Подбор выходного трансформатора для двухтактного лампового усилителя
В этой статье я попробую немного затронуть вопрос подбора выходного трансформатора для мощного двухтактного лампового усилителя. Имеется ввиду не расчет с нуля под конкретный режим лампы, а именно подбора из готовых вариантов. Подбор, опять же, не идеальный, а приблизительный. Работая с таким трансформатором не факт что получится достичь идеального согласования, максимальной передачи мощности в нагрузку или минимума искажений. Но, по крайней мере, такой усилитель будет работать и что-то выдавать в нагрузку, радуя своего создателя.
Многие любители ТЛЗ предпочитают использовать готовые трансформаторы ТВЗ от советской радиоаппаратуры или готовые покупные, и, соответственно, использовать те же режимы ламп, что и в советской аппаратуре, или режимы ламп, рекомендованные изготовителем трансформаторов. Данная информация пригодится тем, кто хочет спаять что-нибудь теплое и ламповое, но кто совершенно не хочет возиться с намоткой трансформаторов и кого отпугивают цены на готовые трансформаторы, предлагаемые различными фирмами.
Хочу сразу предупредить, в ламповой технике я не силен, изучаю ее походя, в процессе, так сказать. Поэтому некоторые мои рассуждения для специалистов могут показаться весьма наивными.
С чего необходимо начать выбор трансформатора? Наверное, с понимания того, для чего он все-таки нужен. А нужен он для согласования лампы с нагрузкой. Дело в том, что громкоговорители и акустические системы (АС), в большинстве своем, имеют относительно низкое сопротивление (типовые значения сопротивления большинства отечественных АС — 4 или 8 Ом, импортных – 6 Ом), соответственно, в их цепи текут довольно большие токи и на клеммах присутствуют относительно небольшие напряжения. Грубо говоря, через АС с номинальной мощностью 16 Вт и сопротивлением 4 Ом будет протекать ток 2 А, а действующее напряжение на нем будет 8 В (зависимостью импеданса динамика от частоты в этом рассмотрении пренебрежем).
Лампы же наоборот — обычно работают с высокими напряжениями и относительно небольшими токами. Например, для лампы 6П44С, как в моем усилителе, согласно справочнику средний ток анода составляет максимум 100 мА (420 мА допускается в импульсе длительностью 4 мс), напряжение на аноде 250 В (550 В допускается при включении лампы).
Чтобы преобразовать высокое напряжение на лампе в низкое на динамике и низкий ток лампы в большой ток через динамик и необходим трансформатор. 100 мА необходимо трансформировать в 2 А, а 8 В, соответственно, в 160 В. Ориентировочный коэффициент трансформации в этом случае должен быть примерно около 20 (потерями в трансформаторе для простоты изложения пренебрежем).
При этом сопротивление динамика, «пройдя» через такой трансформатор для лампы будет выглядеть как
И поэтому лампа, имеющая довольно большое выходное сопротивление (порядка нескольких килоом) сможет на этот динамик работать. Вообще говоря, лампа в пентодном включении (лучевой тетрод – это тоже пентод) имеет очень высокое выходное сопротивление (по сравнению с триодами), напряжение на аноде лампы очень слабо зависит от тока через нее. Схемотехнически лампа в таком включении является источником тока, а трансформатор, подключенный к ней – работает скорее в режиме трансформатора тока, нежели трансформатора напряжения.
Второе, с чего следует начать выбор трансформатора – это источник сигнала или сам ламповый выходной каскад. Необходимо понять, а сколько мощности в нагрузку мы вообще можем из нее выжать? И это логично, т. к. если лампа максимум может выдать в нагрузку 10 Вт, то припаивать к ней трансформатор на 100 Вт, наверное, будет перебор, трансформатор будет всегда недогружен, габаритная мощность будет использоваться неэффективно (необходимостью запаса по индуктивности первичной обмотки для простоты рассуждений пока тоже пренебрежем).
Рассмотрим двухтактный выходной каскад на лампах 6П44С из нашего усилителя. Сколько же мощности можно из него выжать? Как было указано выше, из справочника, средний ток анода составляет максимум 100 мА (420 мА в импульсе 4 мс), а напряжение на аноде 250 В (550 при включении лампы). Сначала разберемся с напряжением. В двухтактном каскаде лампы работают по очереди, каждая на свою половину первичной обмотки. Средняя точка этой обмотки подключена к источнику питания. Какое максимальное напряжение Uп можно подать на среднюю точку? Когда одна из ламп открывается полностью, напряжение на ее аноде минимально (опять таки для упрощения будем считать что оно равно 0). При этом напряжения на аноде другой, запертой лампы становится равным 2Uп. Максимальное напряжение на запертой лампе по справочнику может достигать 7 кВ, но хотя это в импульсе не более 18 мкс. Поэтому Uп можно выбрать близким к максимальному 250 В, и даже немного больше него, например, с небольшим запасиком – 260 В. Слишком сильное превышение этого напряжения чревато межэлектродными пробоями и высокими электростатическими силами, сокращающие срок службы катода. Максимальный ток анода (в импульсе) может достигать 420 мА. Таким образом, мгновенная мощность двухтактного каскада будет около 260 В∙0,42 А= 109 Вт. Действующая мощность, соответственно, 55 Вт. Это теоретический максимум, который можно получить от данного каскада. Если бы выходное сопротивление ламп было бы равно 0, то вся эта мощность могла бы перейти в нагрузку. Но, как всем известно, выходное сопротивление лампы ненулевое, более того, порядок значений этого сопротивления – килоомы. Условием передачи максимальной мощности от источника в нагрузку является равенство сопротивления этой нагрузки внутреннему сопротивлению источника. Поэтому при расчете трансформатора «с нуля», его, чаще всего, начинают с выбора коэффициента трансформации таким, чтобы сопротивление нагрузки после «прохождения» через трансформатор было равно выходному сопротивлению лампы в выбранной рабочей точке. Хотя обычно высокой точности равенства выходного сопротивления лампы сопротивлению нагрузки не требуется.
Итак, даже в идеальном случае равенства выходного сопротивления лампы сопротивлению нагрузки, в последнюю передается только половина мощности. Вторая половина рассеивается на внутреннем сопротивлении лампы и греет аноды. В нашем случае, из 55 Вт в нагрузку может уйти максимум 22,5 Вт. Но в реальности эта мощность будет еще меньше. Во-первых, из-за неидеального согласования сопротивлений лампы и нагрузки (поскольку мы трансформатор взяли готовый, а не мотали с нуля), во-вторых, из-за потерь в самом трансформаторе (они небольшие, но есть), в третьих, из-за просадки напряжения питания под нагрузкой (если оно выбрано без запаса), в четвертых, по мере износа лампы максимальный ток (и, соответственно, выходная мощность) также будет также постепенно снижаться. Именно по указанным выше причинам в моем усилителе удалось выжать только 20 Вт в нагрузке (напряжение питания в моем усилителе около 230 В, вместо 260).
Попробуем прикинуть, насколько хорошо подходит под эти параметры использованный трансформатор ТН-56. Итак, граничные параметры со стороны ламп: ток в импульсе 420 мА, ток действующий 420мА/1,41=300 мА. Напряжение амплитудное 260 В, напряжение действующее 260В/1,41=184 В. Параметры трансформатора при включении указанным на схеме образом: максимальное действующее напряжения на входных полуобмотках 127 В, максимальный ток 0,44 А, на выходных обмотках на отводе 4 Ом напряжение 12,6 В, ток 3,15 А, мощность 40 Вт, на отводе 8 Ом напряжение 18,9 В, ток 2,36 А, мощность 45 Вт. Коэффициент трансформации (для 4 Ом) 127В/12,6В=10.
Учитывая коэффициент трансформации, действующее значение тока во вторичной обмотке будет 0,3А∙10=3 А, а напряжение 177В/2/10=9,2 В. Почему берем половину напряжения? Потому что даже при идеальном согласовании только одна половина напряжения ушла в нагрузку, вторая упала на внутреннем сопротивлении лампы. Максимальная выходная мощность с ограничением по току получается 3∙3∙4=36 Вт. Максимальная выходная мощность с ограничением по напряжению — 9,2∙9,2/4=21 Вт. Как видим, запас по току еще есть, не весь ток лампы используется, напряжения не хватает. Насколько нужно поднять еще напряжение чтобы использовать полностью запас по току? Посчитаем. Если мы хотим выжать 36 Вт, нам нужно напряжение на вторичной обмотке трансформатора 12 В, тогда напряжение на первичной обмотке трансформатора будет 120 В (все еще не превышает максимальных 127 – трансформатор не войдет в насыщение). Напряжение питания должно быть 120∙2∙1,41=338 В. Как то слишком многовато для лампы, не следует, на мой взгляд, настолько сильно превышать паспортное значение. Хотя, может, и не нужно настолько превышать. Мы же исходили из предположения, что у нас сопротивление нагрузки и лампы согласованы, то есть, равны и напряжение делится между ними поровну. А судя по тому, что в моем усилителе напряжение на нагрузке 9 В достигается уже при напряжении питания 230 В, можно предполагать, что на самом деле сопротивление лампы меньше сопротивления нагрузки и поэтому в нагрузку идет большее напряжение. Для того, чтобы выяснить, насколько хорошо они согласованы, необходимо знать выходное сопротивление лампы. К сожалению, в справочнике на эту лампу этот параметр не указан. А не указан он потому что очень сильно зависит от режима работы лампы. Лучевой тетрод может работать как в пентодном режиме, при этом имея высокое выходное сопротивление, так и в триодном, с низким выходным сопротивлением.
Как измерить выходное сопротивление лампы? Известным способом – путем подключения разных нагрузок и измерения напряжения на них. Сначала подключим нагрузку 4 Ом, измерим напряжение на ней U1, затем к тем же клеммам подключим нагрузку 8 Ом, измерим напряжение на ней U2. Рассчитаем внутреннее сопротивление по формуле
Трансформаторы с плавным регулированием напряжения
Вольтодобавочным трансформатором (ВДТ) называется устройство, состоящее из двух трансформаторов: последовательного, первичная обмотка которого включается в рассечку линии, и специального регулировочного трансформатора или автотрансформатора с переменным коэффициентом трансформации. Регулировочный автотрансформатор питается от обмотки низшего напряжения силового трансформатора.
Линейным регулятором называется трехфазное вольтодобавочное устройство, которое работает по автотрансформаторной схеме.
Назначение
Вольтодобавочные трансформаторы (линейные регуляторы) применяются для регулирования напряжения в отдельных линиях или в группе линий. Их применяют, например, для улучшения работы сетей, в которых используются трансформаторы без регулирования под нагрузкой. Линейные регуляторы позволяют создать в сети дополнительную ЭДС, которая складывается с вектором напряжения сети и изменяет его. На рис. 1 показано схематическое изображение вольтодобавочного трансформатора (линейного регулятора).
Рисунок 1 – Схемное изображение линейного регулятора
Установка вольтодобавочного трансформатора позволяет выравнивать напряжение в электросети; устранять несимметрию напряжения на определенном участке цепи; снижать опасные последствия отгорания нулевого проводника
Способы регулирования напряжения
Различают два способа регулирования напряжения: местное и централизованное.
Под местным регулированием понимают регулирование напряжения непосредственно на месте потребления, т. е. его стабилизацию на заданном уровне у каждого отдельного потребителя (например, стабилизаторы для телевизоров) или сразу для группы потребителей (например, для одного или нескольких домов). В последнем случае в какой-то точке сети устанавливают трансформатор с устройством для регулирования напряжения. Это устройство включают, когда у всех потребителей, питаемых от этого трансформатора, надо поддержать напряжение на определенном уровне (например, 220 В).
Регулирование напряжения может быть автоматическим, без отключения трансформатора от сети. При этом потребитель даже не чувствует, что в трансформаторе происходят какие-то изменения. Такое регулирование напряжения называют регулированием под нагрузкой (РПН). Однако РПН требует применения сложных и дорогих переключающих устройств. Поэтому для трансформаторов небольшой мощности часто применяют регулирование напряжения без возбуждения, т. е. после отключения всех их обмоток от сети. Этот способ регулирования сокращенно называют ПБВ (переключение без возбуждения). После переключения трансформатор вновь включается в работу. При этом способе потребителя на какое-то время вообще отключают от сети. Особенно неудобно это там, где нагрузка меняется часто. Зато устройства ПБВ просты по конструкции и относительно дешевы.
Под централизованным регулированием понимают регулирование напряжения непосредственно на шинах генераторов электростанций при помощи изменения их возбуждения. Централизованное регулирование осуществляют обычно как «встречное», т. е. таким образом, чтобы оно заранее «встречало» колебания напряжения, вызванные нагрузкой. Так, в период наибольших нагрузок у генераторов поднимают напряжение выше номинального, чтобы компенсировать повышенные потери напряжения в сети и поддержать его у потребителя близким к поминальному. И наоборот, когда нагрузка снижается, уменьшают возбуждение у генераторов и соответственно напряжение в сети.
Принцип работы
Вольтодобавочные трансформаторы имеют одну обмотку, включенную последовательно с линией, в которой регулируется напряжение. Эта обмотка питается от регулировочного (питающего) трансформатора, а первичная обмотка последнего – от сети или постороннего источника тока. В зависимости от схемы соединения обмоток вольтодобавочные трансформаторы могут создавать добавочную ЭДС, сдвинутую по фазе относительно основного напряжения или совпадающую с ним. На рис. 2 изображена принципиальная схема включения вольтодобавочного трансформатора.
Рисунок 2 – Принципиальная схема включения вольтодобавочного трансформатора
- основной трансформатор
- последовательный трансформатор
- регулировочный трансформатор
Регулирование напряжения без возбуждения
Допустим, что к сети с напряжением 6,3 кВ нормально подключены несколько трансформаторов с вторичными напряжениями 220 В. На практике редко случается, чтобы все эти трансформаторы непрерывно работали с полной нагрузкой. В ночные часы, когда не работает большинство заводов и потребляемая ими мощность обычно невелика, в сети 6,3 кВ проходит небольшой ток, не вызывающий заметного падения напряжения.
Когда на заводах включаются в работу станки, резко увеличивается нагрузка на каждый трансформатор. Вторичные токи в трансформаторах возрастают, растет соответственно и первичный ток, потребляемый каждым трансформатором. Складываясь, эти токи образуют в сети 6,3 кВ ток, во много раз больший, чем в ночные часы суток. Действительное напряжение сети равно уже не 6,3 кВ, а какой-то другой, меньшей величине. На столько же уменьшается и вторичное напряжение, питающее приемники энергии.
Однако потребители электроэнергии заинтересованы в получении постоянного напряжения 220 В вне зависимости от колебаний первичного напряжения. Чтобы удовлетворить эти требования, в трансформаторах предусматривают возможность регулирования напряжения.
Наибольшее распространение на практике получило регулирование напряжения при помощи изменения ступенями числа витков одной из обмоток. Подавляющее большинство трансформаторов строят с регулированием числа витков в обмотке ВН. Дело в том, что по обмотке НН протекает большой ток и, следовательно, переключающее устройство должно быть рассчитано на этот ток, т. е. оно неизбежно будет громоздким. В обмотке ВН ток в десятки раз меньше (6300/220=28,6) и, следовательно, переключающее устройство может быть сравнительно небольшим и легким, хотя его и придется изолировать от заземленных частей трансформатора на 6,3 кВ.
Схема и конструкция
Более детальная схема линейного регулятора, иллюстрирующая также принцип переключения контактов, представлена на рис. 3. На ней показаны регулировочный трансформатор 1 и последовательный трансформатор 2. Первичная обмотка 3 регулировочного трансформатора является питающей. Она может быть включена и на фазное А – 0 и на линейное напряжение (А – В, А – С). Вторичная обмотка 4 регулировочного трансформатора имеет такое же переключающее устройство 5 как и транс-форматор с РПН.
Один конец первичной обмотки 6 последовательного трансформатора присоединен к средней точке вторичной обмотки регулировочного трансформатора. Другой к переключающему устройству. Вторичная обмотка 7 последовательного трансформатора соединена последовательно с обмоткой силового трансформатора. Добавочная ЭДС в обмотке 7 складывается с ЭДС силового трансформатора и изменяет ее.
Рисунок 3 – Принцип работы вольтодобавочного трансформатора
На рис. 4 показана трехфазная схема включения в сеть вольтодобавочного трансформатора.
Рисунок 4 – Схема включения вольтодобавочного трансформатора в сеть
Линейные регуляторы работают по автотрансформаторной схеме и представляют собой маслонаполненную конструкцию, имеющую шесть линейных выводов для включения регулятора в рассечку линии в любой ее точке. Схема включения линейного регулятора показана на рис. 5.
- Обмотка возбуждения высшего напряжения
- Обмотка питания цепей управления
- Вольтодобавочная обмотка
- Подвижный контакт переключателя
- Вспомогательный контакт переключателя с активным токоограничивающим сопротивлением
- Неподвижные контакты
Рисунок 5 – Схема включения линейного регулятора
Диапазон регулирования
ЭДС, создаваемая линейным регулятором зависит:
- от величины питающего напряжения;
- от фазы питающего напряжения;
- от коэффициента трансформации линейного регулятора.
Включая первичную обмотку питающего трансформатора в разные фазы сети, можно получить разные напряжения на выходе регулятора. В линейном регуляторе выполняется пофазное регулирование. Различают продольное, поперечное и продольно-поперечное регулирование.
При продольном регулировании добавочная ЭДС линейного регулятора ∆Е совпадает по фазе с фазными напряжениями сети. Такой вид регулирования называют также регулирование по модулю.
При поперечном регулировании ЭДС силового трансформатора и добавочная ЭДС оказываются сдвинутыми на 90º. Такое сдвиг можно получить, если, например, для регулирования напряжения в фазе А, обмотку питающего трансформатора включить на линейное напряжение В-С. При этом результирующая ЭДС обмотки силового трансформатора и вторичной обмотки последовательного трансформатора изменяется по фазе. Поэтому такой вид регулирования называют также регулированием по фазе. Продольно-поперечное регулирование позволяет регулировать исходное напряжение как по модулю, так и по фазе. Его можно выполнить для регулирования напряжения в фазе А при включении первичной обмотки питающего трансформатора на линейное напряжение А-В. Вектор добавочной ЭДС при этом будет направлен вдоль линейных напряжений.
Векторные диаграммы изображающие разные виды регулирования показаны на рис. 6.
Рисунок 6 – Регулирование напряжения с помощью линейного регулятора: а) продольное; б) поперечное; в) продольно поперечное.
Линейные регуляторы с продольным регулированием позволяют регулировать напряжения на проблемном участке протяженной сети или при отсутствии на трансформаторе устройства РПН.
Линейные регуляторы с поперечным или продольно-поперечным регулированием выполняют более узкие функции. С их помощью улучшаются условия работы неоднородных замкнутых сетей.
Что такое анцапфа: определение и назначение
Анцапфа трансформатора – это переключатель ПБВ, располагающийся на стороне высшего напряжения. Предназначается для корректировки коэффициента трансформации. В простом понимании процесс предполагает изменение числа витков в обмотке, что по физическим законам корректирует величину напряжения.
Подобный элемент позволяет изменять уровень напряжения на +/- 10%. Уровень зависит от мощности силового оборудования, его технических особенностей. Регулировка анцапфы трансформатора 10/0,4 кв осуществляется только при выведенном в ремонт оборудовании (переключение без возбуждения).
Выполнять корректировку в любое удобное время не представляется возможным, так как осуществление операции требует обесточивания абонентов. Именно поэтому на мощных трансформаторах силовых подстанций от 110 кВ и выше используется другое устройство, именуемое РПН.
Регулировка напряжения под нагрузкой считается усовершенствованной анцапфой, которая позволяет изменять количество витков без отключения. Для комфорта соблюдения режимов диспетчерским персоналом, РПН дополняется телемеханикой.
Применение
Линейные регуляторы могут устанавливаться на отходящих линиях и последовательно с силовым трансформатором. При установке линейного регулятора на отходящих линиях силовой трансформатор выполняет стабилизацию напряжения на шинах подстанции на среднем уровне. Диапазон регулирования в этом случае может быть снижен, что позволяет существенно снизить мощность линейного регулятора, однако требуется установка нескольких регуляторов.
На рис. 7 а) показано схематичное изображение линейного регулятора при включении его последовательно обмотке силового трансформатора, на рис. 7 б) показано включение линейного регулятора на отходящих линиях электропередач.
Рисунок 7 – Включение линейного регулятора в сеть: а) последовательно обмотке силового трансформатора; б) на отходящих линиях электропередач
Линейные регуляторы, которые включаются последовательно в линию, обеспечивают регулирование напряжения в пределах ±10-15 %. Широкое применение линейные регуляторы находят на подстанциях с автотрансформаторами. На стороне СН регулирование напряжения обеспечивается встроенным в автотрансформатор устройством РПН, а на стороне НН устанавливается линейный регулятор, снабженный автоматическим регулированием напряжения.
Регулирование напряжения трансформаторов
Для нормальной работы потребителей необходимо поддерживать определенный уровень напряжения на шинах подстанций. В электрических сетях предусматриваются способы регулирования напряжения, одним из которых является изменение коэффициента трансформации трансформаторов.
Известно, что коэффициент трансформации определяется как отношение первичного напряжения ко вторичному, или
где wb w2 — число витков первичной и вторичной обмоток соответственно.
Обмотки трансформаторов снабжаются дополнительными ответвлениями, с помощью которых можно изменять коэффициент трансформации. Переключение ответвлений может происходить без возбуждения (ПБВ), т. е. после отключения всех обмоток от сети или под нагрузкой (РПН).
Устройство ПБВпозволяет регулировать напряжение в пределах ±5 %, для чего трансформаторы небольшой мощности кроме основного вывода имеют два ответвления от обмотки высшего напряжения: +5% и —5% (рис. 2.39, о). Если трансформатор работал на основном выводе и необходимо повысить напряжение на вторичной стороне U2,
то, отключив трансформатор, производят переключение на ответвление —5%, уменьшая тем самым число витков
W\.
На трансформаторах средних и больших мощностей предусматриваются четыре ответвления +2 х 2,5%, переключение которых производится специальными переключателями барабанного типа, установленными отдельно для каждой фазы (рис. 2.39, б). Рукоятка привода переключателя выведена на крышку трансформатора.
При замыкании роликом переключателя контактов АА-А5
трансформатор имеет номинальный коэффициент трансформации. Положения
АЪ-АА
и
А2-А3
соответствуют увеличению коэффициента трансформации на 2,5 и 5%, а положения
А5-А6
и Л6-Л7 —’уменьшению на 2,5 и 5%.
Устройство ПБВ не позволяет регулировать напряжение в течение суток, так как это потребовало бы частого отключения трансформатора для производства переключений, что по условиям эксплуатации практически недопустимо. Обычно ПБВ используется только для сезонного регулирования напряжения.
Регулирование под нагрузкой (РПН) позволяет переключать ответвления обмотки трансформатора без разрыва цепи. Устройство РПН предусматривает регулирование напряжения в различных пределах в зависимости от мощности и напряжения трансформатора (от ±10 до ±16% ступенями приблизительно по 1,5%) [2.11].
Регулировочные ступени выполняются на стороне ВН, так как меньший по значению ток позволяет облегчить переключающее устройство. Для расширения диапазона регулирования без увеличения числа ответвлений применяют ступени грубой и тонкой регулировки (рис. 2.40). Наибольший коэффициент трансформации получается, если переключатель П
находится в положении
II,
а избиратель
И
— на ответвлении 6. Наименьший коэффициент трансформации будет при положении переключателя
I,
a избирателя — на ответвлении
1.
На рис. 2.40, б показана схема расположения элементов переключающего устройства РНТ-13, применяемого на трансформаторах средней мощности.
Переход с одного ответвления регулировочной обмотки на другое осуществляется так, чтобы не разрывать ток нагрузки и не замыкать накоротко витки этой обмотки. Это достигается в специальных переключающих устройствах с реакторами или резисторами. Схема с резисторами (рис. 2.41) обладает рядом преимуществ перед схемой с реакторами и получает все более широкое применение. На рис. 2.41 показаны регулировочная часть обмотки de
и переключающее устройство.
Последовательность работы контакторов и избирателей показана в таблице к рис. 2.41. В исходном положении трансформатор работает на ответвлении 5,
ток нагрузки проходит через контакт
К1.
Допустим, что необходимо уменьшить число витков в регулировочной обмотке, т. е. перейти на ответвление
4.
Последовательность работы элементов РПН в этом случае будет следующей: обесточенный избиратель
И2
переводится в положение
4,
затем отключается
К1
и ток нагрузки кратковременно проходит по
R1
и
К2;
при третьей операции замыкается
КЗ,
при этом половина тока нагрузки проходит по
R1
и
К2,
а половина — по
R2
и
КЗ,
кроме того, витки регулировочной обмотки
5 — 4
оказываются замкнутыми через
R1
и
R2
и по ним проходит ограниченный по значению циркулирующий ток; при следующих операциях (4 и 5) размыкается
К2
и замыкается
К4,
при этом ток нагрузки проходит по регулировочной обмотке на ответвление
4,
избиратель
И2,
контакты
К4
к выводу 0.
В переключателях данного типа используются мощные пружины, обеспечивающие быстрое переключение контактов контактора (
Рис. 2.41. Схема и последовательность переключений устройства РПН с то-коогракичивающими сопротивлениями
Положение контактов | |||||
№ опе- | и избирателей | ||||
рации | |||||
К1 | Ю | И1 | КЗ | К4 | И2 |
+ | + | _ | 6 | ||
+ | + | — | — | ||
— | + | — | — | ||
— | + | + | — | ||
— | — | + | — | ||
+ | + |
нагружаются током, что позволяет уменьшить их габариты. Контакторы размещаются в герметизированном баке с маслом. Управление РПН может осуществляться дистанционно со щита управления вручную или автоматически.
В современных устройствах РПН для коммутации тока находят применение вакуумные дугогасительные камеры. Благодаря этому трансформаторное масло не используется в качестве дугогасительной среды и не требуется его смена в процессе эксплуатации. Переключающие устройства РНТА235/1000 применяются на преобразовательных трансформаторах с интенсивным режимом работы переключений.
Дальнейшим совершенствованием РПН является применение тиристор-ных переключателей. Тиристоры срабатывают в моменты переходов тока нагрузки через нуль и последовательно включают необходимую комбинацию вторичных обмоток.
Регулирование напряжения в автотрансформаторах имеет некоторую особенность. Если ответвления выполнить в нейтральной точке (рис. 2.42, а).
то это позволяет облегчить изоляцию переключающего устройства и рассчитать его на меньший ток, так как в общей обмотке автотрансформатора проходит разность токов. Такое регулирование называется связанным, т. е. при переключении ответвлений одновременно меняется количество витков ВН и СН. Это приводит к резким изменениям индукции в сердечнике и колебаниям напряжения на обмотке НН.
Независимое регулирование в автотрансформаторе можно осуществить с помощью регулировочной обмотки на линейном конце среднего напряжения (рис. 2.42, б).
В этом случае переключающее устройство должно быть рассчитано на полный номинальный ток, а изоляция его — на полное напряжение средней обмотки.
Такие переключающие устройства на ток 2000 А с изоляцией классов ПО и 220 кВ позволяют обеспечить РПН для автотрансформаторов больших мощностей. Регулирование осуществляется с помощью трех
однофазных регуляторов, имеющих электропривод с автоматическим управлением.
Для регулирования напряжения под нагрузкой на мощных трансформаторах и автотрансформаторах применяются также последовательные регулировочные трансформаторы (рис. 2.43). Они состоят из последовательного трансформатора 2, который вводит добавочную ЭДС в основную обмотку автотрансформатора /, и регулировочного автотрансформатора 3,
который меняет эту ЭДС. С помощью таких трансформаторов можно изменять не только напряжение (продольное регулирование), но и его фазу (поперечное регулирование). Устройство таких трансформаторов значительно сложнее, чем РПН, поэтому они дороже и применение их ограничено.
Характеристики трансформаторов и способы регулирования напряжения
Холостым ходом трансформатора называется такой режим работы, когда к первичной обмотке подводится напряжение ?/1? а вторичная обмотка разомкнута (/2 = 0). Ток ix — /0, протекающий в первичной обмотке при таком режиме, называется током холостого хода. Реактивная составляющая этого тока создает магнитный поток Ф, который в основном замыкается по магнитопроводу.
Магнитный поток Ф, сцепленный со всеми витками первичной и вторичной обмоток, при своем изменении будет наводить в них ЭДС, которые будут отставать по фазе от магнитного потока на угол л/2.
Действующее значение ЭДС определяется по формулам
где / — частота переменного тока;
w — количество витков в соответствующей обмотке;
Ф,„ — амплитудное значение магнитного потока.
Из этого следует, что EJE2 — Wj/w2. При холостом ходе падение напряжения в первичной обмотке от тока /0 мало, поэтому этим падением напряжения можно пренебречь и принять
Е<, напряжение вторичной обмотки при холостом ходе U2 — Е2. Исходя из этого, можно записать:
Указанное отношение называется коэффициентом трансформации и является одной из важных величин, характеризующих трансформатор. Коэффициент трансформации определяется при холостом ходе измерением напряжений первичной и вторичной обмоток.
Обычно принимается отношение ВН к НИ. При определении п для трехфазных трансформаторов принимается отношение фазных напряжений обмоток.
В основные потери в трансформаторе входят две составляющие: потери в обмотках и магнитные потери в магнитопроводе Рм. Потери в обмотках при холостом ходе весьма малы, так как во вторичной обмотке тока нет, а по первичной протекает небольшой ток /0. Поэтому с достаточной точностью можно сказать, что при холостом ходе в трансформаторе имеются только магнитные потери в магнитопроводе Pq » Рм. Эти потери возникают из-за перемагни- чивания магнитопровода переменным магнитным потоком и состоят из потерь на гистерезис и вихревые токи. Активной мощности, потребляемой трансформатором при холостом ходе Р0, соответствует активная составляющая тока холостого хода:
Потери Pq и ток /0 являются важными характеристиками трансформатора. Снижение значений этих величин уменьшает потери энергии и потребление реактивного тока. Это достигается путем применения электротехнической стали с улучшенными магнитными свойствами — низкими удельными потерями и низкой удельной намагничивающей мощностью. Снижению тока холостого хода способствует также применение шихтованных в переплет магнитопро- водов, в которых исключаются в явном виде воздушные зазоры в контурах магнитных линий.
Опыт холостого хода проводят для экспериментального определения потерь холостого хода Pq, тока холостого хода /0, cos(p0 и коэффициента трансформации. Схемы соединений при опыте холостого хода однофазного и трехфазного трансформаторов приведены на рис. 4.5.
Рис. 4.5. Схемы соединений однофазного (а) и трехфазного (б) трансформаторов при опыте холостого хода
Постепенно повышают подводимое напряжение от нуля до 1,1 — 1,2?/1ном и записывают показания всех приборов. По данным измерений строят зависимости /0 =/(С/1);
Рис. 4.6. Характеристики холостого хода
^0 = /(^i); cos( Po = f( u i>- Эти зависимости называют характеристиками холостого хода (рис. 4.6).
Для трехфазного трансформатора значения Ux и /0 при построении характеристик принимают средними для трех фаз. Мощность Р0 трех фаз определяют по показаниям двух ваттметров: Р0 = Р’ ± Р» (знак «+» принимается при отклонении стрелок приборов в одну сторону, а знак «—» — при их отклонении в разные стороны).
Коротким замыканием называют режим работы трансформатора, при котором первичная обмотка подсоединена к сети, а выводы вторичной обмотки соединены накоротко (напряжение U2 =0). Короткое замыкание при номинальном первичном напряжении является аварийным режимом, при котором токи в обмотках в 10—15 раз превышают номинальные и являются опасными для трансформатора.
В опыте короткого замыкания к трансформатору подводится пониженное напряжение t/,K, значение которого выбирается так, чтобы токи в обмотках были равны номинальным или близки к ним. Напряжение U]K номинальной частоты, которое следует подвести к выводам первичной обмотки трансформатора при замкнутой накоротко вторичной обмотке, чтобы в обеих обмотках установились номинальные токи, называется напряжением короткого замыкания. Оно обычно выражается в процентах номинального напряжения первичной обмотки и указывается в паспорте и на табличке трансформатора.
Опыт короткого замыкания имеет важное практическое значение, так как из него определяются потери и напряжение короткого замыкания, которое характеризует внутреннее сопротивление трансформатора. От значения напряжения короткого замыкания зависят падение напряжения в трансформаторе, внешние характеристики и ток короткого замыкания трансформатора.
В опыте короткого замыкания из сети потребляется активная мощность, которая идет на покрытие потерь внутри трансформатора. Потери, возникающие в трансформаторе при таком режиме, называются потерями короткого замыкания. Практическое значение эти потери имеют при номинальных токах в обмотках.
Потери короткого замыкания Рк состоят из основных электрических потерь в обмотках и добавочных потерь от вихревых токов в обмотках и крепежных деталях. Добавочные потери обусловлены переменными магнитными полями рассеяния. Сопротивления этих элементов неодинаковы. Главную часть потерь короткого замыкания составляют основные потери в обмотках. Добавочные потери включаются в основные потери путем условного увеличения сопротивлений обмоток. Эквивалентные активные сопротивления первичной г, и вторичной г2 обмоток обычно в 1,05—1,15 раза больше, чем сопротивления тех же обмоток, измеренные при постоянном токе.
Таким образом, потери короткого замыкания при номинальных токах в обмотках равны:
Согласно ГОСТ потери Рк должны определяться по сопротивлениям а*! и г2, приведенным к температуре 75 или 115 °С.
Магнитные потери в опыте короткого замыкания малы и ими пренебрегают. Потери короткого замыкания Рк в 2,5—6 раз больше потерь холостого хода Р0.
Опыт короткого замыкания проводят по схемам, приведенным на рис. 4.7. Напряжение, подводимое к первичной обмотке, плавно повышают от нуля до значения, при котором токи в обмотках будут равны номинальным. При этом записывают показания всех приборов.
Для того чтобы в процессе опыта не менялось сопротивление гк из-за нагревания обмоток, опыт следует проводить быстро. Кроме того, целесообразно опыт проводить на трансформаторе, который до этого длительно не работал. В этом случае температуру обмоток можно принять равной температуре окружающей среды. По данным измерений строят зависимости:
Рис. 4.8. Характеристики короткого замыкания
Рис. 4.7. Схемы соединений однофазного (а) и трехфазного (б) трансформаторов при опыте короткого замыкания
Эти зависимости носят название характеристик короткого замыкания (рис. 4.8). Для трехфазных трансформаторов зависимости строятся для средних значений фазного тока и фазного напряжения. Мощность Рк равна мощности трех фаз.
При колебаниях нагрузки трансформатора его вторичное напряжение Щ меняется. Изменение вторичного напряжения A U зависит не только от величины нагрузки трансформатора, но и от характера этой нагрузки (cos (р2).
Зависимость вторичного напряжения U2 трансформатора от нагрузки /2 называют его внешней характеристикой. Напомним, что в силовых трансформаторах за номинальное вторичное напряжение принимают напряжение на зажимах вторичной обмотки в режиме холостого хода при номинальном первичном напряжении.
Рис. 4.9. Внешняя характеристика трансформатора
Вид внешней характеристики (рис. 4.9) зависит от характера нагрузки трансформатора (cos ф).
Способы регулирования напряжения трансформаторов. В процессе эксплуатации трансформаторов изменяют их коэффициент трансформации с целью:
- — стабилизации вторичного напряжения при изменении первичного напряжения и нагрузки. В этом случае обычно требуется изменять коэффициент трансформации в нешироких пределах;
- — регулирования вторичного напряжения в широких пределах в соответствии с требованием технологического процесса.
Для регулирования напряжения в узких пределах предусматривают переключающие устройства:
ПБВ — для переключения ответвлений от обмоток без возбуждения, т.е. после отключения всех обмоток от сети;
РПН — для переключения ответвлений от обмоток под нагрузкой без отключения обмоток от сети.
Коэффициент трансформации обычно изменяют ступенями. Первичная или вторичная обмотка имеет необходимое число ответвлений, которые переключаются соответствующим переключающим устройством. При переключении ответвлений изменяется число витков одной из обмоток и, следовательно, коэффициент трансформации k = W/w2. При регулировании числа витков обмотки высшего напряжения (ОВН) переключающее устройство получается менее громоздким благодаря меньшим значениям тока, а регулирование можно осуществлять более точно благодаря большему числу витков ОВН. При регулировании напряжения в широких пределах обычно изменяют число витков обмотки низшего напряжения, так как значительное уменьшение числа витков ОВН при неизменном напряжении привело бы к значительному увеличению магнитного потока трансформатора и плохому использованию трансформатора, ОВН которого пришлось бы рассчитывать на напряжение, значительно большее номинального.
Ступенчатое регулирование напряжения выпрямительных устройств путем изменения коэффициента трансформации часто используют совместно с плавным фазовым управлением (путем изменения угла управления а тиристорами), благодаря чему улучшается коэффициент мощности выпрямителей.
Применяются следующие схемы плавного регулирования выходного напряжения трансформаторов:
- — путем изменения первичного напряжения с помощью магнитных усилителей;
- — путем подмагничивания магнитопровода трансформатора постоянным током (трансформаторы с подмагничиваемыми шунтами);
- — с помощью контактных щеток, скользящих по неизолированной части обмотки.
Первые два способа плавного регулирования находят применение в установках малой мощности; в выпрямительных устройствах наибольшее применение получило фазовое управление на базе тиристоров. Третий способ нашел применение в автотрансформаторах.
Вопросы регулирования напряжения на базе управляемых и неуправляемых тиристоров рассматриваются в курсе «Электронные преобразователи».
Автотрансформатор — это такой вид трансформатора, в котором, помимо магнитной связи между обмотками, имеется еще и электрическая связь. Обмотки обычного трансформатора можно включить по схеме автотрансформатора, для чего вывод Xобмотки соединяют
с выводом а обмотки wax (рис. 4.10, а). Если выводы Ах подключить к сети, а к выводам ах подключить нагрузку ZH, то получим понижающий автотрансформатор. Если же выводы ах подключить к сети, а к выводам Ах подключить нагрузку ZH, то получим повышающий автотрансформатор.
Широко распространены автотрансформаторы с переменным коэффициентом трансформации. В этом случае автотрансформатор
Рис. 4.10. Электромагнитная (а) и принципиальная (б) схемы автотрансформатора
снабжают устройством, позволяющим регулировать величину вторичного напряжения путем изменения числа витков w с помощью скользящего контакта (щетки) к (рис. 4.10, б), перемещаемого непосредственно по зачищенным от изоляции виткам обмотки. Такие автотрансформаторы служат регуляторами напряжения.
Большая Энциклопедия Нефти и Газа
Наиболее простым способом регулирования выходного напряжения трансформатора или автотрансформатора является изменение числа витков обмотки, для чего обмотка ( первичная или вторичная) выполняется с несколькими отводами. С помощью переключателя изменяется число витков обмотки и, следовательно, выходное напряжение трансформатора или автотрансформатора. [31]
Наиболее существенными недостатками трансформаторной связи по сравнению с емкостной являются большие габариты и вес и меньшая надежность; трансформаторы чувствительны к внешним магнитным полям и во избежание увеличения уровня наводок требуют, как правило, тщательной экранировки. Кроме этого, сдвиг фазы выходного напряжения трансформатора относительно входного при жестких требованиях к габаритам и весу оказывается значительным, а его уменьшение до допустимой величины — не всегда возможным. [32]
Сопротивление разветвления из С и R2, на котором падает напряжение U2; при этом имеет практически чисто емкостный характер. В результате согласно схеме рис. 5.24 выходное напряжение трансформатора находящееся в фазе с U 2, отстает от входного на угол, стремящийся к 180 при / — оо. [33]
Магнитный усилитель МУ, включенный последовательно с первичной обмоткой трансформатора ТП, за счет изменения индуктивного сопротивления позволяет в достаточно широких пределах регулировать напряжение питания электрофильтра. При отключении питания обмотки управления индуктивное сопротивление МУ максимальное, а выходное напряжение трансформатора ТП — минимальное. [34]
Рассмотренные в последней главе практические схемы представляют собой в основном довольно простые источники постоянного напряжения, работающие от сети переменного тока и содержащие сетевые трансформаторы. Поэтому при выборе трансформатора для того или иного источника следует ориентироваться на значение выходного напряжения трансформатора , указанного в описании каждого из источников. [35]
В преобразователях с высоким выходным напряжением ( несколько киловольт ] выходной трансформатор вмеет сложную конструкцию и повышенную массу из-за необходимости усиленной изоляции обмоток. Кроме того, вследствие большого числа витков вторичной обмотки такой трансформатор имеет повышенные значения индуктивности рассеяния и распределенной емкости обмоток, что приводит к искажениям формы кривой выходного напряжения трансформатора ( увеличенная длительность фронта и высокочастотные колебания на переднем фронте), ухудшает режим переключения транзисторов и создает броски потребляемого тока. [36]
БПЗ, а на три вторых входа этих блоков подано трехфазное напряжение с вторичных обмоток трансформатора TV, обмотки первичной стороны которого подключены к той же сети, что и роторные цепи МА. Поэтому на статорные обмотки первого сельсина 1C с выходов блоков произведения подаются три высокочастотных ( частоты коммутирующего напряжения) напряжения, амплитудные значения которых модулированы ( ограничены) выходными напряжениями трансформатора TV . В итоге токами трех ста-торных обмоток 1C создается результирующая высокочастотная магнитодвижущая сила, ось которой поворачивается в зазоре 1C с частотой сети, питающей трансформатор TV и ротор МА. [37]
Вращающиеся трансформаторы применяются также для определения ( по значениям напряжений вторичных обмоток) гипотенузы прямоугольного треугольника по заданным его катетам или для определения одного катета по заданным гипотенузе и другому катету. Аналогично находится также значение некоторого вектора по его составляющим и наоборот. Выходные напряжения трансформатора подаются на входные элементы системы автомагического регулирования. [39]
Электрическая схема установки состоит из следующих элементов. К резцу 4 и заготовке 1 подводится переменный ток от понижающего трансформатора 7, включенного в электроцепь напряжением 220 в с частотой 50 гц. Выходное напряжение трансформатора составляет 2, 4, 6 в. Во избежание искровых разрядов электроцепь включают после врезания резца в металл, а выключают перед окончанием резания. [40]
Трансформаторы широко используются в источниках электропитания, поскольку они являются простыми и надежными преобразователями электрической энергии. Выходное напряжение трансформатора может быть меньше, больше или равно входному напряжению. Если уровень выходного напряжения меньше входного, то трансформаторы называют понижающими, если больше — повышающими. Трансформатор, у которого входное и выходное напряжения равны, можно назвать изолирующими или разделительным трансформатором, так как в нем входное и выходное напряжения электрически изолированы друг от друга. Основной выходной величиной, характеризующий работу трансформатора, является выходное напряжение. [41]
Удивительно, но трансформатор сам по себе не может работать на постоянном токе. Выходное напряжение трансформатора — это всегда переменное напряжение, которое должно быть выпрямлено и стабилизировано с тем, чтобы на выходе устройства получить постоянное напряжение. [42]
В ряде случаев требуется получить другой уровень выходного напряжения, чем обеспечивает тот или другой представленный источник напряжения. Помните, что при увеличении выходного напряжения трансформатора следует использовать компоненты, имеющие большие значения предельно допустимых напряжений. Аналогичное заключение справедливо в отношении к выходному току. Представляется очевидным, что если в схеме установлен резистор с номинальной мощностью 1 Вт, то вполне допустимо использовать вместо него резистор, рассчитанный на 2 Вт, тогда как установка резистора вдвое меньшей мощности недопустима. [43]
Наиболее простым способом регулирования выходного напряжения трансформатора или автотрансформатора является изменение числа витков обмотки, для чего обмотка ( первичная или вторичная) выполняется с несколькими отводами. С помощью переключателя изменяется число витков обмотки и, следовательно, выходное напряжение трансформатора или автотрансформатора. [44]
Схема работает следующим образом. При равновесном или, что то же самое, балансном состоянии системы результирующие ампер-витки на первичной стороне трансформатора Т равны нулю, поскольку обе половины ее обтекаются одинаковыми токами t и (, но эти токи направлены навстречу друг другу. Это объясняется тем, что при балансном состоянии схемы сопротивления двух контуров, подключенных к источнику переменного напряжения, одинаковы. Отсутствие намагничивающих ампер-витков приводит к тому, что выходное напряжение трансформатора равно нулю. При разбалансировке, когда сопротивления обмоток датчика отличаются друг от друга из-за различных коэффициентов самоиндукции, сила тока в какой-то из двух половин первичной обмотки больше, чем в другой. Это значит, что появляются разностные ампер-витки. В сердечнике трансформатора возникает переменный магнитный поток и во вторичной обмотке действует тем большая ЭДС, чем значительнее разностные ампер: витки. Поскольку между перемещением штока и выходным электрическим сигналом существует функциональная связь, индуктивные преобразователи широко используют для контроля малых линейных перемещений. [45]