4.3 Сложные полупроводники.
Их основной состав образован двумя или более элементами. Наиболее широко в производстве РЭА применяются двойные соединения следующих типов:
1. А IV В IV
Единственным соединением такого типа является карбид кремния — SiC. Является очень прочным, твердым материалом с повышенной термостойкостью. Ширина запретной зоны составляет W=3,2эВ. Большое значение ширины запретной зоны позволяет создавать на основе карбида кремния п/п элементы рабочая температура которых достигает 700 о С.
2. А III В V
Это соединение бора, индия, галлия, алюминия (III гр.) с азотом, фосфором, сурьмой, мышьяком (Vгр.). Широко используются следующие материалы:
2.1 арсенид галлия GaAs. W=1,4эВ. Применяется в производстве туннельных, импульсных, ВЧ- диодов, полевых транзисторов, элементов микросхемотехники.
2.2 фосфид галлия GaР W=2,24эВ. Применяется в производстве мощных выходных транзисторов, светодиодов, солнечных батарей.
2.3 антимонид индия InSb. Обладает свойством изменять свое сопротивление при воздействии магнитного поля и обладает фоточувствительностью. Используют в датчиках магнитного излучения и в производстве магниторезисторов.
3. А II В VI
Это соединения цинка, кадмия, ртути (II гр) с серой селеном и теллуром (VIгр). Такие соединения называются халькогенидами. Все халькогениды обладают высокой чувствительностью к излучению от инфракрасного до рентгеновского спектра, проявляя фоторезистивные и люминесцентные свойства. Широко применяются халькогениды цинка (сульфид, теллурид, селенид). Самым чувствительным фоторезистом в видимой части спектра сульфид кадмия.
Применяется в качестве люминофора, для изготовления дозиметров различного излучения, счетчиков частиц и т. д.
5. Магнитные материалы
Магнитомягкие материалы (Изучить самостоятельно)
Магнитотвердые материалы (Изучить самостоятельно)
5.3 Магнитные материалы специального назначения (Изучить самостоятельно)
Сложные полупроводники, их соединения
Свойства и виды (простые и сложные) полупроводниковых материалов. Основные методы промышленного получения монокристаллов соединений: метод Чохральского, направленная кристаллизация. Классификация и общая характеристика полупроводниковых соединений.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | доклад |
Язык | русский |
Дата добавления | 15.10.2011 |
Размер файла | 18,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Научно-технический прогресс немыслим без электроники. Интенсивное развитие электроники связано с появлением новых разнообразных полупроводниковых приборов и интегральных микросхем, которые находят широкое применение в вычислительной технике, автоматике, радиотехнике и телевидении, в установках измерительной техники, медицины, биологии и т.д.
Полупроводники представляют собой обширную группу веществ, занимающих по величине удельного сопротивления промежуточное положение между диэлектриками и проводниками. Диапазон удельного сопротивления полупроводников при комнатной температуре условно ограничивают значениями 106-108Ом-м. Отличительным свойством полупроводников является сильная зависимость их удельного сопротивления от концентрации примесей. При введении примесей изменяется не только значение проводимости, но и характер ее температурной зависимости. У большинства полупроводников удельное сопротивление зависит также от температуры и других внешних энергетических воздействий (свет, электрическое и магнитное поле, ионизирующее излучение и т.д.). На управлении с помощью тепла, света, электрического поля, механических усилий электропроводностью полупроводников основана работа терморезисторов (термисторов), фоторезисторов, нелинейных резисторов (варисторов), тензорезисторов.
Полупроводниковые материалы по химическому составу можно разделить на простые и сложные.
Сложными полупроводниковыми материалами являются химические соединения, обладающие полупроводниковыми свойствами и включающие два, три и более элементов. Полупроводниковые соединения, состоящие из двух элементов, приято называть бинарными. Они обозначаются буквами латинского алфавита с цифровыми индексами (римские цифры над буквами обозначаются группу в периодической системе, а арабские цифры под буквами — стехиометрический коэффициент): АШВV (GaAs, JnSb), AIIBVI(CdS. ZnSe), AIVBVI(PbTe), AIVBIV(SiC), A2VB3VI(Bi2Te3) и т.д.
СЛОмЖНЫЕ ПОЛУПРОВОДНИКИм, неорганические химические соединения, обладающие полупроводниковыми свойствами (см. ПОЛУПРОВОДНИКИ). К сложным полупроводниковым материалам относятся также аморфные и стеклообразные полупроводники (см. АМОРФНЫЕ И СТЕКЛООБРАЗНЫЕ ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ).
К двойным полупроводниковым фазам относятся двойные полупроводниковые соединения и твердые растворы на их основе. Химические связи в этих фазах смешанные с преобладанием ковалентной, иногда это ковалентно-ионно-металлические связи, реже — ковалентно-ионные. Двойные алмазоподобные полупроводниковые фазы возникают при образовании sp3-гибридных химических связей и для них характерно тетраэдрическое расположение атомов в первой координационной сфере. К двойным алмазоподобным фазам относятся многие соединения классов AIIIBV, AIIBVI, AIBVII, AIII2BVI3, твердые растворы на основе этих соединений, а также карбид кремния (см. КРЕМНИЯ КАРБИД), который является единственным бинарным соединением, образованным полупроводниковыми элементами IV группы. Широкое применение в полупроводниковом приборостроении имеют двойные полупроводниковые соединения AIIIBV, AIIBVI, AIVBVI.
Полупроводниковые соединения A III B V
Являются ближайшими электронными аналогами кремния и германия, относятся к алмазоподобным полупроводникам. Образуются в результате взаимодействия элементов IIIА подгруппы Периодической системы (бора, алюминия, галлия, индия) с элементами VА подгруппы (азотом, фосфором, мышьяком и сурьмой). Висмут и таллий не образуют соединений рассматриваемого ряда. За счет частичного перераспределения электронов атомы AIII и BV в такой структуре оказываются разноименно заряженными. Поэтому связи в кристаллах AIIIBV не полностью ковалентные, а частично ионные. Соединения AIIIBV принято классифицировать по металлоидному ряду: нитриды, фосфиды, арсениды, антимониды. Фосфиды, арсениды и антимониды имеют кристаллическую кубическую решетку типа сфалерита (см. СФАЛЕРИТ). Для нитридов характерна гексагональная решетка типа вюрцита. В решетке того и другого типов каждый атом элемента III группы находится в тетраэдрическом окружении четырех атомов элемента V группы и наоборот. Структура сфалерита не имеет центра симметрии.
В кристаллах AIIIBVреализуется донорно-акцепторная связь. Из четырех ковалентных связей, которыми каждый атом встраивается в решетку, три образуются обобществлением валентный электронов атомов AIII и BV, а четвертая связь осуществляется неподеленной парой валентных электронов атомов BV.
За исключение антимонидов все соединения разлагаются при нагревании. Температура плавления соединений лежит выше температуры плавления образующих его компонентов (исключение — антимонид индия (см. ИНДИЯ АНТИМОНИД)).
Полупроводниковые соединения образуют гомологический ряд, в котором наблюдается закономерное изменение многих свойств при изменении атомных номеров компонентов. Внутри каждой группы соединений аналогов (фосфидов, арсенидов и антимонидов) наблюдается уменьшение температуры плавления, твердости и ширины запрещенной зоны с ростом суммарного атомного номера и атомных масс входящих в соединение элементов и возрастание подвижности носителей заряда, особенно электронов. Подвижность носителей заряда в полупроводниках AIIIBV определяется в основном рассеянием электронов и дырок на оптических тепловых колебаниях решетки.
Основным методом промышленного получения монокристаллов соединений AIIIBV является метод Чохральского, для разлагающихся соединений в варианте с жидкостной герметизацией расплава (см. методы выращивания кристаллов (см. МЕТОДЫ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ)). Используются также методы направленной кристаллизации. Легирование кристаллов с целью получения необходимых электрофизических свойств осуществляется в процессе выращивания.
Наиболее широко применение среди этой группы материалов имеют арсенид галлия (см. ГАЛЛИЯ АРСЕНИД) и фосфид индия (см. ИНДИЯ ФОСФИД). Для изготовления ряда приборов электронной техники применяются также арсенид индия (см. ИНДИЯ АРСЕНИД), антимонид индия (см. ИНДИЯ АНТИМОНИД), антимонид галлия (см. ГАЛЛИЯ АНТИМОНИД) и другие материалы.
Соединения AIIIBVиспользуются в производстве полупроводниковых приборов различного назначения: СВЧ-интегральные схемы, светодиоды, фоторезисторы, лазеры, приемники ИК-излучения, туннельные диоды и др.
На основе соединений AIIIBV образуются твердые растворы замещения. При изменении состава твердого раствора можно управлять шириной запрещенной зоны соединений. Изменение ширины запрещенной зоны сопровождается соответствующим смещением спектров оптического поглощения и пропускания, люминесценции и фоточувствительности. С изменением состава твердого раствора изменяются значения диэлектрической проницаемости и показателя преломления в ряде систем при определенных соотношениях между компонентами можно получить качественно новое сочетание свойств. Например, в твердых растворах GaAs1-yPy и AlxGa1-xAs сочетаются достаточно широкая запрещенная зона и высокий квантовый выход межзонной излучательной рекомбинации. На основе тройных и четверных твердых растворов соединений AIIIBVсоздаются гетеропереходы (см. ГЕТЕРОПЕРЕХОД) и приборы на их основе.
Полупроводниковые соединения A II B VI
К соединениям AIIBVI относят халькогениды цинка, кадмия и ртути. Среди них выделяют сульфиды, селениды и теллуриды. Оксиды указанных металлов в эту группу полупроводниковых соединений не входят (см. Оксидные полупроводники (см. ОКСИДНЫЕ ПОЛУПРОВОДНИКИ)). Соединения AIIBVI являются алмазоподобными полупроводниками и кристаллизуются в структуре сфалерита или вюрцита. CdS, CdSe, CdTe, ZnS могут существовать как в кубической структуре сфалерита, так и в гексагональной структуре вюрцита.
Химическая связь носит смешанный ковалентно-ионный характер. Ионная составляющая связи в этих соединениях достигает 45—70%. Большая доля ионной составляющей связи в соединениях AIIBVI по сравнению с полупроводниками AIIIBV обусловлена большими различиями в электроотрицательности (см. ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ) элементов, образующих соединение. Это приводит к большим значениям ширины запрещенной зоны и более низким значениям подвижности носителей заряда в рядах изоэлектронных аналогов (см. ИЗОЭЛЕКТРОННЫЕ АНАЛОГИ). С ростом средней атомной массы во всех трех гомологичных рядах закономерно уменьшается ширина запрещенной зоны и температура плавления соединений. В ряду халькогенидов сульфиды — селениды — теллуриды уменьшается температура плавления, ширина запрещенной зоны, удельное сопротивление, подвижность носителей заряда возрастает.
Один из основных механизмов образования фаз переменного состава на основе этих соединений (особенно в случае соединений с большой шириной запрещенной зоны) состоит в том, что избыточные атомы компонентов располагаются в узлах своей подрешетки, а в другой подрешетке возникают вакансии, образуются растворы вычитания (см. твердые растворы (см. ТВЕРДЫЕ РАСТВОРЫ)). Удельное сопротивление и тип проводимости в этих соединениях определяются не столько легирующими примесями, сколько характерными для них структурными дефектами, связанными с отклонением их состава от стехиометрического. Избыток металлической составляющей обуславливает электронную проводимость, избыток халькогенов — дырочную.
Большинство соединений AIIBVI относится к технологически трудным материалам. Высокие температуры плавления и большие значения упругости пара составляющих компонентов затрудняют получение совершенных монокристаллов. Поликристаллические халькогениды обычно получают путем их осаждения из растворов (ZnS, CdS,CdSe) или сплавлением исходных компонентов (ZnSe, ZnTe, CdTe), монокристаллические — направленной кристаллизацией, сплавлением компонентов или выращиванием из расплава или с помощью химических реакций в газовой фазе.
Халькогениды обладают высокой чувствительностью к излучению в области от инфракрасной до рентгеновской. У них достаточно сильно проявляются фоторезистивные и люминесцентные свойства, некоторые их них обладают пьезоэлектрическим эффектом.
Монокристаллы ZnS и спеченные поликристаллические блоки обладают высокой прозрачностью в области ИК-спектра, и используются в качестве входных окон и линз в оптико-электронных устройствах. Наличие пьезоэлектрического эффекта у пленок ZnS позволило применять их в некоторых акустических устройствах. Сульфид цинка (ZnS) и сульфид цинка-кадмия ZnXCd1-XS используются для изготовления квантоскопов голубого и синего цвета излучения, квантоскопов и приемников УФ-излучения.
Селенид цинка ZnSe проявляет фоторезистивные, фото- и электролюминесцентные свойства, имеет высокую прозрачность в ИК-области. Оптическую керамику на основе ZnSe применяют для изготовления входных окон и линз в оптико-электронных устройствах. Теллурид цинка ZnTe обладает электролюминесцентными и фоторезистивными свойствами.
Наилучшие солнечные элементы на основе CdTe включают гетеропереход с CdS в качестве оконного слоя. Оксид олова используется как прозрачный контакт и просветляющее покрытие. p-i-n-структуры с гетеропереходом CdTe/ZnTe обладают высокой подвижностью носителей заряда, а солнечные элементы на их основе — высокими значениями КПД, от 10 до 16%.
Теллурид кадмия (CdTe) и теллурид цинка-кадмия (CdZnTe) используются для изготовления электрооптических модуляторов, приемников радиационного и ИК-излучения и других оптических элементов ИК-оптических систем. Селенид кадмия, сульфид и сульфоселенид кадмия используются для изготовления преобразователей длин волн лазерного излучения, квантоскопов красного, оранжевого, желтого и зеленого цвета излучения. монокристалл кристализация полупроводниковое соединение
Полупроводниковые соединения A IV B VI
Соединения этого класса кристаллизуются либо в кубической структуре типа NaCl (PbS, PbSe, PbTe, SnTe, высокотемпературная модификация GeTe), либо в орторомбической структуре, которую можно рассматривать как деформированную решетку типа NaCl (GeS, GeSe, низкотемпературная модификация GeTe, SnS, SnSe). Связи между атомами в соединениях этого типа смешанные ионно-ковалентные.
Основное применение в полупроводниковом приборостроении имеют кристаллы халькогенидов свинца PbS, PbSe, PbTe. Это узкозонные полупроводники, ширина запрещенной зоны составляет, соответственно для PbS, PbSe, PbTe — 0,39, 0,27 и 0,32 эВ. Электрофизические свойства халькогенидов свинца сильно зависят от степени отклонения от стехиометрии: при избытке атомов свинца кристаллы имеют n-тип проводимости, при избытке халькогена — р-тип проводимости. Атомы элементов I группы (Na, Cu, Ag), замещают свинец и являются акцепторами, атомы трехвалентных металлов, заменяя свинец, являются донорами, донорами в этих материалах являются атомы галогенов.
Энергетические уровни большинства примесей в халькогенидах свинца сливаются с краем соответствующей зоны, поэтому концентрация носителей заряда в них практически не зависит от температуры, вплоть до наступления собственной электропроводности.
Тонкие пленки и поликристаллические слои халькогенидов свинца обладают высокой фоточувствительностью в далекой ИК-области спектра. Благодаря хорошим фотоэлектрическим свойствам халькогениды свинца используются для изготовления фоторезисторов и применяются в качестве детекторов ИК-излучения. Тонкопленочные детекторы на основе сульфида свинца работают в спектральном интервале 0,6—3 мкм и интервале температур 77—350 К в зависимости от предъявляемых требований и особенностей их применения. В список наиболее распространенных областей применения ИК-фотоприемников на основе сульфида свинца (PbS) входят звездные, спектрографические датчики, медицинские, исследовательские инструменты, сортирующие, счетные, контролирующие приборы, регистраторы пламени, системы определения положения тепловых источников, управление ракетами, следящие системы, исследования в области летательных аппаратов, измерение мощности в лазерных системах.
При низких температурах в халькогенидах свинца возможна эффективная излучательная рекомбинация, что позволяет создавать на их основе лазеры инжекционного типа. Халькогениды свинца широко используются в инфракрасной оптоэлектронике, в основном для изготовления лазеров и светодиодов, работающих в среднем и дальнем ИК-диапазонах. Кроме этого, халькогениды свинца обладают благоприятным сочетанием свойств для изготовления термоэлектрических генераторов. Твердые растворы на основе халькогенида свинца используются для изготовления фотоприемников с высокой спектральной чувствительностью в диапазоне 8—14 мкм. Халькогениды свинца относятся к числу хорошо известных перспективных термоэлектрических материалов, работающих в области средних температур (600 — 900 К). В последние годы интерес к этим материалам возрос в связи с возможностью значительного увеличения термоэлектрической добротности в тонкопленочных структурах на основе халькогенидов свинца.
Тройные полупроводниковые соединения
Химические связи в тройных полупроводниковых соединениях, так же как и в двойных, носят смешанный коваленто-ионный или ковалентно-ионно-металлический характер. Специфика связей обусловлена наличием атомов трех сортов. Тройные полупроводниковые соединения могут быть разделены на одноанионные (двухкатионные) и двуханионные (однокатионные). Примером одноанионных соединений могут служить соединения типа AIIBIVCV2, AIBIV2CV3 .двуханионных — AII2BVCVII, AIII2BIVCIV.
Тройные полупроводниковые соединения образуются при возникновении sp3-гибридных связей и характеризуются тетраэдрическим расположением атомов в пространстве. Кристаллизуются в структуру сфалерита, вюрцита, халькопирита, но в одной из подрешеток содержатся атомы двух сортов, размещенные либо упорядоченно, либо неупорядоченно. В случае неупорядоченного размещения атомов двух сортов в соответствующей решетке возникает структура сфалерита или вюрцита, в случае упорядоченного размещения кубическая решетка испытывает тетрагональное искажение и возникает структура халькопирита (антихалькопирита), которую можно рассматривать как удвоенную вдоль оси с в направлении ячейку сфалерита.
Однако в полупроводниковом приборостроении лишь ограниченное количество тройных полупроводниковых соединений находит применение.
Размещено на Allbest.ru
Подобные документы
Роль полупроводников в микро- и оптоэлектронике. Классификация полупроводниковых материалов. Диапазон электрических параметров различных полупроводников. Особые физико-химические свойства кремния. Применение германия в полупроводниковых приборах.
контрольная работа [1,0 M], добавлен 15.12.2015
Электрофизические свойства полупроводниковых материалов, их применение для изготовления полупроводниковых приборов и устройств микроэлектроники. Основы зонной теории твердого тела. Энергетические зоны полупроводников. Физические основы наноэлектроники.
курсовая работа [3,1 M], добавлен 28.03.2016
Основные свойства материалов. Обзор современного состояния производства полупроводниковых соединений. Расчет легирования кристалла. Технологический процесс выращивания монокристаллического фосфида галлия марки ФГДЦЧ-5-17. Допущения Пфанна и Боомгардта.
курсовая работа [1,2 M], добавлен 02.04.2014
Технологический маршрут производства полупроводниковых компонентов. Изготовление полупроводниковых пластин. Установка кристаллов в кристаллодержатели. Сборка и герметизация полупроводниковых приборов. Проверка качества и электрических характеристик.
курсовая работа [3,0 M], добавлен 24.11.2013
Анализ технологии изготовления плат полупроводниковых интегральных микросхем – такого рода микросхем, элементы которых выполнены в приповерхностном слое полупроводниковой подложки. Характеристика монокристаллического кремния. Выращивание монокристаллов.
курсовая работа [2,0 M], добавлен 03.12.2010
Разработка прибора, предназначенного для изучения полупроводниковых диодов. Классификация полупроводниковых диодов, характеристика их видов. Принципиальная схема лабораторного стенда по изучению вольтамперных характеристик полупроводниковых диодов.
курсовая работа [1,2 M], добавлен 20.11.2013
Эксплуатация полупроводниковых преобразователей и устройств: недостатки полупроводниковых приборов, виды защит. Статические преобразователи электроэнергии: трансформаторы. Назначение, классификация, виды, конструкция. Работа трансформатора под нагрузкой.
СЛОЖНЫЕ ПОЛУПРОВОДНИКИ
СЛО́ЖНЫЕ ПОЛУПРОВОДНИКИ́, неорганические химические соединения, обладающие полупроводниковыми свойствами (см. ПОЛУПРОВОДНИКИ) . К сложным полупроводниковым материалам относятся также аморфные и стеклообразные полупроводники (см. АМОРФНЫЕ И СТЕКЛООБРАЗНЫЕ ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ) .
К двойным полупроводниковым фазам относятся двойные полупроводниковые соединения и твердые растворы на их основе. Химические связи в этих фазах смешанные с преобладанием ковалентной, иногда это ковалентно-ионно-металлические связи, реже — ковалентно-ионные. Двойные алмазоподобные полупроводниковые фазы возникают при образовании sp 3 -гибридных химических связей и для них характерно тетраэдрическое расположение атомов в первой координационной сфере. К двойным алмазоподобным фазам относятся многие соединения классов A III B V , A II B VI , A I B VII , A III 2B VI 3, твердые растворы на основе этих соединений, а также карбид кремния (см. КРЕМНИЯ КАРБИД) , который является единственным бинарным соединением, образованным полупроводниковыми элементами IV группы. Широкое применение в полупроводниковом приборостроении имеют двойные полупроводниковые соединения A III B V , A II B VI , A IV B VI .
Полупроводниковые соединения A III B V
Являются ближайшими электронными аналогами кремния и германия, относятся к алмазоподобным полупроводникам. Образуются в результате взаимодействия элементов IIIА подгруппы Периодической системы (бора, алюминия, галлия, индия) с элементами VА подгруппы (азотом, фосфором, мышьяком и сурьмой). Висмут и таллий не образуют соединений рассматриваемого ряда. За счет частичного перераспределения электронов атомы A III и B V в такой структуре оказываются разноименно заряженными. Поэтому связи в кристаллах A III B V не полностью ковалентные, а частично ионные. Соединения A III B V принято классифицировать по металлоидному ряду: нитриды, фосфиды, арсениды, антимониды. Фосфиды, арсениды и антимониды имеют кристаллическую кубическую решетку типа сфалерита (см. СФАЛЕРИТ) . Для нитридов характерна гексагональная решетка типа вюрцита. В решетке того и другого типов каждый атом элемента III группы находится в тетраэдрическом окружении четырех атомов элемента V группы и наоборот. Структура сфалерита не имеет центра симметрии.
В кристаллах A III B V реализуется донорно-акцепторная связь. Из четырех ковалентных связей, которыми каждый атом встраивается в решетку, три образуются обобществлением валентный электронов атомов A III и B V , а четвертая связь осуществляется неподеленной парой валентных электронов атомов B V .
За исключение антимонидов все соединения разлагаются при нагревании. Температура плавления соединений лежит выше температуры плавления образующих его компонентов (исключение — антимонид индия (см. ИНДИЯ АНТИМОНИД) ).
Полупроводниковые соединения образуют гомологический ряд, в котором наблюдается закономерное изменение многих свойств при изменении атомных номеров компонентов. Внутри каждой группы соединений аналогов (фосфидов, арсенидов и антимонидов) наблюдается уменьшение температуры плавления, твердости и ширины запрещенной зоны с ростом суммарного атомного номера и атомных масс входящих в соединение элементов и возрастание подвижности носителей заряда, особенно электронов. Подвижность носителей заряда в полупроводниках A III B V определяется в основном рассеянием электронов и дырок на оптических тепловых колебаниях решетки.
Основным методом промышленного получения монокристаллов соединений A III B V является метод Чохральского, для разлагающихся соединений в варианте с жидкостной герметизацией расплава (см. методы выращивания кристаллов (см. МЕТОДЫ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ) ). Используются также методы направленной кристаллизации. Легирование кристаллов с целью получения необходимых электрофизических свойств осуществляется в процессе выращивания.
Наиболее широко применение среди этой группы материалов имеют арсенид галлия (см. ГАЛЛИЯ АРСЕНИД) и фосфид индия (см. ИНДИЯ ФОСФИД) . Для изготовления ряда приборов электронной техники применяются также арсенид индия (см. ИНДИЯ АРСЕНИД) , антимонид индия (см. ИНДИЯ АНТИМОНИД) , антимонид галлия (см. ГАЛЛИЯ АНТИМОНИД) и другие материалы.
Соединения A III B V используются в производстве полупроводниковых приборов различного назначения: СВЧ-интегральные схемы, светодиоды, фоторезисторы, лазеры, приемники ИК-излучения, туннельные диоды и др.
На основе соединений A III B V образуются твердые растворы замещения. При изменении состава твердого раствора можно управлять шириной запрещенной зоны соединений. Изменение ширины запрещенной зоны сопровождается соответствующим смещением спектров оптического поглощения и пропускания, люминесценции и фоточувствительности. С изменением состава твердого раствора изменяются значения диэлектрической проницаемости и показателя преломления в ряде систем при определенных соотношениях между компонентами можно получить качественно новое сочетание свойств. Например, в твердых растворах GaAs1-yPy и AlxGa1-xAs сочетаются достаточно широкая запрещенная зона и высокий квантовый выход межзонной излучательной рекомбинации. На основе тройных и четверных твердых растворов соединений A III B V создаются гетеропереходы (см. ГЕТЕРОПЕРЕХОД) и приборы на их основе.
Полупроводниковые соединения A II B VI
К соединениям A II B VI относят халькогениды цинка, кадмия и ртути. Среди них выделяют сульфиды, селениды и теллуриды. Оксиды указанных металлов в эту группу полупроводниковых соединений не входят (см. Оксидные полупроводники (см. ОКСИДНЫЕ ПОЛУПРОВОДНИКИ) ). Соединения A II B VI являются алмазоподобными полупроводниками и кристаллизуются в структуре сфалерита или вюрцита. CdS, CdSe, CdTe, ZnS могут существовать как в кубической структуре сфалерита, так и в гексагональной структуре вюрцита.
Химическая связь носит смешанный ковалентно-ионный характер. Ионная составляющая связи в этих соединениях достигает 45—70%. Большая доля ионной составляющей связи в соединениях A II B VI по сравнению с полупроводниками A III B V обусловлена большими различиями в электроотрицательности (см. ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ) элементов, образующих соединение. Это приводит к большим значениям ширины запрещенной зоны и более низким значениям подвижности носителей заряда в рядах изоэлектронных аналогов (см. ИЗОЭЛЕКТРОННЫЕ АНАЛОГИ) . С ростом средней атомной массы во всех трех гомологичных рядах закономерно уменьшается ширина запрещенной зоны и температура плавления соединений. В ряду халькогенидов сульфиды — селениды — теллуриды уменьшается температура плавления, ширина запрещенной зоны, удельное сопротивление, подвижность носителей заряда возрастает.
Один из основных механизмов образования фаз переменного состава на основе этих соединений (особенно в случае соединений с большой шириной запрещенной зоны) состоит в том, что избыточные атомы компонентов располагаются в узлах своей подрешетки, а в другой подрешетке возникают вакансии, образуются растворы вычитания (см. твердые растворы (см. ТВЕРДЫЕ РАСТВОРЫ) ). Удельное сопротивление и тип проводимости в этих соединениях определяются не столько легирующими примесями, сколько характерными для них структурными дефектами, связанными с отклонением их состава от стехиометрического. Избыток металлической составляющей обуславливает электронную проводимость, избыток халькогенов — дырочную.
Большинство соединений A II B VI относится к технологически трудным материалам. Высокие температуры плавления и большие значения упругости пара составляющих компонентов затрудняют получение совершенных монокристаллов. Поликристаллические халькогениды обычно получают путем их осаждения из растворов (ZnS, CdS,CdSe) или сплавлением исходных компонентов (ZnSe, ZnTe, CdTe), монокристаллические — направленной кристаллизацией, сплавлением компонентов или выращиванием из расплава или с помощью химических реакций в газовой фазе.
Халькогениды обладают высокой чувствительностью к излучению в области от инфракрасной до рентгеновской. У них достаточно сильно проявляются фоторезистивные и люминесцентные свойства, некоторые их них обладают пьезоэлектрическим эффектом.
Монокристаллы ZnS и спеченные поликристаллические блоки обладают высокой прозрачностью в области ИК-спектра, и используются в качестве входных окон и линз в оптико-электронных устройствах. Наличие пьезоэлектрического эффекта у пленок ZnS позволило применять их в некоторых акустических устройствах. Сульфид цинка (ZnS) и сульфид цинка-кадмия ZnXCd1-XS используются для изготовления квантоскопов голубого и синего цвета излучения, квантоскопов и приемников УФ-излучения.
Селенид цинка ZnSe проявляет фоторезистивные, фото- и электролюминесцентные свойства, имеет высокую прозрачность в ИК-области. Оптическую керамику на основе ZnSe применяют для изготовления входных окон и линз в оптико-электронных устройствах. Теллурид цинка ZnTe обладает электролюминесцентными и фоторезистивными свойствами.
Наилучшие солнечные элементы на основе CdTe включают гетеропереход с CdS в качестве оконного слоя. Оксид олова используется как прозрачный контакт и просветляющее покрытие. p-i-n-структуры с гетеропереходом CdTe/ZnTe обладают высокой подвижностью носителей заряда, а солнечные элементы на их основе — высокими значениями КПД, от 10 до 16%.
Теллурид кадмия (CdTe) и теллурид цинка-кадмия (CdZnTe) используются для изготовления электрооптических модуляторов, приемников радиационного и ИК-излучения и других оптических элементов ИК-оптических систем. Селенид кадмия, сульфид и сульфоселенид кадмия используются для изготовления преобразователей длин волн лазерного излучения, квантоскопов красного, оранжевого, желтого и зеленого цвета излучения.
Полупроводниковые соединения A IV B VI
Соединения этого класса кристаллизуются либо в кубической структуре типа NaCl (PbS, PbSe, PbTe, SnTe, высокотемпературная модификация GeTe), либо в орторомбической структуре, которую можно рассматривать как деформированную решетку типа NaCl (GeS, GeSe, низкотемпературная модификация GeTe, SnS, SnSe). Связи между атомами в соединениях этого типа смешанные ионно-ковалентные.
Основное применение в полупроводниковом приборостроении имеют кристаллы халькогенидов свинца PbS, PbSe, PbTe. Это узкозонные полупроводники, ширина запрещенной зоны составляет, соответственно для PbS, PbSe, PbTe — 0,39, 0,27 и 0,32 эВ. Электрофизические свойства халькогенидов свинца сильно зависят от степени отклонения от стехиометрии: при избытке атомов свинца кристаллы имеют n-тип проводимости, при избытке халькогена — р-тип проводимости. Атомы элементов I группы (Na, Cu, Ag), замещают свинец и являются акцепторами, атомы трехвалентных металлов, заменяя свинец, являются донорами, донорами в этих материалах являются атомы галогенов.
Энергетические уровни большинства примесей в халькогенидах свинца сливаются с краем соответствующей зоны, поэтому концентрация носителей заряда в них практически не зависит от температуры, вплоть до наступления собственной электропроводности.
Тонкие пленки и поликристаллические слои халькогенидов свинца обладают высокой фоточувствительностью в далекой ИК-области спектра. Благодаря хорошим фотоэлектрическим свойствам халькогениды свинца используются для изготовления фоторезисторов и применяются в качестве детекторов ИК-излучения. Тонкопленочные детекторы на основе сульфида свинца работают в спектральном интервале 0,6—3 мкм и интервале температур 77—350 К в зависимости от предъявляемых требований и особенностей их применения. В список наиболее распространенных областей применения ИК-фотоприемников на основе сульфида свинца (PbS) входят звездные, спектрографические датчики, медицинские, исследовательские инструменты, сортирующие, счетные, контролирующие приборы, регистраторы пламени, системы определения положения тепловых источников, управление ракетами, следящие системы, исследования в области летательных аппаратов, измерение мощности в лазерных системах.
При низких температурах в халькогенидах свинца возможна эффективная излучательная рекомбинация, что позволяет создавать на их основе лазеры инжекционного типа. Халькогениды свинца широко используются в инфракрасной оптоэлектронике, в основном для изготовления лазеров и светодиодов, работающих в среднем и дальнем ИК-диапазонах. Кроме этого, халькогениды свинца обладают благоприятным сочетанием свойств для изготовления термоэлектрических генераторов. Твердые растворы на основе халькогенида свинца используются для изготовления фотоприемников с высокой спектральной чувствительностью в диапазоне 8—14 мкм. Халькогениды свинца относятся к числу хорошо известных перспективных термоэлектрических материалов, работающих в области средних температур (600 — 900 К). В последние годы интерес к этим материалам возрос в связи с возможностью значительного увеличения термоэлектрической добротности в тонкопленочных структурах на основе халькогенидов свинца.
Тройные полупроводниковые соединения
Химические связи в тройных полупроводниковых соединениях, так же как и в двойных, носят смешанный коваленто-ионный или ковалентно-ионно-металлический характер. Специфика связей обусловлена наличием атомов трех сортов. Тройные полупроводниковые соединения могут быть разделены на одноанионные (двухкатионные) и двуханионные (однокатионные). Примером одноанионных соединений могут служить соединения типа A II B IV C V 2, A I B IV 2C V 3 .двуханионных — A II 2B V C VII , A III 2B IV C IV .
Тройные полупроводниковые соединения образуются при возникновении sp 3 -гибридных связей и характеризуются тетраэдрическим расположением атомов в пространстве. Кристаллизуются в структуру сфалерита, вюрцита, халькопирита, но в одной из подрешеток содержатся атомы двух сортов, размещенные либо упорядоченно, либо неупорядоченно. В случае неупорядоченного размещения атомов двух сортов в соответствующей решетке возникает структура сфалерита или вюрцита, в случае упорядоченного размещения кубическая решетка испытывает тетрагональное искажение и возникает структура халькопирита (антихалькопирита), которую можно рассматривать как удвоенную вдоль оси с в направлении ячейку сфалерита.
Однако в полупроводниковом приборостроении лишь ограниченное количество тройных полупроводниковых соединений находит применение.
Энциклопедический словарь . 2009 .
Полезное
Смотреть что такое «СЛОЖНЫЕ ПОЛУПРОВОДНИКИ» в других словарях:
ПОЛУПРОВОДНИКИ — широкий класс в в, характеризующийся значениями уд. электропроводности s, промежуточными между уд. электропроводностью металлов s=106 104 Ом 1 см 1 и хороших диэлектриков s=10 10 10 12 Ом 1см 1 (электропроводность указана при комнатной темп ре).… … Физическая энциклопедия
Полупроводники — вещества, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов… … Википедия
Полупроводники — широкий класс веществ, характеризующихся значениями электропроводности σ, промежуточными между электропроводностью металлов (См. Металлы) (σ Полупроводники 106 104 ом 1 см 1) и хороших диэлектриков (См. Диэлектрики) (σ ≤ 10 10 10 12 ом… … Большая советская энциклопедия
ОКСИДНЫЕ ПОЛУПРОВОДНИКИ — ОКСИДНЫЕ ПОЛУПРОВОДНИКИ, бинарные химические соединения, один из компонентов которых металл, а другой кислород. К этому классу полупроводниковых материалов относятся такие вещества, как Cu2O, ZnO, CdO, NiO, Fe2O3, MnO, Mn3O4 и др. Это соединения… … Энциклопедический словарь
полупроводниковые материалы — полупроводники, применяемые для изготовления электронных приборов и устройств. Используют главным образом кристаллические полупроводниковые материалы (например, легированные монокристаллы кремния или германия, химические соединения некоторых… … Энциклопедический словарь
Абдуллаев, Гасан Мамедбагир оглы — Абдуллаев Гасан Мамедбагир оглы Дата рождения: 20 августа 1918(1918 08 20) Место рождения: деревня Яйджи Джульфинский район Нахичеванской АР Дата смерти: 1 сентября 1 … Википедия
Абдуллаев Гасан Мамед Багир оглы — (р. 20.8.1918, с. Яйджи, ныне Джульфинский район Нахичеванской АССР), советский физик, член корреспондент АН СССР (1970), академик (1967) и президент (с 1970) АН Азербайджанской ССР. Член КПСС с 1942. Окончил Азербайджанский педагогический… … Большая советская энциклопедия
Абдуллаев — I Абдуллаев Абдулхак Аксакалович (р. 30.12.1918, город Туркестан, ныне Казахской ССР), живописец, заслуженный деятель искусств Узбекской ССР (1950). Учился в Самаркандском художественном техникуме (1931 36) у Л. Л. Бурэ, 3. М. Ковалевской … Большая советская энциклопедия
Полупроводник — Монокристаллический кремний полупроводниковый материал, наиболее широко … Википедия
Полупроводник — (Semiconductor) Определение полупроводника, строение полупроводников и принцип действия Информация об определении полупроводника, строение полупроводников и принцип действия Содержание Содержание 1. Исторические 2. Свойства 3. Строение… … Энциклопедия инвестора
Большая Энциклопедия Нефти и Газа
Сложные полупроводники состоят из атомов двух или большего числа химических элементов. К сложным полупроводникам относятся соединения элементов IV группы периодической системы элементов Д. И. Менделеева ( А В) — карбид кремния, соединения элементов III и V групп ( AlllBv), соединения с серой, селеном и теллуром ( халькогениды), окислы некоторых металлов, многие двойные, тройные и четверные сплавы и твердые растворы, а также другие, более сложные соединения. [1]
Сложные полупроводники типа выпускаются промышленностью в широком ассортименте. Для характеристики отдельных марок полупроводников используются буквенно-цифровые обозначения. Первыми двумя буквами обозначается собственно полупроводник: АГ — арсенид галлия, ФГ — фосфид галлия, ГС — антимонид галлия, ИМ — арсенид индия, ФИ — фосфид индия, ИС — антимонид индия. Справа добавляется буква, обозначающая тип электропроводимости: Э — электронный, Д — дырочный. [2]
Сложные полупроводники типа AU BV используются для изготовления диодов, транзисторов, сверхвысокочастотных приборов на основе эффекта Гана, модуляторов инфракрасного излучения, приемников излучения, солнечных батарей, лазеров, датчиков Холла, магниторезисторов и других приборов. В табл. 82 приведены некоторые физико-химические свойства фосфидов, арсеиидов и антимонидов галлия и индия. [3]
Сложные полупроводники типа AHIBV используются для изготовления диодов, транзисторов, сверхвысокочастотных приборов на основе эффекта Гана, модуляторов инфракрасного излучения, приемников излучения, солнечных батарей, лазеров, датчиков Холла, иагниторезисторов и других приборов. [4]
Для многих сложных полупроводников не известны данные, необходимые для расчета концентраций примеси, создающей глубокие уровни ( положение энрегетических уровней, эффективные плотности состояний и др.) и компенсирующей ее простой донорной или акцепторной примеси. Тогда концентрацию такой примеси, необходимой для создания в монокристалле полупроводника требуемых свойств, например удельного электрического сопротивления, определяют экспериментально. Для этого выращивают монокристаллы из расплавов с различным содержанием легирующей примеси ( проценты по массе), как это показано на рис. 4.17 для легированного примесью железа полуизолирующего фосфида индия. [5]
Технология получения монокристаллов сложных полупроводников является более сложным процессом, чем получение элементарных полупроводников. [6]
Известно около 1000 простых и сложных полупроводников . [7]
Выше отмечалось, что сложные полупроводники , за небольшим исключением, имеют практическую ценность только в высокочистом состоянии. [8]
Следовательно, структура зон сложных полупроводников типа халькопирита , за исключением некоторых особенностей, аналогична структурам зон алмазоподобных элементарных и бинарных полупроводников. [10]
Применимость этих формул к сложным полупроводникам , насколько нам известно, почти не проверялась, однако входе исследований, посвященных синтезу новых полупроводниковых материалов и предсказанию их свойств, вышеуказанные методы определения в могут оказать существенную помощь. [11]
Процессы, происходящие в сложных полупроводниках , до сих пор полностью не изучены и результаты во многом носят эмпирический характер. [12]
ПМ-СС происходят также в сложных полупроводниках , напр, во фруст-рированных тройных халькогенидных сплавах с широкой ( Cd1 JCMnxTe) и узкой ( Hg. Se) запрещенными зонами, где преобладающим при х 5л: Кр 0 16 является прямое антиферромагн. [14]
Влияние химических примесей на свойства сложных полупроводников точно такое же, как и на элементарные полупроводники, хотя во многих материалах на количество носителей заряда оказывают влияние также и дефекты кристаллической решетки ( вакансии и междоузлия), возникающие вследствие неполной стехиометрии. Наблюдаются также изменения валентности, обусловленные присутствием примесей в кристалле. Так, одновалентный литий, содержащийся в NiO, приводит к образованию ионов трехвалентного никеля в равной концентрации; эти ионы трехвалентного никеля непосредственно определяют количество носителей тока, а следовательно, и проводимость. [15]