Как определить кпд трансформатора
Перейти к содержимому

Как определить кпд трансформатора

  • автор:

7. Коэффициент полезного действия трансформатора.

Коэффициент полезного действия трансформатора (КПД) представляет собой отношение активной полезной мощности Р2, отдаваемой трансформатором нагрузке, к активной мощности Р1, потребляемой им из сети, т. е.

Высокие значения КПД трансформаторов (максимальное значение КПД в трансформаторах большой мощности достигает 0,98…0,99) не позволяют определять его с достаточной степенью точности путём непосредственного измерения мощностей Р1 и Р2. Поэтому ГОСТ рекомендует его вычислять косвенным методом по значению потерь мощности по следующей формуле:

где ΣP – сумма потерь в трансформаторе;

β – коэффициент загрузки трансформатора;

SH – номинальная мощность трансформатора, кВА или ВА;

β SHcosφ2 – отдаваемая трансформатором мощность Р2, квт или вт;

РХН – потери в стали трансформатора (квт или вт), равные мощности холостого хода при номинальном напряжении;

Р КН – электрические потери в обмотках трансформатора при номинальном токе и температуре 75 о .

Задавшись рядом значений β (от 0 до 1,25), можно получить зависимости η = ƒ(β) при cosφ2 =1 и cosφ2 = 0,8 (рис.5.10). С увеличением нагрузки трансформатора КПД резко возрастает, так как при этом общие потери в трансформаторе невелики с преобладанием постоянных потерь в стали. При некотором значении βопт кривая КПД достигает максимума, после чего начинает уменьшаться с увеличением нагрузки. Причиной этого является сильное увеличение электрических потерь в обмотках, возрастающих пропорционально квадрату тока, т. е. пропорционально β 2 , в то время как полезная мощность Р2 возрастает пропорционально β. Максимум КПД достигает при таком значении βOПТ, при котором потери в обмотках становятся равными потерям в стали:

Для серийных силовых трансформаторов

Указанные значения βOПТ получены при проектировании трансформаторов на минимум приведенных затрат (на их приобретение и эксплуатацию). Наиболее вероятная нагрузка трансформатора соответствует β = 0,5…0,7.

В трансформаторах максимум КПД выражен сравнительно слабо, т. е. он сохраняет высокое значение в довольно широком диапазоне изменения нагрузки (0,4 < β < 1,5).

При уменьшении cosφ2 КПД снижается (рис.5.10), так как возрастают токи I2 и I1, и увеличиваются потери в обмотках при одной и той же отдаваемой мощности.

Содержание отчёта

Паспортные данные исследуемого трансформатора и технические характеристики используемых приборов.

Характеристики холостого хода трансформатора. Расчёт параметров холостого хода.

Характеристики короткого замыкания. Расчёт параметров короткого замыкания.

Расчёт параметров схемы замещения и вычертить её для режима нагрузки.

Внешние характеристики трансформатора при cosφ2 =1 и cosφ2 = 0, построенные в одной системе координат. Определить изменение напряжения при номинальном токе.

Задаваясь значениями φ2 от 90 о до –90 о при I2=I2H (β=1), рассчитать и построить зависимость ∆U= ƒ(cosφ2).

На основании данных холостого хода и короткого замыкания рассчитать КПД трансформатора при cosφ2 =1 и cosφ2=0,8 и построить зависимость η= ƒ(β) для указанных значений cosφ2. Определить коэффициент загрузки трансформатора βопт, при котором достигается максимум КПД.

Дать оценку результатам испытаний.

Лабораторная работа №6

Параллельная работа трехфазных

трансформаторов

Цель работы: освоение методики опытной проверки обозначения зажимов обмотки, групп соединения обмоток трансформатора и исследование параллельной работы трансформаторов при различных условиях.

Содержание работы:

Ознакомиться с паспортными данными трансформаторов и обозначением зажимов обмоток.

Проверить правильность обозначения зажимов обмоток.

Определить группы соединений трансформатора для схем соединений обмоток Y/Y и Δ/Y.

Снять распределение нагрузки между параллельно работающими трансформаторами при одинаковых и разных коэффициентах трансформации и построить зависимость вторичных токов трансформаторов от тока нагрузки.

Пример расчета кпд трансформатора

Практическое занятие 7 «Расчёт параметров и КПД трансформаторов»

«Расчёт параметров и КПД трансформаторов»

Применение теоретических знаний для расчета основных параметров и КПД трансформатора.

Знать: назначение, устройство, принцип действия трансформатора

Уметь: рассчитывать коэффициент трансформации, номинальные токи первичной, вторичной обмоток; напряжение

Формирование: ПК 1.1, 1.2, 1.3, 1.4, 2.1, 2.3, 2.4, 3.1, 3.2, ОК 1,2,3,4,5

Трансформатор – это электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток той же частоты, но другого напряжения.

Принцип действия трансформатора основан на явлении электромагнитной индукции. Линии индукции магнитного поля, создаваемого переменным током в первичной обмотке,

благодаря наличию сердечника практически без потерь (без рассеяния) пронизывают витки вторичной обмотки.

Номинальная мощность трансформатора должна выбираться из следующего ряда (в кВА): 0,010, 0,016, 0,025, 0,040, 0,063, 0,100, 0,160, 0,250, 0,400, 0,630, 1,000, 1,600, 2,500, 4,000.Этот параметр находится путем деления суммарной мощности всех вторичных обмоток на коэффициент полезного действия трансформатора.

Коэффициент полезного действия зависит от мощности потерь в стали и меди и для

трансформаторов мощностью 0,010 кВА примерно составляет 75…85%, а для трансформаторов мощностью 5 кВА – 96…98%.

Коэффициент трансформации трансформатора тока — это отношение величины первичного тока к величине вторичного тока.

При расчетах коэффициент трансформации разделяют на:

Действительный коэффициент трансформации — это отношение действительного первичного тока к действительному вторичному току.

Номинальный коэффициент — это отношение номинального первичного тока к номинальному вторичному току.

Номинальные напряжения обмоток должны выбираться из ряда напряжений в вольтах: 6; 12; 28,5; 42; 115; 230; указанные напряжения могут иметь отклонения в большую или меньшую стороны на 0,5; 1; 2; 3; 5; 10; 15 %.Под номинальным напряжением понимается действующая величина напряжения, при которой может работать трансформатор.

Напряжение короткого замыкания представляет собой напряжение на первичной обмотке при замкнутых выводах вторичной обмотки и протекании номинального тока во вторичной обмотке.

Как правило, этот параметр указывают в процентах от номинального напряжения первичной обмотки и обозначают символами DUкз. Для трансформаторов мощностью 0,010 кВА этот параметр составляет 15…20%, для трансформаторов мощностью 5 кВА – 1,5…2,5%.Напряжение короткого замыкания показывает величину относительного превышения напряжения на вторичной обмотке на холостом ходу по сравнению с напряжением полностью нагруженной обмотки.

Напряжения холостого хода вторичных обмоток – это значения напряжений при номинальном напряжении первичной обмотки ненагруженного трансформатора. Эти напряжения превышают номинальные напряжения на величину напряжения короткого замыкания. Обычно этот параметр производитель не указывает в паспорте на трансформатор, но во избежание недоразумений покупатель трансформатора должен себе четко представлять, что при отсутствии нагрузки напряжения вторичных обмоток всегда несколько больше их номинальных значений.

Ток холостого хода – это ток первичной обмотки ненагруженного трансформатора при

номинальном напряжении. Ток холостого хода состоит из двух составляющих: активной и

реактивной. Активная составляющая определяется потерями в стали на вихревые токи,

реактивная – магнитным потоком рассеяния. Величина тока холостого хода может лежать в диапазоне от 1 мА (для трансформаторов мощностью 0,010 кВА) до 1 А (для трансформаторов мощностью 5 кВА). Наименьшие значения этого параметра имеют тороидальные трансформаторы, у которых реактивная составляющая тока в несколько раз меньше активной и ею можно пренебречь. Так, для трансформаторов мощностью 5 кВА значение тока холостого хода не превышает 200 мА

Ток переходного процесса включения (пусковой ток) – это максимальное (импульсное) значение тока, которое может протекать через первичную обмотку трансформатора в момент подключения трансформатора к питающей сети.

Номинальный ток первичной цепи, или можно сказать, номинальный первичный ток — это ток, протекающий по первичной обмотке трансформатора тока, при котором предусмотрена его длительная работа. Значение первичного номинального тока также указывается в паспорте на конкретный трансформатор тока.

Превышение температуры (температура перегрева) – это разница между температурой

трансформатора и температурой окружающей среды (обычно принимается 25°С) при работе трансформатора на номинальную нагрузку.

Испытательное напряжение рабочей частоты. Этот параметр характеризует электрическую прочность трансформатора, то есть способность без пробоя выдерживать напряжение, подаваемое на обмотку.

Тип трансформатора характеризуется коэффициентом трансформации, который равен отношению числа витков первичной обмотки к числу витков вторичной:

при k >1 ,трансформатор будет понижающим, при k

КПД – коэффициент полезного действия трансформатора

КПД – коэффициент полезного действия, одна из важнейших характеристик, определяющая эффективность работы устройства, относящее к трансформаторам. Рассмотрим особенности определения указанного показателя трансформатора с учётом принципа работы, конструкции данного электрооборудования и факторов, влияющих на эффективность эксплуатации.

Общие сведения о трансформаторах

Трансформатором называют электромагнитное устройство, преобразующим переменный ток с изменением значения напряжения. Принцип работы прибора предполагает использование электромагнитной индукции.

Аппарат состоит из следующих основных элементов:

  • первичной и вторичной обмоток;
  • сердечника, вокруг которого навиты обмотки.

Принцип работы трансформатора

Изменение характеристик достигается за счёт разного количества витков в обмотках на входе и выходе.

Ток на выходной катушке возбуждается за счёт создания магнитного потока при подаче напряжения на входные контакты.

Что такое КПД трансформатора и от чего зависит

Коэффициентом полезного действия (полная расшифровка данной аббревиатуры) называют отношение полезной электроэнергии к поданной на прибор.

Кроме энергии, показатель КПД может определяться расчётом по мощностным показателям при соотношении полезной величины к общей. Эта характеристика очень важна при выборе аппарата и определяет эффективность его использования.

Величина КПД зависит от потерь энергии, которые допускаются в процессе работы аппарата. Эти потери существуют следующего типа:

  • электрического – в проводниках катушек;
  • магнитного – в материале сердечника.

Величина указанных потерь при проектировании устройства зависит от следующих факторов:

  • габаритных размеров устройства и формы магнитной системы;
  • компактности катушек;
  • плотности составленных комплектов пластин в сердечнике;
  • диаметра провода в катушках.

Снижение потерь в агрегате достигается в процессе проектирования устройства, с применением для изготовления сердечника магнито-мягких ферромагнитных материалов. Электротехническая сталь набирается в тонкие пластины, изолированные друг относительно друга специальным слоем нанесённого лака.

В процессе эксплуатации эффективность аппарата определяется:

  • поданной нагрузкой;
  • диэлектрической средой – веществом, использованным в качестве диэлектрика;
  • равномерностью подачи нагрузки;
  • температурой масла в агрегате;
  • степенью нагрева катушек и сердечника.

Если в ходе работы агрегат постоянно недогружать или нарушать паспортные условия эксплуатации, помимо опасности выхода из строя это ведёт к снижению эффективности устройства.

Трансформатор, в отличие от электрических машин, практически не допускает механических потерь энергии, поскольку не включает движущихся узлов. Незначительный расход энергии возникает за счёт температурного нагрева устройства.

Методы определения КПД

КПД трансформатора можно подсчитать, с использованием нескольких методов. Данная величина зависит от суммарной мощности устройства, возрастая с увеличением указанного показателя. Значение эффективности колеблется в пределах от 0,8 до 0,92 при значении мощности от 10 до 300 кВт.

Зная величину предельной мощности, можно определить значение КПД, используя специальные таблицы.

Непосредственное измерение

Формула для вычисления данного показателя может быть представлена в нескольких выражениях:

ɳ = (Р2/Р1)х100% = (Р1 – ΔР)/Р1х100% = 1 – ΔР/Р1х100%,

  • ɳ – значение КПД;
  • Р2 и Р1 – соответственно величина полезной и потребляемой сетевой мощности;
  • ΔР – величина суммарных мощностных потерь.

Из указанной формулы видно, что значение показателя КПД не может превышать единицу.

После поэтапного преобразования приведённой формулы с учётом использования значений электротока, напряжения и угла между фазами, получается такое соотношение:

ɳ = U2хI2хcosφ2/ U2хI2хcosφ2 + Робм + Рс,

  • U2 и I2 – соответственно, значение напряжения и тока во вторичной обмотке;
  • Робм и Рс – величина потерь в обмотках и сердечнике.

Представленная формула содержится в ГОСТе, описывающем определение данного показателя.

Определение косвенным методом

Для приборов, обладающих большой эффективностью работы, при величине КПД, превышающем 0,96, точный расчёт не всегда оказывается возможным. Поэтому данное значение определяется при помощи косвенного метода, предполагающего оценку мощностных показателей в первичной катушке, вторичной и допущенных потерь.

Оценивая характеристики трансформатора, следует отметить высокую эффективность использования указанного оборудования, обусловленную его конструктивными особенностями.

Более подробно про КПД трансформатора можете прочитать здесь(откроется в новой вкладе, читать со страницы 14): Открыть файл

Как определяется коэффициент полезного действия трансформатора?

Известно, что электрическая энергия передаётся на большие расстояния при напряжениях, превышающих уровень, используемый потребителями. Применение трансформаторов необходимо для того, чтобы преобразовывать напряжения до требуемых значений, увеличивать качество процесса передачи электроэнергии, а также уменьшать образующиеся потери.

Описание и принцип работы трансформатора

Трансформатор представляет собой аппарат, служащий для понижения или повышения напряжения, изменения числа фаз и, в редких случаях, для изменения частоты переменного тока.

Существуют следующие типы устройств:

  • силовые;
  • измерительные;
  • малой мощности;
  • импульсные;
  • пик-трансформаторы.

Статический аппарат состоит из следующих основных конструктивных элементов: двух (или более) обмоток и магнитопровода, который также называют сердечником. В трансформаторах напряжение подаётся на первичную обмотку, и с вторичной снимается уже в преобразованном виде. Обмотки связаны индуктивно, посредством магнитного поля в сердечнике.

Наряду с прочими преобразователями, трансформаторы обладают коэффициентом полезного действия (сокращённо — КПД), с условным обозначением . Данный коэффициент представляет собой соотношение эффективно использованной энергии к потреблённой энергии из системы. Также его можно выразить в виде соотношением мощности, потребляемой нагрузкой к потребляемой устройством из сети. КПД относится к одному из первостепенных параметров, характеризующих эффективность производимой трансформатором работы.

Виды потерь в трансформаторе

Процесс передачи электроэнергии с первичной обмотки на вторичную сопровождается потерями. По этой причине происходит передача не всей энергии, но большей её части.

В конструкции устройства не предусмотрены вращающиеся части, в отличие от прочих электромашин. Это объясняет отсутствие в нём механических потерь.

Так, в аппарате присутствуют следующие потери:

  • электрические, в меди обмоток;
  • магнитные, в стали сердечника.

Энергетическая диаграмма и Закон сохранения энергии

Принцип действия устройства можно схематически в виде энергетической диаграммы, как это показано на изображении 1. Диаграмма отражает процесс передачи энергии, в ходе которого и образуются электрические и магнитные потери .

Согласно диаграмме, формула определения эффективной мощности P2 имеет следующий вид:

где, P2 — полезная, а P1 — потребляемая аппаратом мощность из сети.

Обозначив суммарные потери ΔP, закон сохранения энергии будет выглядеть как: P1=ΔP+P2 (2)

Из этой формулы видно, что P1 расходуется на P2, а также на суммарные потери ΔP. Отсюда, коэффициент полезного действия трансформатора получается в виде соотношения отдаваемой (полезной) мощности к потребляемой (соотношение P2 и P1).

Определение коэффициента полезного действия

С требуемой точностью для расчёта устройства, заранее выведенные значения коэффициента полезного действия можно взять из таблицы №1:

Суммарная мощность, Вт Коэффициент полезного действия
10-20 0,8
20-40 0,85
40-100 0,88
100-300 0,92

Как показано в таблице, величина параметра напрямую зависит от суммарной мощности.

Определение КПД методом непосредственных измерений

Формулу для вычисления КПД можно представить в нескольких вариантах:

(3)

Данное выражение наглядно отражает, что значение КПД трансформатора не больше единицы, а также не равно ей.

Следующее выражение определяет значение полезной мощности:

где U2 и J2 — вторичные напряжение и ток нагрузки, а cosφ2 — коэффициент мощности, значение которого зависит от типа нагрузки.

Поскольку P1=ΔP+P2, формула (3) приобретает следующий вид:

(5)

Электрические потери первичной обмотки ΔPэл1н зависят от квадрата силы протекающего в ней тока. Поэтому определять их следует таким образом:

(6)

(7)

где rmp — активное обмоточное сопротивление.

Так как работа электромагнитного аппарата не ограничивается номинальным режимом, определение степени загрузки по току требует использования коэффициента загрузки , который равен:

где J — номинальный ток вторичной обмотки.

Отсюда, запишем выражения для определения тока вторичной обмотки:

Если подставить данное равенство в формулу (5), то получится следующее выражение:

(10)

Отметим, что определять значение КПД, с использованием последнего выражения, рекомендовано ГОСТом.

Резюмируя представленную информацию, отметим, что определить коэффициент полезного действия трансформатора можно по значениям мощности первичной и вторичной обмотки аппарата при номинальном режиме.

Определение КПД косвенным методом

Из-за больших величин КПД, которые могут быть равны 96% и более, а также неэкономичности метода непосредственных измерений, вычислить параметр с высокой степенью точности не представляется возможным. Поэтому его определение обычно проводится косвенным методом.

Обобщив все полученные выражения, получим следующую формулу для вычисления КПД:

Подводя итог, следует отметить, что высокий показатель КПД свидетельствует об эффективно производимой работе электромагнитного аппарата. Потери в обмотках и стали сердечника, согласно ГОСТу, определяют при опыте холостого хода, либо короткого замыкания, а мероприятия, направленные на их снижение, помогут достичь максимально возможных величин коэффициента полезного действия, к чему и необходимо стремиться.

Коэффициент полезного действия трансформатора

Трансформатор представляет собой аппарат, служащий для понижения или повышения напряжения, изменения числа фаз и, в редких случаях, для изменения частоты переменного тока.

Существуют следующие типы устройств:

  • силовые;
  • измерительные;
  • малой мощности;
  • импульсные;
  • пик-трансформаторы.

Статический аппарат состоит из следующих основных конструктивных элементов: двух (или более) обмоток и магнитопровода, который также называют сердечником. В трансформаторах напряжение подаётся на первичную обмотку, и с вторичной снимается уже в преобразованном виде. Обмотки связаны индуктивно, посредством магнитного поля в сердечнике.

Трансформатор 10/0.4 кВ

Наряду с прочими преобразователями, трансформаторы обладают коэффициентом полезного действия (сокращённо — КПД), с условным обозначением . Данный коэффициент представляет собой соотношение эффективно использованной энергии к потреблённой энергии из системы. Также его можно выразить в виде соотношением мощности, потребляемой нагрузкой к потребляемой устройством из сети. КПД относится к одному из первостепенных параметров, характеризующих эффективность производимой трансформатором работы.

Виды потерь в трансформаторе

Процесс передачи электроэнергии с первичной обмотки на вторичную сопровождается потерями. По этой причине происходит передача не всей энергии, но большей её части.

В конструкции устройства не предусмотрены вращающиеся части, в отличие от прочих электромашин. Это объясняет отсутствие в нём механических потерь.

Так, в аппарате присутствуют следующие потери:

  • электрические, в меди обмоток;
  • магнитные, в стали сердечника.

Энергетическая диаграмма и Закон сохранения энергии

Принцип действия устройства можно схематически в виде энергетической диаграммы, как это показано на изображении 1. Диаграмма отражает процесс передачи энергии, в ходе которого и образуются электрические и магнитные потери .

Согласно диаграмме, формула определения эффективной мощности P2 имеет следующий вид:

где, P2 — полезная, а P1 — потребляемая аппаратом мощность из сети.

Обозначив суммарные потери ΔP, закон сохранения энергии будет выглядеть как: P1=ΔP+P2 (2)

Из этой формулы видно, что P1 расходуется на P2, а также на суммарные потери ΔP. Отсюда, коэффициент полезного действия трансформатора получается в виде соотношения отдаваемой (полезной) мощности к потребляемой (соотношение P2 и P1).

Что такое КПД трансформатора и от чего зависит

Коэффициентом полезного действия (полная расшифровка данной аббревиатуры) называют отношение полезной электроэнергии к поданной на прибор.

Кроме энергии, показатель КПД может определяться расчётом по мощностным показателям при соотношении полезной величины к общей. Эта характеристика очень важна при выборе аппарата и определяет эффективность его использования.

Величина КПД зависит от потерь энергии, которые допускаются в процессе работы аппарата. Эти потери существуют следующего типа:

  • электрического – в проводниках катушек;
  • магнитного – в материале сердечника.

Величина указанных потерь при проектировании устройства зависит от следующих факторов:

  • габаритных размеров устройства и формы магнитной системы;
  • компактности катушек;
  • плотности составленных комплектов пластин в сердечнике;
  • диаметра провода в катушках.

Снижение потерь в агрегате достигается в процессе проектирования устройства, с применением для изготовления сердечника магнито-мягких ферромагнитных материалов. Электротехническая сталь набирается в тонкие пластины, изолированные друг относительно друга специальным слоем нанесённого лака.

Также читайте: Почему гудит трансформатор

В процессе эксплуатации эффективность аппарата определяется:

  • поданной нагрузкой;
  • диэлектрической средой – веществом, использованным в качестве диэлектрика;
  • равномерностью подачи нагрузки;
  • температурой масла в агрегате;
  • степенью нагрева катушек и сердечника.

Если в ходе работы агрегат постоянно недогружать или нарушать паспортные условия эксплуатации, помимо опасности выхода из строя это ведёт к снижению эффективности устройства.

Трансформатор, в отличие от электрических машин, практически не допускает механических потерь энергии, поскольку не включает движущихся узлов. Незначительный расход энергии возникает за счёт температурного нагрева устройства.

Определение КПД методом непосредственных измерений

Формулу для вычисления КПД можно представить в нескольких вариантах:

Данное выражение наглядно отражает, что значение КПД трансформатора не больше единицы, а также не равно ей.

Следующее выражение определяет значение полезной мощности:

где U2 и J2 — вторичные напряжение и ток нагрузки, а cosφ2 — коэффициент мощности, значение которого зависит от типа нагрузки.

Поскольку P1=ΔP+P2, формула (3) приобретает следующий вид:

Электрические потери первичной обмотки ΔPэл1н зависят от квадрата силы протекающего в ней тока. Поэтому определять их следует таким образом:

где rmp — активное обмоточное сопротивление.

Так как работа электромагнитного аппарата не ограничивается номинальным режимом, определение степени загрузки по току требует использования коэффициента загрузки , который равен:

где J2н — номинальный ток вторичной обмотки.

Отсюда, запишем выражения для определения тока вторичной обмотки:

Если подставить данное равенство в формулу (5), то получится следующее выражение:

Отметим, что определять значение КПД, с использованием последнего выражения, рекомендовано ГОСТом.

Резюмируя представленную информацию, отметим, что определить коэффициент полезного действия трансформатора можно по значениям мощности первичной и вторичной обмотки аппарата при номинальном режиме.

Разные виды трансформаторов и их коэффициенты

Хотя конструктивно преобразователи мало чем отличаются друг от друга, назначение их достаточно обширно. Существуют следующие виды трансформаторов, кроме рассмотренных:

  • силовой;
  • автотрансформатор;
  • импульсный;
  • сварочный;
  • разделительный;
  • согласующий;
  • пик-трансформатор;
  • сдвоенный дроссель;
  • трансфлюксор;
  • вращающийся;
  • воздушный и масляный;
  • трехфазный.

Особенностью автотрансформатора является отсутствие гальванической развязки, первичная и вторичная обмотка выполнены одним проводом, причем вторичная является частью первичной. Импульсный масштабирует короткие импульсные сигналы прямоугольной формы. Сварочный работает в режиме короткого замыкания. Разделительные используются там, где нужна особая безопасность по электротехнике: влажные помещения, помещения с большим количеством изделий из металла и подобное. Их k в основном равен 1.

Пик-трансформатор преобразует синусоидальное напряжение в импульсное. Сдвоенный дроссель – это две сдвоенные катушки, но по своим конструктивным особенностям относится к трансформаторам. Трансфлюксор содержит сердечник из магнитопровода, обладающего большой величиной остаточной намагниченности, что позволяет использовать его в качестве памяти. Вращающийся передает сигналы на вращающиеся объекты.

Воздушные и масляные трансформаторы отличаются способом охлаждения. Масляные применяются для масштабирования большой мощности. Трехфазные используются в трехфазной цепи.

Более подробную информацию можно узнать о коэффициенте трансформации трансформатора тока в таблице.

Номинальная вторичная нагрузка, В 3 5 10 15 20 30 40 50 60 75 100
Коэффициент, n Номинальная предельная кратность
3000/5 37 31 25 20 17 13 11 9 8 6 5
4000/5 38 32 26 22 20 15 13 11 10 8 6
5000/5 38 29 25 22 20 16 14 12 11 10 8
6000/5 39 28 25 22 20 16 15 13 12 10 8
8000/5 38 21 20 19 18 14 14 13 12 11 9
10000/5 37 16 15 15 14 12 12 12 11 10 9
12000/5 39 20 19 18 18 12 15 14 13 12 11
14000/5 38 15 15 14 14 12 13 12 12 11 10
16000/5 36 15 14 13 13 12 10 10 10 9 9
18000/5 41 16 16 15 15 12 14 14 13 12 12

Почти у всех перечисленных приборов есть сердечник для передачи магнитного потока. Поток появляется благодаря движению электронов в каждом из витков обмотки, и силы токов не должны быть равны нулю. Коэффициент трансформации тока зависит и от вида сердечника:

Советуем изучить Электротехника для начинающих

Коэффициентом трансформации трансформаторов называется отношение напряжения обмотки высшего напряжения (ВН) к напряжению обмотки низшего напряжения (НН) при холостом ходе:

Где: Кл- коэффициент трансформации линейных напряжений;

U1 — линейное напряжение обмотки ВН;

U2 — линейное напряжение обмотки НН.

При определении коэффициента трансформации однородных трансформаторов или фазного коэффициента трансформации трехфазных

трансформаторов отношение напряжения можно приравнять к отношению чисел витков обмотки

где: Кф — фазный коэффициент трансформации;

U1ф,U2ф — фазные напряжения обмоток ВН и НН соответственно;

WI,W2 — число витков обмоток ВН и НН соответственно.

При измерении линейного коэффициента трансформации трехфазного трансформатора равенство отношения высшего и низшего линейных напряжения обмоток и соответственно числа витков ВН и НН сохраняется лишь при одинаковых группах соединения этих обмоток.

Если первичная и вторичная обмотки соединены по одинаковой схеме, например, обе в звезду, обе в треугольник и так далее, фазный и линейный коэффициенты трансформации равны друг другу. При различных схемах соединений обмоток, например, одной в звезду, а другой в треугольник, линейньй и фазный коэффициенты трансформации неодинаковы (они в данном случае отличаются друг от друга в 3 раз).

Определение коэффициента трансформации производится на всех ответвлениях обмоток и для вех фаз. Эти измерения, кроме проверки самого коэффициента трансформации дают возможность проверить также правильность установки переключателя напряжения на соответствующих ступенях, а также целостность обмоток.

Для определения коэффициента трансформации применяют метод двух вольтметров (рис.2)

Рис.2 Определение коэффициента трансформации.

Со стороны высокого напряжения (ВН) подводится трехфазовое напряжение 220 В и измеряется напряжение на вторичной обмотке.

Внимание! Напряжение подводится только к обмоткам ВН (А, В, С). Результаты измерений заносятся в таблицу 2

Пределы измерения вольтметров: PV1-250 В,PV2-15В

Результаты измерений заносятся в таблицу 2. Пределы измерения вольтметров: PV1-250 В,PV2-15В.

Примечание: В данной работе трансформатор имеет одно положение переключателя.

Коэффициент трансформации отдельных фаз, замеренных на одних и тех же ответвлениях не должен отличаться друг от друга более чем на 2%.

Определение КПД косвенным методом

Из-за больших величин КПД, которые могут быть равны 96% и более, а также неэкономичности метода непосредственных измерений, вычислить параметр с высокой степенью точности не представляется возможным. Поэтому его определение обычно проводится косвенным методом.

коэффициент полезного действия трансформатора

Обобщив все полученные выражения, получим следующую формулу для вычисления КПД:

Подводя итог, следует отметить, что высокий показатель КПД свидетельствует об эффективно производимой работе электромагнитного аппарата. Потери в обмотках и стали сердечника, согласно ГОСТу, определяют при опыте холостого хода, либо короткого замыкания, а мероприятия, направленные на их снижение, помогут достичь максимально возможных величин коэффициента полезного действия, к чему и необходимо стремиться.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *