет роль скорости тела.

Энергия магнитного поля

По аналогии с кинетической энергией тела для цепей постоянного тока энергия магнитного поля $W_м$ записывается в форме, аналогичной выражению для кинетической энергии $/<2>$

При этом индуктивность включает часть, связанную с энергией магнитного поля, сосредоточенную в проводниках, внутреннюю индуктивность $L_i$ и внешнюю $L_e$, связанную с внешним магнитным полем: $L=L_i+L_e$.

Свободные электромагнитные колебания в колебательном контуре

Колебательный контур — это электрическая цепь, содержащая индуктивность $L$, емкость $С$ и сопротивление $R$, в которой могут возбуждаться электрические колебания.

Колебательный контур — один из основных элементов радиотехнических систем. Различают линейные и нелинейные колебательные контуры. Параметры $R, L$ и $С$ линейного колебательного контура не зависят от интенсивности колебаний, а период колебаний не зависит от амплитуды.

При отсутствии потерь ($R = 0$) в линейном колебательном контуре происходят свободные гармонические колебания.

Для возбуждения колебаний в контуре конденсатор предварительно заряжают от батареи аккумуляторов, сообщив ему энергию $W_р$ и переводят переключатель в положение $2$. После замыкания цепи конденсатор начнет разряжаться через катушку индуктивности, теряя энергию. В цепи появится ток, вызывающий переменное магнитное поле. Переменное магнитное поле, в свою очередь приводит к созданию вихревого электрического поля, препятствующего току, в результате чего изменение тока происходит постепенно. По мере увеличения тока через катушку возрастает энергия магнитного поля $W_M$. Полная энергия $W$ электромагнитного поля контура остается постоянной (при отсутствии сопротивления) и равной сумме энергий магнитного и электрического полей. Полная энергия, в силу закона сохранения энергии, равна максимальной энергии электрического или магнитного поля:

где $L$ — индуктивность катушки, $I$ и $I_m$ — сила тока и ее максимальное значение, $q$ и $q_m$ — заряд конденсатора и его максимальное значение, $C$ — емкость конденсатора.

Процесс перекачки энергии в колебательном контуре между электрическим полем конденсатора при его разрядке и магнитным полем, сосредоточенным в катушке, полностью аналогичен процессу превращения потенциальной энергии растянутой пружины или поднятого груза математического маятника в кинетическую энергию при механических колебаниях последних.

В таблице приводится соответствие между механическими и электрическими величинами при колебательных процессах.

Соответствие между механическими и электрическими величинами при колебательных процессах

Механические величины Электрические величины
Координата $х$
Скорость $υ$
Масса $m$
Жесткость пружины $k$
Потенциальная энергия $kх^2$/$2$
Кинетическая энергия $m^2$/$2$
Заряд $q$
Сила тока $i$
Индуктивность $L$
Величина, обратная емкости $1$/$С$
Энергия электрического поля $q^2$/$(2С)$
Энергия магнитного поля $Li^2$/$2$

Дифференциальное уравнение, описывающее процессы в колебательном контуре, можно получить, приравняв производную по полной энергии контура к нулю (поскольку полная энергия постоянна) и заменив в полученном уравнении ток на производную заряда по времени. В окончательном виде уравнение выглядит так:

Как видно, уравнение ничем не отличается по форме от соответствующего дифференциального уравнения для свободных механических колебаний шарика на пружине. Заменив механические параметры системы на электрические с помощью приведенной выше таблицы, мы в точности получим уравнение.

По аналогии с решением дифференциального уравнения для механической колебательной системы циклическая частота свободных электрических колебаний равна:

Период свободных колебаний в контуре равен:

Формула $T=<2π>/<ω_0>=2π√$ называется формулой Томсона в честь английского физика У. Томсона (Кельвина), который ее вывел.

Увеличение периода свободных колебаний с возрастанием $L$ и $С$ объясняется тем, что при увеличении индуктивности ток медленнее нарастает и медленнее падает до нуля, а чем больше емкость, тем больше времени требуется для перезарядки конденсатора.

Гармонические колебания заряда и тока описываются теми же уравнениями, что и их механические аналоги:

где $q_m$ — амплитуда колебаний заряда, $I_m=ω_0q_m$ — амплитуда колебаний силы тока. Колебания силы тока опережают по фазе на $<π>/<2>$ колебания заряда.

Закон отражения света

Принцип Гюйгенса. Принцип Гюйгенса—Френеля

Для того чтобы, зная положение волновой поверхности в момент времени $t$, найти ее положение в следующий момент времени $t+∆t$, нужно каждую точку волновой поверхности рассматривать как источник вторичных волн. Поверхность, касательная ко всем вторичным волнам, представляет собой волновую поверхность в следующий момент времени. Этот принцип справедлив для распространения волн любой природы, хотя Гюйгенсом он был сформулирован именно для световых волн.

Для механических волн принцип Гюйгенса имеет наглядное истолкование: частицы среды, до которых доходят колебания, в свою очередь, колеблясь, приводят в движение соседние частицы среды, с которыми они взаимодействуют.

Принцип Гюйгенса—Френеля — основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности световых.

Принцип Гюйгенса—Френеля является развитием принципа, который ввел современник Ньютона X. Гюйгенс в 1678 г.

О. Френель объединил принцип Гюйгенса с идеей интерференции вторичных волн. Согласно идее Френеля, волновая поверхность в любой момент времени представляет собой не просто огибающую вторичных волн, а результат их интерференции.

Для того чтобы вычислить амплитуду световой волны в любой точке пространства, надо мысленно окружить источник света сферической поверхностью. Интерференция волн от вторичных источников, расположенных на этой поверхности, определяет амплитуду в рассматриваемой точке пространства.

Такого рода расчеты показали, что результат интерференции вторичных волн в точке $B$ от источников, расположенных на сферической поверхности радиуса $R$, оказывается таким, как если бы лишь вторичные источники на малом сферическом сегменте $ab$ посылали свет в точку $B$. Вторичные волны, испускаемые источниками, расположенными на остальной части поверхности, гасят друг друга в результате интерференции. Поэтому все происходит так, как если бы свет распространялся лишь вдоль прямой $SB$, то есть прямолинейно.

Отражение света. Закон отражения света

Большинство окружающих нас предметов видимы глазу не потому, что излучают свет, а потому, что отражают его.

Закон отражения света. Пусть на зеркальную поверхность $MN$ падает луч света $А_1А$. Луч $А_1А$ называется падающим лучом, точка $А$ пересечения этого луча с поверхностью называется точкой падения. Восстановим из точки $А$ перпендикуляр $АЕ$ к поверхности $МN$. Угол $α$ между падающим лучом и перпендикуляром называется углом падения. Пусть луч $А_1А$, отразившись от поверхности, распространяется в направлении $АА_2$ под некоторым углом $γ$. Луч $АА_2$ называется отраженным лучом, а угол $γ$ — углом отражения. Плоскость, в которой лежат луч $А_1А$ и перпендикуляр $АЕ$, называется плоскостью падения.

Закон отражения света гласит:

  1. Отраженный луч лежит в плоскости падения.
  2. Угол падения равен углу отражения ($α=γ$).

Обратимость направления световых лучей. Если падающий луч направить вдоль $А_2А$, то он отразится вдоль направления $АА_1$. В этом заключается принцип обратимости хода лучей света. Он также является одним из основных положений геометрической оптики и используется при построении оптических изображений.

Закон отражения можно вывести с помощью принципа Гюйгенса.

Пусть плоская волна, обозначенная лучами $А_1А$ и $В_1В$ и плоской волновой поверхностью $АС$, падает на зеркальную плоскость $МN$ под некоторым углом $α$. Различные участки волновой поверхности $АС$ достигают отражающей границы не одновременно. Возбуждение колебаний в точке $А$ начнется на время $∆t=/<υ>$ (где $υ$ — скорость волны) раньше, чем в точке $В$.

В момент, когда волна достигнет точки $В$ и в этой точке начнется возбуждение колебаний, вторичная волна с центром в точке $А$ будет представлять собой полусферу радиусом $r=AD=υ∆t=CB$. Изменение радиусов вторичных волн от точек, лежащих между точками $А$ и $В$. Плоскость $DB$ — огибающая вторичных волн, касательная к сферическим поверхностям. $DB$ — волновая поверхность отраженной волны. Отраженные лучи $АА_2$ и $ВВ_2$ перпендикулярны волновой поверхности $DB$; $γ$ — угол отражения.

Так как $AD=CB$ и треугольники $ADB$ и $АСВ$ прямоугольные, то $∠DBA=∠CAB$. Но $α=∠CAB$ и $γ=∠DBA$ как углы с перпендикулярными сторонами. Следовательно, угол отражения равен углу падения:

Кроме того, из построения Гюйгенса вытекает, что падающий луч, луч отраженный и перпендикуляр, восстановленный в точке падения, лежат в одной плоскости, что и требовалось доказать.

Построение изображений в плоском зеркале

Оптическое изображение

Оптическое изображение — это картина, получаемая в результате прохождения через оптическую систему лучей, распространяющихся от объекта, и воспроизводящая его контуры и детали.

Под оптической системой понимают совокупность оптических деталей — линз, призм, зеркал, плоскопараллельных пластинок, скомбинированных определенным образом для получения оптического изображения или для преобразования светового потока, идущего от источника света.

Оптический объект (предмет, который мы хотим изобразить с помощью оптической системы) представляет собой совокупность точек, светящихся собственным светом (т. е. излучающих) либо отраженным светом.

Для того, чтобы изображение максимально соответствовало объекту (было качественным), необходимо, чтобы лучи света, исходящие из какой-либо точки объекта, после преломлений и отражений в оптической системе вновь сходились в одной точке, которая и является изображением точки объекта. Это возможно лишь тогда, когда точка объекта находится на небольшом расстоянии от оси оптической системы, например, линзы, так, что лучи, исходящие из предмета и участвующие в его изображении, находятся в так называемой параксиальной (приосевой) области оптической системы. Оптическая система, в которой точка изображается точкой, т. е. без искажений, и все пропорции предмета передаются правильно, называется идеальной оптической системой.

Применение законов геометрической оптики дает возможность получить изображение любой точки, находящейся в параксиальной области, без искажений.

Оптические изображения делятся на действительные и мнимые.

Под действительным изображением понимают такое, которое получается в результате пересечения реальных (действительных) лучей, вышедших из оптической системы (т. е. сходящихся лучей, пересекающихся в точке изображения). Примером такого изображения является изображение, получающееся на фотопленке.

Мнимым изображением называется изображение, получающееся в результате воображаемого пересечения расходящихся лучей, вышедших из оптической системы. Такое изображение нельзя получить на экране либо фотопленке. Глаз, тем не менее, увидит его в месте мнимого пересечения лучей. Мнимое изображение может служить источником света для дальнейшего построения действительного изображения другой оптической системой, которое затем можно зафиксировать, например, на фотопленке.

Примером мнимого изображения является всем знакомое изображение предметов в зеркале.

Построение изображения в плоском зеркале

Пусть на плоское зеркало падает пучок лучей $SO, SO_1; SO_2$ из точечного источника $S$. После отражения в зеркале в глаз человека попадает расходящийся пучок лучей. Если теперь продолжить каждый из отраженных лучей за зеркало, то они пересекутся в одной точке $S_1$; которая и является мнимым изображением точки $S$. То, что лучи действительно пересекутся в одной точке, легко доказать, используя закон отражения света и теоремы геометрии, как и то, что $S_1O=SO, S_1O_2=SO_2, S_1O_3=SO_3$.

Отсюда следует, что правила построения предмета в зеркале сводятся к следующему: из точки $А$ предмета (в данном случае это стрелка $АВ$) опускают перпендикуляр на плоскость зеркала; на продолжении этого перпендикуляра за зеркалом на точно таком же расстоянии откладывают точку $А_1$; точно так же поступают с точкой $В$. Затем соединяют точки $А_1$ и $В_1$. Стрелка $А_1В_1$ и будет мнимым изображением стрелки $АВ$.

Из вышеизложенного следует, что изображение предмета в плоском зеркале симметрично предмету относительно плоскости зеркала. Последнее означает, что оно является мнимым, прямым (т. е. не перевернутым), равным по размеру самому предмету и находится на таком же расстоянии за зеркалом, на каком предмет расположен перед ним.

Закон преломления света

Преломление света — это изменение направления распространения светового луча при его прохождении через границу раздела двух прозрачных сред.

Луч $А_1А$, падающий на границу раздела $МN$ двух однородных сред; преломленный луч $АА_2$; перпендикуляр к плоскости раздела, проходящий через точку падения луча $А$. Угол $α$ называется углом падения, угол $β$ — углом преломления. Преломление света подчиняется определенным законам.

1. Луч падающий и луч преломленный лежат в одной плоскости с нормалью, проведенной к границе раздела двух сред в точке падения луча. Плоскость эта называется плоскостью падения.

2. Угол падения и угол преломления связаны соотношением:

где $n$ — постоянная, не зависящая от углов $α$ и $β$.

Величина п называется показателем преломления и зависит лишь от свойств обеих сред, через границу раздела которых проходит свет.

Закон преломления, выраженный соотношением $/=n$, называется законом Спелля (Снеллиуса).

Закон преломления света выводится с помощью принципа Гюйгенса. Преломление света при переходе из одной среды в другую вызвано различием в скоростях распространения света в этих средах. Пусть плоская волна, обозначенная лучами $А_1А$ и $В_1В$ и плоской волновой поверхностью $AС$, падает на зеркальную плоскость $МN$ под некоторым углом $α$. Различные участки волновой поверхности $АС$ достигают отражающей границы не одновременно. Возбуждение колебаний в точке $А$ начнется на время $∆t=/<υ_1>$ (где $υ_1$ — скорость волны в первой среде) раньше, чем в точке $В$. В момент времени, когда вторичная волна в точке $В$ только начнет возбуждаться, волна от точки $А$ во второй среде уже имеет вид полусферы радиусом $AD=υ_2·∆t$, где $υ_2$ — скорость света во второй среде. Волновая поверхность преломленной волны (от центров, лежащих на границе раздела двух сред) в этот момент времени представлена плоскостью $BD$ — касательной к волновым поверхностям всех вторичных волн во второй среде.

Угол падения $α$ луча равен $∠CAB$ в треугольнике $АВС$ (стороны одного угла перпендикулярны сторонам другого). Следовательно,

Угол преломления $β$ равен углу $ABD$ треугольника $ABD$. Поэтому

Разделив почленно $R_n=R+r_1+r_2+r_3$ на $I=I_1+I_2$, получим

где $n$ — постоянная величина, не зависящая от угла падения.

Из построения видно, что луч падающий и луч преломленный лежат в одной плоскости с нормалью, проведенной к границе раздела двух сред в точке падения луча. Это утверждение вместе с выражением $U=U_1=U_2$ представляет собой закон преломления света.

Таким образом, из принципа Гюйгенса не только выводится закон преломления света, но и раскрывается физический смысл показателя преломления: он равен соотношению скоростей света в средах, на границе между которыми происходит преломление.

Абсолютный и относительный показатели преломления

Показатель преломления (коэффициент преломления) — это оптическая характеристика среды, связанная с преломлением света на границе раздела двух прозрачных, оптически однородных и изотропных сред при переходе из одной среды в другую и связанная с различием скоростей распространения света $υ_1$ и $υ_2$ в этих средах.

Величина показателя преломления, равная соотношению этих скоростей $n_<21>=<υ_1>/<υ_2>$, называется относительным показателем преломления. Если свет падает на первую или вторую среду из вакуума, где скорость распространения света равна $с$, то показатель преломления называется абсолютным показателем преломления и равен $n_1=/<υ_1>$ или $n_2=/<υ_2>$ соответственно. Относительный показатель преломления при переходе из первой среды во вторую связан с абсолютными показателями преломления этих сред соотношением $n_<21>=/$, и закон преломления $/=n$ может быть записан в виде

где $α$ и $β$ — углы падения и преломления соответственно.

Среда, в которой скорость света больше, называется оптически менее плотной. Таким образом, при переходе из оптически менее плотной среды в оптически более плотную $n > 1$, т. е. угол преломления меньше угла падения, и наоборот.

Абсолютный показатель преломления зависит от природы и строения вещества, его агрегатного состояния, температуры, давления, наличия в нем упругих напряжений. Показатель преломления данной среды зависит от длины волны света.

Изложенные выше закономерности поведения света на границе двух сред относятся к монохроматическому свету (свету одной определенной частоты, или одного цвета). Было установлено, что частота электромагнитных колебаний при прохождении волны из первой среды во вторую, остается неизменной: $ν_1=ν_2$, а вот скорость распространения волны меняется, что и означает изменение показателя преломления. В более плотных средах скорость света меньше, чем в менее плотных, а абсолютный показатель преломления — больше. Поскольку частота, скорость и длина волны связаны известным соотношением, то с учетом вышесказанного легко показать, что

где $λ_1$ и $λ_2$ — длины волн света в средах $1$ и $2$ соответственно.

Зависимость показателя преломления от цвета (длины волны) называется дисперсией. Подробнее о ней будет сказано далее.

Для большинства прозрачных жидкостей и твердых тел показатель преломления в видимой области в среднем равен $1.5$. Абсолютный показатель преломления воздуха для желтого света при нормальных условиях равен $∼1.000292$. Поэтому показатели преломления различных веществ рассматривают относительно воздуха.

Линзы. Фокусное расстояние и оптическая сила линзы

Линза (нем. linse произошло от лат. lens — чечевица) — это простейший оптический элемент, ограниченный с двух сторон сферическими поверхностями.

Обычно линзы изготавливаются из оптического стекла (стекло специального изготовления с минимальным количеством дефектов: пузырьков воздуха, включений посторонних микрочастиц).

Линзы бывают выпуклые и вогнутые. У выпуклых линз середина толще, чем края, у вогнутых — наоборот. В свою очередь, выпуклые линзы делятся на двояковыпуклые, плосковыпуклые ивогнуто-выпуклые. Вогнутые линзы делятся на двояковогнутые, плосковогнутые и выпукло-вогнутые. На рисунке рядом с изображениями линз (справа) даны их условные обозначения на оптических схемах.

Тонкая линза. Если толщина линзы пренебрежимо мала по сравнению с радиусами кривизны ее поверхностей и расстоянием от предмета до линзы, ее называют тонкой линзой. Вершины сферических сегментов тонкой линзы расположены так близко, что их принимают за одну точку, называемую центром линзы, и обозначают буквой $О$. Луч света, проходящий через оптический центр линзы, практически не преломляется.

Прямая $С_1С_2$, проходящая через центры сферических поверхностей $О$, ограничивающих линзу, называется главной оптической осью линзы. Любую другую прямую, проходящую через оптический центр, называют побочной оптической осью.

Фокусы линзы

Выпуклая (положительная, или собирающая) линза. Если на выпуклую линзу направить пучок света параллельно ее главной оптической оси, то после преломления в линзе он соберется в некоторой точке $F$ на оси линзы, которая называется главным фокусом линзы. Поэтому такие линзы называются положительными, или собирающими. Расстояние от центра линзы $О$ до точки $F$ называется фокусным расстоянием линзы. У линзы имеется два главных фокуса, с каждой стороны по одному.

Если на собирающую линзу направить пучок света, параллельный любой из ее побочных оптических осей, он соберется в точке, лежащей на плоскости, перпендикулярной главной оптической оси линзы и проходящей через ее главный фокус. Эта плоскость называется фокальной плоскостью линзы.

Вогнутая (отрицательная, или рассеивающая) линза. Пучок света, направленный параллельно оптической оси вогнутой линзы, после преломления в ней расходится. Если эти расходящиеся лучи продолжить в обратную сторону, они соберутся на оптической оси линзы со стороны падающего пучка в точку, которая называется мнимым фокусом линзы. Глазу, расположенному с правой стороны, будет казаться, что пучок лучей исходит из точки $F$. Такая линза называется отрицательной, или рассеивающей. Как и в случае собирающей линзы, фокусное расстояние измеряется от оптического центра до фокуса.

Фокусное расстояние линзы зависит от кривизны поверхностей, ограничивающих линзу. Чем больше кривизна поверхности линзы, тем меньше фокусное расстояние.

Оптическая сила линзы

Оптической силой линзы называется физическая величина, обратная фокусному расстоянию:

Оптическая сила измеряется в диоптриях (дптр). В СИ единицей оптической силы является метр в минус первой степени ($м^<-1>$).

Фокусное расстояние собирающей линзы (и соответственно, ее оптическую силу) условились считать положительной величиной, т. к. собирающая линза обладает действительным фокусом.

Фокусное расстояние рассеивающей линзы (и, соответственно, ее оптическая сила) — отрицательная величина, т. к. у рассевающей линзы мнимый фокус.

Построение изображений в линзах

Любой предмет можно разбить на маленькие области, которые условно могут быть приняты за точки. Поэтому для построения изображения любого предмета необходимо знать, как строится изображение произвольной точки.

Собирающая линза

Для образования оптического изображения точки в линзе достаточно двух лучей. В качестве таковых выбираются любые два из трех лучей, ход которых известен: 1) луч, идущий параллельно оптической оси линзы — луч $АС$, который после преломления пересекает оптическую ось в фокусе линзы $F$; 2) луч, проходящий через оптический центр линзы, который не меняет своего направления (луч $АА_1$); 3) луч, проходящий через фокус линзы, который после преломления пойдет параллельно главной оптической оси — луч $АD$. Точка $А_1$ пересечения этих трех лучей за линзой и будет изображением исходной точки $А$.

Для построения изображения точки $S$, находящейся на главной оптической оси, все три упомянутых выше луча не подходят, т. к. сливаются в один, идущий вдоль главной оптической оси, и потому в этом случае пользуются следующим приемом. Из точки $S$ проводят произвольный луч $SB$ до пересечения с линзой. Чтобы найти ход этого луча после преломления в линзе, проводят через центр линзы $О$ луч, параллельный $SB$ и являющийся побочной оптической осью линзы, до пересечения с фокальной плоскостью линзы в точке $Q$. Через эту точку пройдет преломленный луч $ВС$. Таким образом построен ход лучей, выходящих из точки $S$. После преломления эти лучи расходятся. Изображение $S_1$ будет мнимым, т. к. источник расположен между главным фокусом и линзой.

Рассеивающая линза

Построение изображения в рассеивающей линзе показано на рисунке. Поскольку лучи после преломления в рассеивающей линзе не пересекаются, то в фокусе ее собираются продолжения этих лучей. Получаемое изображение, следовательно, является мнимым и прямым. Изображение предмета расположено всегда между фокусом и оптическим центром линзы и поэтому оно всегда уменьшенное.

Формула тонкой линзы

Используя законы геометрии, в частности, подобие треугольников, можно вывести формулу, связывающую расстояние $d$ от предмета до линзы, расстояние $d_1$ от изображения до линзы и фокусное расстояние линзы $f$:

Уравнения называют формулой тонкой линзы. Величины, входящие в формулу, могут быть как положительными, так и отрицательными. Фокусное расстояние $f$ собирающей линзы считается положительным, а рассеивающей — отрицательным. Расстояние $d$ от линзы до предмета положительно, если это действительная светящаяся точка, и отрицательно, если мнимая (т. е. если на линзу падает сходящийся пучок лучей, продолжение которых сходится в одной точке). Расстояние $d_1$ от изображения до линзы положительно, если изображение действительное, и отрицательно, если оно мнимое. Учитывая сказанное, перед каждым членом в формулах ставят знак «+» или «-». Если знаки величин, входящих в формулы, неизвестны, ставят «+». Если в результате вычислений у какой-либо из величин получается знак «-», значит, эта величина — мнимая.

Увеличение линзы

Линейным увеличением $Г$ линзы называется отношение линейного размера изображения $H$ к линейному размеру предмета $h$: $Г=/$

Увеличение линзы равно отношению расстояния от изображения до линзы к расстоянию от линзы до предмета:

Линзы являются основной частью фотоаппарата, проекционного аппарата, микроскопа и телескопа. В глазу есть своя линза — хрусталик.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *